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Abstract. We use Transaction Level Modeling techniques to specify and 
validate best-effort channels for networked embedded devices, to integrate the 
generated specification model in system-level design flow, for prototyping, 
exploration and validation of design alternatives.  A best-effort channel does not 
provide any guarantees on final data delivery or delivery rate. With more 
embedded devices existing in networked environments, often sharing a 
common communication channel, devices compete with each other for all 
common network resources, e.g., in a wireless sensor network where low power 
devices share a low bandwidth best-effort channel.  To examine such systems, 
we specify Half-Duplex Ethernet using the SpecC language and Transaction 
Level Modeling techniques. All models are validated in a multi-station test 
setup using Ethernet-based network algorithms.  

Keywords: Best-effort Channel, Networked Embedded Systems, Transaction 
Level Model (TLM), System Level Design Language (SLDL). 

 

1   Introduction 

Most of today’s embedded systems exist in some form of a networked environment. 
Inspired by Ethernet as the most cost-effective local area network technology in 
general computing, embedded system designers have adapted it for industrial 
automation. In order to understand the behavior of these networked embedded 
devices, for better control and reliable inter-device communication, more design 
support and robust models are essential. For any communication channel in any 
network, an arbitration scheme is required to decide which device can use the channel 
at any given time. Such schemes could either be centralized (e.g., ARM AMBA bus) 
or distributed (e.g., Ethernet or wireless networks), the latter often in combination 
with best-effort channels. A best-effort communications protocol (e.g., Half-Duplex 
Ethernet) provides no guarantees on final data delivery or rate of data delivery.  
Though replaced by Full-Duplex Ethernet and variants like Time Triggered Ethernet 
in wired networks, best-effort and contention mechanisms resulting in uncertainty and 
unreliability underlying the Ethernet protocol are also at the heart of wireless 
embedded networks [19], e.g., mobile device interfaces, wireless local area networks 
(WLANs) and wireless sensor networks. As such, modeling concepts developed for 
Ethernet are applicable to a wide variety of networked embedded systems. 



In the ISO/OSI network model, the Ethernet [11] sub-layer of the Data Link layer 
manipulates frames coming in/going out (from/to Physical layer). In the beginning, 
Ethernet was half-duplex in nature. A half-duplex channel allows two way 
communication, but only in one direction at a time, i.e., the transmitter must stop 
before the receiver can reply. A Half-Duplex Ethernet channel has active transmitters 
and passive receivers. It relies on a contention resolution algorithm, Truncated Binary 
Exponential Back-Off, that allows a failed transmitter to decide how long to wait 
before the next transmission attempt. While communication channels have been 
modeled using networks simulators such as ns-2 [22], these do not allow the modeling 
of complete systems (hardware and software). In contrast, systems are modeled with a 
System Level Design Language (SLDL), combined with Transaction-Level Modeling 
(TLM) techniques.  To the best of our knowledge, there are currently no network-
oriented TLM channel models. 

Transaction-Level Modeling (TLM) [6] allows modeling of digital systems with 
inter-module communication details abstracted and separated from those of the 
implementation of computation modules. Communication mechanisms such as busses 
or FIFOs, are modeled as channels, and modules access them via interfaces. Channel 
models encapsulate low-level details of the information exchange. Transaction 
requests occur when modules call interface functions of the channel models. The 
emphasis is on what data is being transferred, rather than how it is being transmitted. 
Thus, the system designer can experiment, with different bus architectures 
(supporting a common abstract interface) without re-coding models that interact with 
any of the buses. Our choice of the SpecC SLDL [21] supports TLM, along with the 
crucial concept of time with delta cycles, essential for effective hardware/system  and 
network modeling, unlike traditional network simulators such as ns-2 [22], OPNet 
[23] or OMNet++ [24]. 

