
ConcurrenC: A New Approach towards Effective
Abstraction of C-based SLDLs

Weiwei Chen and Rainer Doemer

Center for Embedded Computer Systems
University of California, Irvine

weiwei.chen@uci.edu, doemer@uci.edu

Abstract. Embedded system design in general can only be successful if it is
based on a suitable Model of Computation (MoC) that can be well represented
in an executable System-level Description Language (SLDL) and is supported
by a matching set of design tools. While C-based SLDLs, such as SystemCand
SpecC, are popular in system-level modeling and validation, current tool flows
impose serious restrictions on the synthesizable subset of the supportedSLDL. A
properly aligned and clean system-level MoC is often neglected or even ignored.
In this paper, we motivate the need for a well-defined MoC in embedded sys-
tem design. We discuss the close relationship between SLDLs and the abstract
models they can represent, in contrast to the smaller set of models the toolscan
support. Based on these findings, we then outline a new approach, calledConcur-
renC, that defines a true system level of abstraction, aptly fits system modeling
requirements, and can be expressed precisely in both SystemC and SpecC. Using
the case study of a H.264 video decoder, we demonstrate how the ConcurrenC
approach meets the needs and characteristics of a industry size embedded appli-
cation.

1 Introduction

With applications ranging from portable media players to real-time automotive appli-
cations, the complexity of embedded systems is growing rapidly with the increasing
number of integrated components that have to cooperate properly and concurrently.
Embedded systems also have tight constraints on size, power, and price.

According to the 2007 edition of the International Technology Roadmap for Semi-
conductors (ITRS) [7], system-level design is a promising solution to improve the de-
sign productivity by moving up to a higher level of abstraction. A new modeling ap-
proach is needed to enable system design, including simulation, estimation, synthesis,
verification, implementation, and design space exploration.

In this paper, we aim to establish a properly aligned relation between three essential
ingredients for successful system design, namely (1) a suitable Model of Computation
(MoC) for reasoning, (2) an executable System-level Description Language (SLDL) for
simulation, and (3) a matching set of design tools for implementation.

After a brief overview about existing MoCs in related work, we discuss the need for
a new approach on C-based system design in Section 3. We then outline our approach,
calledConcurrenC, in Section 4. To demonstrate ConcurrenC, we study in Section 5 a

H.264 video decoding application and show how the inherent features and characteris-
tics of this application can be naturally reflected in the proposed ConcurrenC MoC.

The contribution of this paper is the identification of needsand requirements of a
new MoC that enables effective abstraction of designs specified in C-based SLDLs.

2 Related Work

There has been considerable effort on many MoCs and SLDLs, aswell as existing
system design flows.

A Model of Computation (MoC) is a formal definition of the set of allowable
operations used in computation and their respective costs.This defines the behavior
of a system at a certain abstraction level to reflect the essential system features. Many
different MoCs have been proposed for different domains. Overviews can be found in
[4] and [10].

Kahn Process Network (KPN) is a deterministic MoC where processes are con-
nected by unbounded FIFO channels to form a network [9].Dataflow Process Net-
work (DFPN) [11] is a special case of KPN in which the communication buffers are
bounded.Synchronous dataflow (SDF)is an extended MoC from DFPN that allows
static scheduling. While these MoCs are popular for modelingsignal processing appli-
cations, they are not well-suited for controller applications.

Dataflow Graph (DFG) and its derivatives are MoCs for describing computational
intensive systems [1]. Combined withFinite State Machine (FSM), which is popular
for describing control systems, FSM and DFG formFinite-State Machine with Data-
path (FSMD) in order to describe systems requiring both control and computation [5].
Program-state machine (PSM)[4] is a FSM extension that supports both hierarchy
and concurrency and allows states to contain regular program code.

Transaction-level modeling (TLM) [6] is a well-accepted approach to model dig-
ital systems where the details of communication are abstracted. Unfortunately, TLM
does not specify a well-defined MoC but relies on the system design flow and the used
SLDL to define the details of supported syntax and semantics.

