ConcurrenC: A New Approach towards Effective
Abstraction of C-based SLDLs

Weiwei Chen and Rainer Doemer

Center for Embedded Computer Systems
University of California, Irvine
weiwei.chen@uci.edu, doemerQuci.edu

Abstract. Embedded system design in general can only be successful if it is
based on a suitable Model of Computation (MoC) that can be well remezse

in an executable System-level Description Language (SLDL) and isostgap

by a matching set of design tools. While C-based SLDLs, such as SysiechC
SpecC, are popular in system-level modeling and validation, currehfltocs
impose serious restrictions on the synthesizable subset of the suppbB¢dA
properly aligned and clean system-level MoC is often neglected or enered.

In this paper, we motivate the need for a well-defined MoC in embeddgd sy
tem design. We discuss the close relationship between SLDLs and thecabstra
models they can represent, in contrast to the smaller set of models thedools
support. Based on these findings, we then outline a new approach,Catedr-
renC, that defines a true system level of abstraction, aptly fits system modeling
requirements, and can be expressed precisely in both SystemC ar@l Sjsing

the case study of a H.264 video decoder, we demonstrate how the r@amcu
approach meets the needs and characteristics of a industry size e tzaqufxdi-
cation.

1 Introduction

With applications ranging from portable media players tal-tane automotive appli-
cations, the complexity of embedded systems is growingdhapiith the increasing
number of integrated components that have to cooperateegyoand concurrently.
Embedded systems also have tight constraints on size, pangprice.

According to the 2007 edition of the International Techiggl®oadmap for Semi-
conductors (ITRS) [7], system-level design is a promisiolyitson to improve the de-
sign productivity by moving up to a higher level of abstranti A new modeling ap-
proach is needed to enable system design, including siionjastimation, synthesis,
verification, implementation, and design space explonatio

In this paper, we aim to establish a properly aligned refettietween three essential
ingredients for successful system design, namely (1) aldeitModel of Computation
(MoC) for reasoning, (2) an executable System-level Dpton Language (SLDL) for
simulation, and (3) a matching set of design tools for immatation.

After a brief overview about existing MoCs in related worle discuss the need for
a new approach on C-based system design in Section 3. We ttlereaur approach,
calledConcurrenG in Section 4. To demonstrate ConcurrenC, we study in Seétia

H.264 video decoding application and show how the inheregiufes and characteris-

tics of this application can be naturally reflected in thepmsed ConcurrenC MoC.
The contribution of this paper is the identification of neads requirements of a

new MoC that enables effective abstraction of designs &pddn C-based SLDLSs.

2 Related Work

There has been considerable effort on many MoCs and SLDLegjedisas existing
system design flows.

A Model of Computation (MoC) is a formal definition of the set of allowable
operations used in computation and their respective cosis. defines the behavior
of a system at a certain abstraction level to reflect the dsssgstem features. Many
different MoCs have been proposed for different domainsr@ews can be found in
[4] and [10].

Kahn Process Network (KPN)is a deterministic MoC where processes are con-
nected by unbounded FIFO channels to form a networkP@taflow Process Net-
work (DFPN) [11] is a special case of KPN in which the communication lngfi@re
bounded.Synchronous dataflow (SDF)s an extended MoC from DFPN that allows
static scheduling. While these MoCs are popular for modediggal processing appli-
cations, they are not well-suited for controller applioas.

Dataflow Graph (DFG) and its derivatives are MoCs for describing computational
intensive systems [1]. Combined wiltinite State Machine (FSM), which is popular
for describing control systems, FSM and DFG fdfinite-State Machine with Data-
path (FSMD) in order to describe systems requiring both control and edatjon [5].
Program-state machine (PSM)[4] is a FSM extension that supports both hierarchy
and concurrency and allows states to contain regular pnogcale.

Transaction-level modeling (TLM) [6] is a well-accepted approach to model dig-
ital systems where the details of communication are alstlatnfortunately, TLM
does not specify a well-defined MoC but relies on the systesigdedlow and the used
SLDL to define the details of supported syntax and semantics.