1.1   Related Work 

The Ethernet protocol [11] was developed in a very straightforward way. One of the 
earliest attempts to specify Half-Duplex Ethernet by Weinberg and Zuck [1] uses 
Henzinger's real-time models and transition diagrams. Bochmann and Sunshine [2] 
provide an overview of formal methods used in communication protocol design while 
Schmaltz and Borrione [3] present an ACL2 logic based scheme for the specification 
of System-on-Chip (SoC) communication architectures. Georges et al. [4] use 
concepts of network calculus to formulate a mathematical model of industrial 
Ethernet, while Shalunov et al. [5] study the properties of half and full duplex 
Ethernet to devise techniques to detect mismatch between the two modes in a given 
communication channel and its effects on TCP throughput.  

With the emergence of TLM techniques, a number of researchers have applied it to 
specify existing systems. Cai et al. [6] explain the benefits of the use of TLM 
techniques. Moussa et al. [7] describe VISTA, a new methodology and tool to analyze 
SoCs. Klingauf et al. [8] present a generic interconnect fabric for TLM. Wieferink 
et al. [9] use built-in TLM features of SystemC to propose a methodology for 
exploring  SoC multiprocessor systems. Schirner et al. [10] have proposed some novel 
techniques to address some of the drawbacks of TLM related to efficient 
communication modeling. In addition, a number of researchers have applied TLM 
techniques to analyzing the AMBA bus, mostly with SystemC [14-17]. Bombieri et al. 



[18] combine SystemC's TLM features with the ns-2 network simulator to analyze 
voice-over-IP (VOIP) systems using the AMBA bus. 

1.2   Goals 

Available literature indicates that the focus so far has been on mostly on higher level 
concepts/theoretical issues and TLM techniques as applied to the analysis of systems 
using widely used system busses. In contrast, our focus is entirely on best-effort 
communication channels, which by definition use distributed bus arbitration. Unlike 
[18], we do not use any network simulator and create our own specification model for 
a best effort communication channel. Our main goals, based on TLM and SLDL 
principles, are to combine the two. Specifically: 

 Specification and validation of real-world networked embedded systems based 
on best-effort communication channels, e.g., Ethernet, WLANs and wireless 
sensor networks. 

 Integration of the resulting specification model into the overall system level 
design process, i.e., a flexible and robust model of networked embedded 
devices for prototyping of design alternatives, validation of networking effects 
and rapid, early network-level design space exploration [20].   

Networked embedded systems, and wireless networks in particular, often use best-
effort communication channels. TLM, with its ability to separate low-level 
communication details from actual transferred data provides the best means to 
understand the overall behavior of such a system. In accordance with TLM principles, 
we design our own abstract Half-Duplex Ethernet channel, including techniques for 
handling conflicts amongst devices attempting to use the channel simultaneously. The 
final specification model can be applied as input to system-level design and synthesis 
tools.  

The remainder of this paper is organized as follows. In the next section we 
introduce our specification/validation model for Half-Duplex Ethernet created with 
SpecC, with details of how various SpecC language features were used, along with 
the TLM principles on which the specification model is based. In Section 3 we test 
the accuracy and validity of our specification model by describing an experiment and 
its results to analyze the behavior of a widely-used network quality of service (QoS) 
protocol that operates on Ethernet frames. Finally, we conclude with a brief summary 
of work performed and future possibilities. 

2   Specification and Validation of Half-Duplex Ethernet  

The Half-Duplex Ethernet [11] sub-layer of the ISO/OSI Data Link layer is a best-
effort protocol, with active senders and passive receivers. Only one of two 
communicating devices can be sending data at any time. All transmitters share a 
common channel with maximum specified bandwidth, and transmitters compete with 
others to gain control of the channel. A transmitter which gains control of the channel 
has exclusive rights to send data to a receiver of its choice, and can retain control of 
the channel for as long as it wants. Failed transmitters must wait and use the 
Truncated Binary Exponential Back-Off algorithm to decide on the duration. Each 
failed attempt to gain control of the channel is a 'collision'. Each failed transmitter 
waits for a duration derived from the slot time and the number of failed attempts to 



retransmit. After i collisions, a random number of slot times between 0 and 2i − 1 is 
chosen. For the first collision, each transmitter might wait 0 or 1 slot times, and after 
the second collision, each failed transmitter might wait 0, 1, 2, or 3 slot times. The 
term 'truncated' indicates that the retransmission timeout has a strict upper bound, 
e.g., for a ceiling of i=10, the maximum delay is 1023 slot times. A slot time is the 
round-trip time interval for one ASCII character and is set at 51.2 µs. As transmission 
delays can cause transmitting stations to collide, a busy network might have hundreds 
of senders caught in a single collision set. Because of this, after 16 attempts at 
transmission of one particular frame, the process is aborted.  