Modern C-based SLDLs, like SystemC [6] and SpecC [5], are available for model-
ing and describing an embedded system at different levels ofabstraction. Both include
support for describing several MoCs, including PSM, FSMD, TLM, and general dis-
crete event (DE) simulation. However, neither language defines a formal model behind
the plain syntax and execution semantics.

3 Problem Definition

For system-level design, the importance of abstract modeling cannot be overrated. Proper
abstraction and specification of the system model is a key to accurate and efficient esti-
mation and the final successful implementation.

Register-Transfer Level (RTL) design is a good example to show the importance
of a well-defined model of computation. Designers describe hardware components in
hardware description languages (HDL), i.e. VHDL and Verilog. Both languages have

strong abilities to support different types of hardware structures and functionalities. By
using the HDL, designers use FSMs to model controllers or other parts of their design.
Thus, FSM plays a crucial role as a formal model behind the languages. In other words,
the FSM model in the mind of the designer is described syntactically in the VHDL or
Verilog language.

Note that commercial computer aided design (CAD) tools cannot synthesize all the
VHDL / Verilog statements. Instead, special design guidelines are provided to restrict
the use of specific syntax elements, or to prevent generationof improper logics, e.g.
latches.

The importance of the model in system design is the same as in RTL. Table 1
compares the situation at the system level against the mature design methodology at
the RTL. RTL design is supported by the strong MoCs of FSM and FSMD, and well-
acceptedcoding guidelinesexist for VHDL and Verilog, so that established commercial
tool chains can implement the described hardware. It is important to notice that here the
MoC was defined first, and the coding style in the respective HDL followed the needs
of the MoC.

Abstraction
SchematicsLanguage MoC Tool

Level

RTL
VHDL, FSM, Synopsys Design Compiler
Verilog FSMD Cadence RTL Compiler

...

ESL
MIP

P1M

MIP

P1M P2

SpecC, PSM, SoC Environment [2]
SystemC TLM (?) Synopsys System Studio

ConcurrenC ! ...
Table 1.System-level design in comparison with the well-established RTL design

At the Electronic System Level (ESL), on the other hand, we have the popular C-
based SLDLs SystemC and SpecC which are more or less supported by early academic
and commercial tools [2, 3]. As at RTL, the languages are restricted to a (small) subset
of supported features, but thesemodeling guidelinesare not very clear. Moreover, the
MoC behind these SLDLs is unclear. SpecC is defined in contextof the PSM MoC [5],
but so is SpecCharts [4] whose syntax is entirely different.For SystemC, one could
claim TLM as its MoC [6], but a wide variety of interpretations of TLM exists.

We can conclude that in contrast to the popularity of the C-based SLDLs for ESL
modeling and validation, and the presence of existing design flows implemented by
early tools, the use of a well-defined and clear system-levelMoC is neglected. Instead,
serious restrictions are imposed on the usable (i.e. synthesizable and verifiable) sub-
set of the supported SLDL. Without a clear MoC behind these syntactical guidelines,
computer-aided system design is difficult. Clearly, a well-defined and formal MoC is
needed to attack and solve the ESL design challenge.

4 ConcurrenC MoC

We now discuss the close relationship and tight dependencies between SLDLs (i.e. syn-
tax), their expressive abilities (i.e. semantics), and theabstract models they can repre-
sent. We will point out that, in contrast to the large set of models the SLDL can describe,

the available tools support only a subset of these models. Toavoid this discrepancy that
clearly hinders the effectiveness of any ESL methodology, we propose a novel MoC,
called ConcurrenC, that aptly fits the system modeling requirements and the capabilities
of the supporting tool chain and languages.