Modern C-based SLDLs, like SystemC [6] and SpecC [5], ardabla for model-
ing and describing an embedded system at different levedbsifaction. Both include
support for describing several MoCs, including PSM, FSMDMT and general dis-
crete event (DE) simulation. However, neither languagendsfa formal model behind
the plain syntax and execution semantics.

3 Problem Definition

For system-level design, the importance of abstract mogeknnot be overrated. Proper
abstraction and specification of the system model is a kegdorate and efficient esti-
mation and the final successful implementation.

Register-Transfer Level (RTL) design is a good example tmsthe importance
of a well-defined model of computation. Designers descriémelvare components in
hardware description languages (HDL), i.e. VHDL and VegilBoth languages have

strong abilities to support different types of hardwaredres and functionalities. By
using the HDL, designers use FSMs to model controllers cgrqtiarts of their design.
Thus, FSM plays a crucial role as a formal model behind thguages. In other words,
the FSM model in the mind of the designer is described syiatdhlt in the VHDL or
Verilog language.

Note that commercial computer aided design (CAD) tools oaeynthesize all the
VHDL / Verilog statements. Instead, special design guigediare provided to restrict
the use of specific syntax elements, or to prevent generafiamproper logics, e.g.
latches.

The importance of the model in system design is the same aglin Rable 1
compares the situation at the system level against the endgign methodology at
the RTL. RTL design is supported by the strong MoCs of FSM a8MB, and well-
acceptedoding guidelinegxist for VHDL and Verilog, so that established commercial
tool chains can implement the described hardware. It is rapbto notice that here the
MoC was defined first, and the coding style in the respectivé ftillowed the needs
of the MoC.

Abstraction Schematicd anguage MoC Tool
Level
VHDL, FSM, Synopsys Design Compiler
RTL @ Verilog FSMD Cadence RTL Compiler
o SpecC, PSM, SoC Environment [2]
ESL Sries SystemG TLM (?) Synopsys System Studip
ConcurrenC

Table 1. System-level design in comparison with the well-established RTL design

At the Electronic System Level (ESL), on the other hand, weehhe popular C-
based SLDLs SystemC and SpecC which are more or less suppgréarly academic
and commercial tools [2, 3]. As at RTL, the languages areictst to a (small) subset
of supported features, but thesmdeling guidelinesre not very clear. Moreover, the
MoC behind these SLDLs is unclear. SpecC is defined in confekie PSM MoC [5],
but so is SpecCharts [4] whose syntax is entirely differ€ot. SystemC, one could
claim TLM as its MoC [6], but a wide variety of interpretat®of TLM exists.

We can conclude that in contrast to the popularity of the €edeSLDLs for ESL
modeling and validation, and the presence of existing deBayvs implemented by
early tools, the use of a well-defined and clear system-l\ is neglected. Instead,
serious restrictions are imposed on the usable (i.e. syizthiide and verifiable) sub-
set of the supported SLDL. Without a clear MoC behind thesdasyical guidelines,
computer-aided system design is difficult. Clearly, a vaelfined and formal MoC is
needed to attack and solve the ESL design challenge.

4 ConcurrenC MoC

We now discuss the close relationship and tight dependgbeisveen SLDLS (i.e. syn-
tax), their expressive abilities (i.e. semantics), andathstract models they can repre-
sent. We will point out that, in contrast to the large set ofiele the SLDL can describe,

the available tools support only a subset of these modelavadid this discrepancy that
clearly hinders the effectiveness of any ESL methodology,pnopose a novel MoC,

called ConcurrenC, that aptly fits the system modeling requénts and the capabilities
of the supporting tool chain and languages.