 

Fig. 1. Basic Ethernet test bench. Four Ethernet stations share a common half duplex Ethernet 
channel. A media access layer (MAC) in each station implements contention resolution and 
network access. 'App' is an application exchanging data over the network. 

Our test bench is shown in Fig. 1. Each station can be configured as sender or 
receiver, and the test setup consists of two senders talking to two receivers. Fig. 2 
shows our implementation of the core Ethernet channel. The challenges in modeling 
the Half-Duplex Ethernet channel are: 

 The channel must correctly detect and handle collisions. 
 An Ethernet station that has failed to send a frame in the current attempt has to 

be able to choose the correct wait duration, depending on the total number of 
failed attempts so far to send this frame (provided that the total number of 
failed transmission attempts  so far do not exceed a pre-defined limit).  

The Truncated Binary Exponential Back-Off algorithm is implemented in each 
station. Ethernet frames are 128 bytes long, with 64 byte header and 64 byte payload.  

2.1   Half-Duplex Ethernet Channel  

As per SpecC design principles, the Ethernet channel implements the 
EthernetInterface interface. Ethernet receivers are passive devices, and each 
waits for a dataready event to read data from the channel. Most of the activity on the 
channel is when a transmitter tries to send a frame. 

We only consider collisions occurring during sending of the Ethernet header. Once 
an Ethernet station has successfully transmitted the frame header, it gains control of 
the channel and does not have to check for frame collisions while sending the 
payload.   



const unsigned int INTER_FRAME_INTERVAL = 10; 
const unsigned int SLOT_TIME = 52;                            
const unsigned int FRAME_PAYLOAD_INTERVAL  = 3328; 

interface EthernetInterface 
{   
   bool send_frame(unsigned char *, unsigned int); 
   void recv_frame(unsigned char *); 
}; 

channel EthernetChannel implements EthernetInterface  
{ 
   unsigned int busy; 
   unsigned char localbuffer[128]; 
   unsigned int i; 
   bool collision; 
   event dataready; 

   bool send_frame(unsigned char *frame,   
                               unsigned int stationID) 
   { 
      while(busy == 2)  

           waitfor(SLOT_TIME*64 + INTER_FRAME_INTERVAL); 
      if(busy == 1) { 
         collision = true; 
         return false; 
      } 
      busy = 1; 
      for(i = 0; i < 64; i++) { 
         waitfor(SLOT_TIME);   
         if(collision) { 
           collision = false; 
           busy      = 0; 
           return false; 
         } 
      } 
      busy = 2; 
      waitfor(FRAME_PAYLOAD_INTERVAL); 
      memcpy(localbuffer, frame, 128); 
      busy = 0; 
      collision = false; 
      notify(dataready); 
      return true; 
   } 

   void recv_frame(unsigned char *recvframe) 
   { 
      wait(dataready); 
      memcpy(recvframe, localbuffer, 128); 
   } 
}; 

Fig. 2. SpecC behavior implementing the basic Half-Duplex Ethernet channel. 



 

Fig. 3. Ethernet station media access layer state machine. 

In SpecC, only behaviors are associated with threads, channels are passive. If a 
behavior calls a channel method it is a regular function call. Any code in the channel 
(including waitfor statements) is executed in the context of the calling 
behavior/thread. 

Now, let an Ethernet station A want to send a frame. It invokes the send_frame 
function of the Ethernet channel: 

1. A checks if the channel's busy variable has value 2, which indicates that 
another Ethernet station is sending its payload. A waits in a loop until busy is 
not equal to 2. During each iteration of the loop, it waits for a time period equal 
to that required to send a 64 byte payload, plus the mandatory inter frame gap.  