Generally speaking, ConcurrenC should be a system-level FSM extension with sup-
port for concurrency and hierarchy. As such, it falls into the PSM MoC category. The
ConcurrenC model needs clear separation of concerns on computation and communi-
cation. In the realm of structure abstraction, a ConcurrenCmodel consists of blocks,
channels and interfaces, and fully supports structural andbehavioral hierarchy. Blocks
can be flexibly composed in space and time to execute sequentially, in parallel/pipelined
fashion, or by use of state transitions. Blocks themselves are internally based on C, the
most popular programming language for embedded applications. In the realm of com-
munication abstraction, we intentionally use a set of predefined channels that follow a
typed message passing paradigm rather than using user-defined freely programmable
channels.

Relationship to C-based SLDLs

More specifically, ConcurrenC is tailored to the SpecC and SystemC SLDLs. Con-
currenC abstracts the embedded system features and provides clear guidelines for the
designer to efficiently use the SLDLs to build a system. In other words, the ConcurrenC
model is captured and described by using the SLDLs.

Fig. 1 shows the relationship between the C-based SLDLs, SystemC and SpecC, and
the MoC, ConcurrenC. ConcurrenC is a true subset of the models that can be described
by SpecC and SystemC. This implies that ConcurrenC containsonly the model features
which can be described by both languages. For example, exception handling, i.e. in-
terrupt and abortion, is supported in SpecC by using thetry-trap syntax, but SystemC
does not have the capability to handle such exceptions. On the other hand, SystemC
supports the feature for waiting a certain timeand for some events at the same time,
which SpecC does not support. As shown in Fig. 1, features that are only supported by
one SLDL will not be included in the ConcurrenC model.

Moreover, ConcurrenC excludes some features that both SpecC and SystemC sup-
port (the shadow overlap area in Fig. 1). We exclude these to make the ConcurrenC
model more concise for modeling. For example, ConcurrenC will restrict its communi-
cation channels to a predefined library rather than allowingthe user to define arbitrary
channels by themselves. This allows tools to recognize the channels and implement
them in optimal fashion.

SpecC

Abstraction
Descriptive

Capability

SystemC

ConcurrenC
SpecC

Models

SystemC

Models

SLDLs

MoCs MoCs

SLDLs

Fig. 1.Relationship between C-based SLDLs SystemC and SpecC, and MoC ConcurrenC

ConcurrenC Features

A ConcurrenC Model can be visualized in four dimensions as shown in Fig. 2. There
are three dimensions in space, and one in time. The spatial dimensions consist of two
dimensions for structural composition of blocks and channels and their connectivity
through ports and signals (X, Y coordinates), and one for hierarchical composition (Z-
axis). The temporal dimension specifies the execution orderof blocks in time, which can
be sequential or FSM-like (thick arrows), parallel (dashedlines), or pipelined (dashed
lines with arrows) in Fig. 2.

t

Execution Order

Temporal Dimension

Y

X

Z

Structure

H
ie

ra
rc

h
y Spatial Dimension

Fig. 2. Visualization of a ConcurrenC Model in three spatial and one temporal dimensions

The detailed features of the proposed ConcurrenC MoC are listed below:

– Communication & Computation Separation Separating communication from
computation allows “plug-n-play" features of the embeddedsystem [5]. In Concur-
renC, the communication contained in channels is separatedfrom the computation
part contained in blocks so that the purpose of each statement in the model can be
clearly identified whether it is for communication or computation. This also helps
for architecture refinement and hardware/software partitioning.

– Hierarchy Hierarchy eliminates the potential explosion of the model size and sig-
nificantly simplifies comprehensible modeling of complex systems.

– Concurrency The need for concurrency is obvious. A common embedded system
will have multiple hardware units work in parallel and cooperate through speci-
fied communication mechanisms. ConcurrenC also supports pipelining in order to
provide a simple and explicit description of the pipelined data flow in the system.

– Abstract Communications (Channels)A predefined set of communication chan-
nels is available in ConcurrenC. We believe that the restriction to predefined chan-
nels not only avoids coding errors by the designer, but also simplifies the later
refinement steps, since the channels can be easily recognized by the tools.