Generally speaking, ConcurrenC should be a system-lewdlé>&nsion with sup-
port for concurrency and hierarchy. As such, it falls inte #SM MoC category. The
ConcurrenC model needs clear separation of concerns onutatigm and communi-
cation. In the realm of structure abstraction, a Concurrema@el consists of blocks,
channels and interfaces, and fully supports structuralaivioral hierarchy. Blocks
can be flexibly composed in space and time to execute segligriti parallel/pipelined
fashion, or by use of state transitions. Blocks themselveswernally based on C, the
most popular programming language for embedded applitatio the realm of com-
munication abstraction, we intentionally use a set of piiadd channels that follow a
typed message passing paradigm rather than using useediéfe@ely programmable
channels.

Relationship to C-based SLDLs

More specifically, ConcurrenC is tailored to the SpecC anst&8yC SLDLs. Con-
currenC abstracts the embedded system features and ek guidelines for the
designer to efficiently use the SLDLs to build a system. Ireothords, the ConcurrenC
model is captured and described by using the SLDLs.

Fig. 1 shows the relationship between the C-based SLDL$eB¥Sand SpecC, and
the MoC, ConcurrenC. ConcurrenC is a true subset of the radkat can be described
by SpecC and SystemC. This implies that ConcurrenC contaitythe model features
which can be described by both languages. For example, #owdpandling, i.e. in-
terrupt and abortion, is supported in SpecC by usingymrap syntax, but SystemC
does not have the capability to handle such exceptions. ®wtter hand, SystemC
supports the feature for waiting a certain tizued for some events at the same time,
which SpecC does not support. As shown in Fig. 1, featurdsatiesonly supported by
one SLDL will not be included in the ConcurrenC model.

Moreover, ConcurrenC excludes some features that bothCSped SystemC sup-
port (the shadow overlap area in Fig. 1). We exclude theseatkenthe ConcurrenC
model more concise for modeling. For example, Concurredd>rict its communi-
cation channels to a predefined library rather than allowlirguser to define arbitrary
channels by themselves. This allows tools to recognize lla@mels and implement
them in optimal fashion.

SLDis SpecC I SystemC ISEDLS

Fig. 1. Relationship between C-based SLDLs SystemC and SpecC, and MoQr&m(c

ConcurrenC Features

A ConcurrenC Model can be visualized in four dimensions asvshin Fig. 2. There

are three dimensions in space, and one in time. The spatiedrdiions consist of two
dimensions for structural composition of blocks and chéaed their connectivity
through ports and signals (X, Y coordinates), and one faiahidical composition (Z-

axis). The temporal dimension specifies the execution afdgocks in time, which can

be sequential or FSM-like (thick arrows), parallel (dashees), or pipelined (dashed
lines with arrows) in Fig. 2.

| Temporal Dimension
t

Fig. 2. Visualization of a ConcurrenC Model in three spatial and one temporarsions
The detailed features of the proposed ConcurrenC MoC desl lielow:

— Communication & Computation Separation Separating communication from
computation allows “plug-n-play" features of the embedslgstem [5]. In Concur-
renC, the communication contained in channels is sepafietedthe computation
part contained in blocks so that the purpose of each statamére model can be
clearly identified whether it is for communication or comgttign. This also helps
for architecture refinement and hardware/software paniitig.

— Hierarchy Hierarchy eliminates the potential explosion of the modet sind sig-
nificantly simplifies comprehensible modeling of complestsyns.

— Concurrency The need for concurrency is obvious. A common embeddedrayste
will have multiple hardware units work in parallel and comgie through speci-
fied communication mechanisms. ConcurrenC also suppgrédiping in order to
provide a simple and explicit description of the pipelinedadflow in the system.

— Abstract Communications (Channels)A predefined set of communication chan-
nels is available in ConcurrenC. We believe that the regirico predefined chan-
nels not only avoids coding errors by the designer, but alsplgies the later
refinement steps, since the channels can be easily recdgnjzbe tools.

— Timing The execution time of the model should be evaluable to olesthw effi-
ciency of the system. Thus, ConcurrenC supports waitioe-statements in simi-
lar fashion as SystemC and SpecC.