2. If instead A finds that the busy variable has value 1, then a collision has just 
occurred. If not, A sets the busy variable to 1, and starts to send the 64 byte 
Ethernet header of the current frame, checking for a collision after sending 
each header byte.  

3. When A has successfully sent the Ethernet header, it sets the busy variable to 2, 
indicating it has acquired complete control over the channel, and  starts sending 
that Ethernet frame payload.  On completion, the frame payload contents are 
copied into a local channel buffer. A resets the status variable busy to 0, and 
sets an event (dataready) variable to indicate to all receivers that a frame is 
available. It is now ready to send/receive any frame to/from any station. 

2.2   Media Access Layer 

Each Ethernet station is a finite-state machine, with three possible states, 
JAM_BACKOFF, RECV and SENSE_TRANSMIT, as shown in Fig. 3:  

1. Each Ethernet station starts in the SENSE_TRANSMIT state. It invokes the 
send_frame function of the Ethernet channel, which returns a Boolean true if 
the frame was sent successfully.  

2. If the return value is false, the station transitions to the JAM_BACKOFF state. 
The maximum number of times any station might attempt to re-send a frame is 
16. In the JAM_BACKOFF state, the station first waits for a mandatory jam 
period. It then decides, using the Truncated Binary Exponential Back-Off 
algorithm and the number of failed attempts so far how long to wait before the 
next transmission attempt. At the end of the wait period, the Ethernet station 
transitions to the SENSE_TRANSMIT state and attempts to send that frame 
again. If the Ethernet station finds in the JAM_BACKOFF state that the 
maximum number of transmit attempts for the current frame has exceeded the 
pre-defined maximum limit, it drops the frame and transitions back to the 
SENSE_TRANSMIT state in order to send or receive the next frame. 



3. The Ethernet station transitions between the SENSE_TRANSMIT and RECV 
states to send the next frame or to receive frames available on the channel, 
respectively. 

Our specification models for both Half-Duplex Ethernet channels and stations adhere 
strictly to TLM design concepts and make extensive use of SpecC's detailed time 
construct, which allows time to be simulated in two nested loops, an outer time loop 
and inner one for events in each simulation step, called the delta cycle. In addition, 
the Ethernet channel behavior exploits SpecC's event mechanism to notify receivers 
when data is available for them.  

In accordance with TLM principles, each Ethernet station invokes the send_frame 
function of the Ethernet channel when attempting to send a frame. The channel 
internally tackles the frame collision and only informs the transmitter if one has 
occurred (by returning a false value). The transmitter in turn can then decide how long 
to wait before attempting to retransmit again. The Ethernet channel's underlying data 
transfer mechanism is transparent to the transmitter. 

3   Experiments 

We devised a set of experiments with increasing levels of complexity to determine if 
our specification model for Half-Duplex Ethernet meets design goals. We define the 
average delay for an Ethernet station (transmitter or receiver) as:  

 The average delay for a transmitter is the time interval (averaged over 1000 
successful frame transmissions) between the station starting to send a frame (in 
SENSE_TRANSMIT state) and returning to same state to send the next frame. 

 The average delay for a receiver is the time interval (averaged over 1000 
successful frame receptions) between the station receiving a frame and it 
returning to the same state (RECV) to receive the next frame. 

As required for the Truncated Binary Exponential Back-Off algorithm, the wait 
periods after a collision in each Ethernet station are strictly bound between lower and 
upper limits. 

3.1   Channel Model 

To simulate realistic network conditions, our specification model includes bursty 
traffic generators [13]. Bursty traffic is an infinite sequence of frames with sub-
sequences of closely spaced (in time) frames interspersed with sub-sequences of 
widely spaced (in time) frames, i.e., a plot of frames over time shows peaks and 
plateaus. Bursty traffic has a long tailed (power law) probability distribution and is 
typically modeled using a Poisson Pareto Burst Processes with heuristics to enable a 
close fit to observed data. To circumvent the issue of having to choose correct 
heuristics, a simple power law distribution is used in our setup. 

The effect of adding the power law distributed delays is to increase the average 
delay in all cases when this delay interval is non-zero, see Fig. 4. This is because the 
number of collisions increases with the incoming frame rate (bursty traffic). In 
contrast, when the power law distributed delay interval is zero, the average delay has 
approximately the same value as if this additional delay is not present at all. 
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Fig. 4. Bursty and non-bursty average transmitter delays. 