– Timing The execution time of the model should be evaluable to observe the effi-
ciency of the system. Thus, ConcurrenC supports wait-for-time statements in simi-
lar fashion as SystemC and SpecC.

– ExecutionThe model must be executable in order to show its correctnessand ob-
tain performance estimation. Since a ConcurrenC model can be converted to SpecC
and SystemC, the execution of the model is definitely possible.

Communication Channel Library

For ConcurrenC, we envision two type of channels, channels for synchronization and
data transfer. For data transfer, ConcurrenC limits the channel to transfer data in FIFO
fashion (as in KPN and SDF). In many cases, these channels make the model deter-
ministic and allow static scheduling. For KPN-like channels, the buffer size is infinite
(Q∞) which makes the model deadlock free but not practical. For SDF-like channels,
the buffer size is fixed (Qn). Double-handshake mechanism, which behaves in a ren-
dezvous fashion, is also available as a FIFO with buffer sizeof zero (Q0). Signals
are needed to design a 1-N (broadcasting) channel. Furthermore, shared variables are
allowed as a simple way of communication that is convenient especially in software.
Moreover, FIFO channels can be used to implement semaphore which is the key to build
synchronization channels. In summary, ConcurrenC supports the predefined channel li-
brary as shown in Table 2.

Channel Type Receiver Sender Buffer Size
Q0 Blocking Blocking 0
Qn Blocking Blocking n
Q∞ Blocking – ∞

Signal Blocking – 1
Shared Variable – – 1
Table 2.Parameterized Communication Channels

5 Experiment

In order to demonstrate the feasibility and benefits of the ConcurrenC approach, we use
the Advanced Video Coding (AVC) standard H.264 decoding algorithm [8] as driver
application to evaluate the modeling features. Our H.264 decoder model is of industrial
size, consisting of about 30 thousand lines of code. The input of the decoder is an H.264
stream file, while the output is a YUV file.

ConcurrenC features can be easily used to model the H.264 decoder, see Fig. 3.

– Hierarchy: At the top level of the ConcurrenC model, there are three behavioral
blocks:stimulus, decoder, and monitor. The stimulus reads the input yuv file,
while themonitor receives and displays the decoded stream including signal-to-
noise ratio (SNR), system time, and writes the reconstructed frames into the out-
put file.Decodercontains multiple blocks for concurrent slice decoding. A stream
processing block prepares the settings,n decode units decode slices in parallel, and
the decoding synchronizer combines the decoded slices for output by the monitor.
The number of the slice decoders is scalable depending on thenumber of slices
contained in one frame of the input stream file. Inside the slice decode blocks,
functional sub-blocks are modeled for the detailed decoding tasks. Hierarchical
modeling allows convenient and clear system description.

Monitor

Stream

Processing

StimulusIn file

.h264

Out file

.yuv

Decoder

Decoding

Synchronizer

Shared Data Structure

S
lice

Decode

One

Slice

Decode

One

Slice

Decode

One

Slice

Shared

Data Structure

Signal

FIFO channel

Inv. Quant &

Transformation

Entropy

Decode
Deblock

Filter

Motion

Compensation

Intra-

Prediction

Fig. 3.Proposed H.264 Decoder Block Diagram

– Concurrency: [12] confirms that multiple slices in one frame are possibleto be
decoded concurrently. Consequently, our H.264 decoder model consists of multiple
blocks for concurrent slice decoding in one picture frame1.

– Communication: FIFO channels and shared variables are used for communication
in our H.264 decoder model. FIFO queues are used for data exchange between dif-
ferent blocks. For example, the decoder synchronizer sendsthe decoded frame via
a FIFO channel to the monitor for output. Shared variables, i.e. reference frames,
are used to simplify the coordination for decoding multipleslices in parallel.

– Timing: The decoding time can be observed by using wait-for-time statements in
the modeled blocks. We have obtained the estimated execution time for different
hardware architectures by using simulation and profiling tools of the SLDLs.