— Execution The model must be executable in order to show its correcemed®b-
tain performance estimation. Since a ConcurrenC model eaobverted to SpecC
and SystemC, the execution of the model is definitely possibl

Communication Channel Library

For ConcurrenC, we envision two type of channels, chanmelsynchronization and
data transfer. For data transfer, ConcurrenC limits th@wcékto transfer data in FIFO
fashion (as in KPN and SDF). In many cases, these channels thakmodel deter-
ministic and allow static scheduling. For KPN-like charmehe buffer size is infinite
(Qs) Which makes the model deadlock free but not practical. F2fF-8ke channels,
the buffer size is fixed@,,). Double-handshake mechanism, which behaves in a ren-
dezvous fashion, is also available as a FIFO with buffer sizeero Q). Signals
are needed to design a 1-N (broadcasting) channel. Furtinerrshared variables are
allowed as a simple way of communication that is convenigpteially in software.
Moreover, FIFO channels can be used to implement semaptica s the key to build
synchronization channels. In summary, ConcurrenC supfieetpredefined channel li-
brary as shown in Table 2.

Channel Type|Receiver Sender|Buffer Size
Qo Blocking|Blocking 0
Qn Blocking|Blocking n
Qoo Blocking| - 0
Signal Blocking - 1
Shared Variable — - 1

Table 2. Parameterized Communication Channels

5 Experiment

In order to demonstrate the feasibility and benefits of theddaenC approach, we use
the Advanced Video Coding (AVC) standard H.264 decodin@téligm [8] as driver
application to evaluate the modeling features. Our H.2&bder model is of industrial
size, consisting of about 30 thousand lines of code. The infthe decoder is an H.264
stream file, while the output is a YUV file.

ConcurrenC features can be easily used to model the H.2&tldesee Fig. 3.

— Hierarchy: At the top level of the ConcurrenC model, there are threexbiehal
blocks: stimulus, decoder, and monitor The stimulus reads the input yuv file,
while the monitor receives and displays the decoded stream including stgnal-
noise ratio (SNR), system time, and writes the reconstduftiames into the out-
put file. Decodercontains multiple blocks for concurrent slice decoding tréam
processing block prepares the settingdecode units decode slices in parallel, and
the decoding synchronizer combines the decoded slicesifpubby the monitor.
The number of the slice decoders is scalable depending onuimber of slices
contained in one frame of the input stream file. Inside theestlecode blocks,
functional sub-blocks are modeled for the detailed deapdirsks. Hierarchical
modeling allows convenient and clear system description.

(o] azp
‘ / Stream \ L

Processing

Decoder =D qEp;

Entropy]| Inv. Quant &
Decode ransformation|

Motion '
Slice Prediction

7'y

Decoding I«
Synchronizer)€

©D signal L @p— C
Monitor
D FIFO channel @D Shared Data Structure

Fig. 3. Proposed H.264 Decoder Block Diagram

— Concurrency: [12] confirms that multiple slices in one frame are posstblde
decoded concurrently. Consequently, our H.264 decodeeheodsists of multiple
blocks for concurrent slice decoding in one picture frame

— Communication: FIFO channels and shared variables are used for commiamicat
in our H.264 decoder model. FIFO queues are used for datapegetbetween dif-
ferent blocks. For example, the decoder synchronizer siveddecoded frame via
a FIFO channel to the monitor for output. Shared variablesréference frames,
are used to simplify the coordination for decoding multigliees in parallel.

— Timing: The decoding time can be observed by using wait-for-tirategtents in
the modeled blocks. We have obtained the estimated exectiti@ for different
hardware architectures by using simulation and profilimgstof the SLDLSs.

— Execution We have successfully converted and executed our modeBoGpsing
the SoC Environment [2].