– Execution: We have successfully converted and executed our model in SpecC using
the SoC Environment [2].
Table 3 shows the simulation results of our H.264 decoder modeling in ConcurrenC.

The model is simulated on a PC machine with Intel(R) Pentium(R) 4 CPU at 3.00GHz.
Two stream files, one with 73 frames, and the other with 299 frames are tested. For
each test file, we created two types of streams, 4 slices and 8 slices per frame. We run
the model by decoding the input streams in two ways: slice by slice (seq model), and
slices in one frame concurrently (par model). The estimatedexecution time is measured
by annotated timing information according to theestimation results generated by SCE
with a ARM7TDMI 400 MHz processor mapping. Our simulation results show that the
parallelism of the application modeled in ConcurrenC is scalable. We can expect that it
is possible to decode three of the test streams in real-time (bold times).

6 Conclusion

In this paper, we have discussed the relationship between C-based system description
languages and the abstract design models they describe. We argue that a new model

1 We should emphasize that this potential parallelism was not apparent in the original C code. It
required serious modeling effort to parallelize the slice decoders for our model.

filename boat.264 coastguard.264
macroblocks/frame 396 396

frames 73 (2.43 secs) 299 (9.97 secs)
slices/frame 4 8 4 8

max # macroblocks/slice 150 60 150 60
model type seq par seq par seq par seq par

host sim time (s) 4.2234.2584.5574.55012.19112.19712.86012.846
estimated exec time (s)11.13 4.43 11.49 1.80 18.78 7.20 20.31 3.33

speedup 1 2.51 1 6.38 1 2.61 1 6.10
Table 3.Simulation Results, H.264 Decoder modeled in ConcurrenC

of computation is needed behind the syntax of the languages and have outlined a new
model of computation, ConcurrenC. ConcurrenC is a concurrent, hierarchical system
model of computation with abstraction of both communication and computation, that
fits the requirements of both SpecC and SystemC SLDLs. A real-world driver appli-
cation, H.264 decoder is used to demonstrate how the proposed ConcurrenC approach
matches the system modeling requirements.

While we leave the detailed formal modeling for future work, the contribution of
this paper is a practical approach at abstract system modeling that fills the gap between
the theoretical MoCs KPN and SDF, and the practical SLDLs SpecC and SystemC.

References

1. T. DeMarco. Structured analysis and system specification. pages 409–424, 1979.
2. R. Doemer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi,and D. D. Gajski.

System-on-chip Environment: A SpecC-based Framework for Heterogeneous MPSoC De-
sign. EURASIP J. Embedded Syst., 2008(3):1–13, 2008.

3. Embedded System Environment.http://www.cecs.uci.edu/∼ese/.
4. D. D. Gajski, F. Vahid, S. Narayan, and J. Gong.Specification and Design of Embedded

Systems. Prentice Hall, 1994.
5. D. D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao.SpecC: Specification Language

and Design Methodology. Kluwer Academic Publishers, 2000.
6. T. Groetker, S. Liao, G. Martin, and S. Swan.System Design with SystemC. Kluwer Aca-

demic Publishers, 2002.
7. International Semiconductor Industry Association. International Technology Roadmap for

Semiconductors (ITRS).http://www.itrs.net, 2007.
8. Joint Video Team of ITU-T and ISO/IEC JTC 1.Draft ITU-T Recommendation and Fi-

nal Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC
14496-10 AVC). Document JVT-G050r1, 2003.

9. G. Kahn. The Semantics of a Simple Language for Parallel Programming. Information
Processing, pages 471–475, 1974.

10. E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Compu-
tation. IEEE Transactions on Computer-Aided Design of Intergrated Circuits and Systems
(TCAD), 17(12), Dec. 1998.

11. T. M. Parks.Bounded Scheduling of Process Networks. PhD thesis, Electrical Engineering
and Computer Science, University of California, Berkeley, December1995.

12. T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC
video coding standard.IEEE Transactions on Circuits and Systems for Video Technology,
13(7):560–576, 2003.