Table 3 shows the simulation results of our H.264 decodermatirgglin ConcurrenC.
The model is simulated on a PC machine with Intel(R) PentRird(CPU at 3.00GHz.
Two stream files, one with 73 frames, and the other with 29é&= are tested. For
each test file, we created two types of streams, 4 slices alice8 per frame. We run
the model by decoding the input streams in two ways: slicelibg $§seq model), and
slices in one frame concurrently (par model). The estimatedution time is measured
by annotated timing information according to theestimatiesults generated by SCE
with a ARM7TDMI 400 MHz processor mapping. Our simulatiosuks show that the
parallelism of the application modeled in ConcurrenC idadula. We can expect that it
is possible to decode three of the test streams in real-tiwid (imes).

Shared
ata Structure

&I

6 Conclusion

In this paper, we have discussed the relationship betwebas€d system description
languages and the abstract design models they describergive that a new model

1 We should emphasize that this potential parallelism was not apparent irigheabC code. It
required serious modeling effort to parallelize the slice decoders fanodel.

filename boat.264 coastguard.264

macroblocks/frame 396 396
frames 73 (2.43 secs) 299 (9.97 secs)
slices/frame 4 8 4 8
max # macroblocks/slige 150 60 150 60
model type seq| par | seq| par| seq | par | seq | par

host sim time (s) |4.2234.2584.5574.55012.19112.197112.86012.846
estimated exec time ($11.13 4.43|11.49 1.80| 18.78| 7.20 | 20.31| 3.33
speedup 1 |251 1 [6.38] 1 2.61 1 6.10

Table 3. Simulation Results, H.264 Decoder modeled in ConcurrenC

of computation is heeded behind the syntax of the languag@$iave outlined a new
model of computation, ConcurrenC. ConcurrenC is a conntiyrféerarchical system
model of computation with abstraction of both communicatmd computation, that
fits the requirements of both SpecC and SystemC SLDLs. Awedld driver appli-
cation, H.264 decoder is used to demonstrate how the prdgosecurrenC approach
matches the system modeling requirements.

While we leave the detailed formal modeling for future wotke ttontribution of

this paper is a practical approach at abstract system nmgdbiat fills the gap between
the theoretical MoCs KPN and SDF, and the practical SLDLSmnd SystemcC.

References

1.
2.

10.

11.

12.

T. DeMarco. Structured analysis and system specification. pa§ed240, 1979.

R. Doemer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Ahdd D. D. Gajski.
System-on-chip Environment: A SpecC-based Framework for Hgt@enus MPSoC De-
sign. EURASIP J. Embedded Sy&008(3):1-13, 2008.

. Embedded System Environmeht.tp: //www.cecs.uci.edu/~ese/.
. D. D. Gajski, F. Vahid, S. Narayan, and J. Gorgpecification and Design of Embedded

SystemsPrentice Hall, 1994.

. D.D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. ZBpecC: Specification Language

and Design MethodologyKluwer Academic Publishers, 2000.

. T. Groetker, S. Liao, G. Martin, and S. SwaBystem Design with System&Iluwer Aca-

demic Publishers, 2002.

. International Semiconductor Industry Association. Internationehfielogy Roadmap for

Semiconductors (ITRShttp://www.itrs.net, 2007.

. Joint Video Team of ITU-T and ISO/IEC JTC 1Draft ITU-T Recommendation and Fi-

nal Draft International Standard of Joint Video Specification (ITU-TtRé.264 | ISO/IEC
14496-10 AVC)Document JVT-G050r1, 2003.

. G. Kahn. The Semantics of a Simple Language for Parallel Progirsgnninformation

Processingpages 471-475, 1974.

E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for ConmModels of Compu-
tation. IEEE Transactions on Computer-Aided Design of Intergrated Circuits @ystems
(TCAD), 17(12), Dec. 1998.

T. M. Parks.Bounded Scheduling of Process NetworR&D thesis, Electrical Engineering
and Computer Science, University of California, Berkeley, DecerhB@5b.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Ggenof the H.264/AVC
video coding standardlEEE Transactions on Circuits and Systems for Video Technplogy
13(7):560-576, 2003.