3.2   QoS Application 

The next phase of our experiments involves creating specification models for a widely 
used network quality-of-service (QoS) algorithm that works at the Ethernet layer. 
QoS algorithms share some common characteristics:  

1. Always applied to the interfaces of a router, e.g., WAN and LAN interfaces. 
2. QoS features work on the producer-consumer model and rely on non-

deterministic queues.  
Some common QoS operations on network traffic are: 

1. Shaping – delay frames/packets to meet a certain rate 
2. Scheduling – rearrange frames/packets for output 
3. Classifying – separating traffic into queues 
4. Policing – measuring and limiting traffic on queues 

With these in mind, the simulated QoS architecture is shown in Fig. 5. One sender 
and one receiver on each side of a router exchange frames with a receiver and sender 
on the other, respectively. The Token Source/Token Channel pair for each 
EthernetHandler behavior implements the chosen QoS algorithm, as will be 
explained shortly. 

The router interconnects the two networks consisting of Ethernet channels 1 and 2, 
where behaviors EthernetHandler1 and EthernetHandler2 transfer frames between 
channels 1 and 2 via router interfaces 1 and 2. QoS algorithms/features are imposed 
on the router via the Token Source/Token Channel combination for each 
EthernetHandler. Internally, each EthernetHandler behavior is an Ethernet station 
with two ports, one dedicated to transferring frames originating in network 1 to 
network 2 and vice versa. 

The Token Channel is a non-deterministic custom queue that, in addition to 
blocking reads and writes, allows the user to check if it is empty – a feature 
unavailable for any built-in SpecC queue. We define the average delay for a router 
interface as: 

 The time interval (averaged over 1000 successful attempts) between the router 
interface receiving a frame successfully, sending it out over the other Ethernet 
channel, and returning to the state where it can receive the next frame.  



 

Fig. 5. Simulated Quality of Service architecture. 

This is completely independent of the average delay for the basic Half-Duplex 
Ethernet. 

3.2.1   Random Early Detection 

Random Early Detection (RED) [12] is used for congestion control and manages 
queue size intelligently (Fig. 6). Unlike regular queues that drop packets from the tail 
when they are full, RED does it in a controlled and gradual way. 

Once the queue size attains a certain average length, enqueued packets have a finite 
probability of being marked. A marking probability exceeding a predefined threshold 
means that the marked packet will be dropped. The marking probability increases 
linearly with the queue size up to a maximum dropping probability. The average 
queue size used for determining the marking probability is calculated using an 
Exponential Weighted Moving Average, insensitive to bursts. 

When the average queue size is below a preset minimum bound, no packet is 
marked. When the average queue size exceeds the minimum queue length, the 
marking probability increases linearly until the average queue size attains the preset 
maximum queue length. As probability is normally not set to 100%, the queue size 
might rise above the maximum preset size. Hence, a limit parameter is provided to set 
a hard maximum for the size of the queue. 

3.2.1   Experimental Validation  

For the purposes of this experiment, the two Token Source behaviors supply marking 
probabilities to the two EthernetHandler behaviors via the token channels. Both token 
channels are non-deterministic and non-blocking. Each EthernetHandler behavior can 
thus check if a token (marking probability) is available before trying to extract one. 
Our implementation of the Token Source/Token Channel pair uses the same functions 
and parameters as in [12] to generate the marking probabilities. This allows us to 
compare the results generated by our model (specifically queue length and average 
queue length) with the original ones in [12].   
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Fig. 6. Random Early Detection (RED) congestion control (AvgQ: average queue length, 
MaxThres: maximum queue length threshold, MinThres: minimum queue length threshold). 

RED uses a number of predefined and computed parameters. The predefined 
parameters are maximum dropping or marking probability, minimum and maximum 
queue lengths and queue weight. The parameters computed per iteration are count, 
average queue length, queue length and dropping or marking probability. Count is the 
number of frames since the last marked frame.  For our simulation, we used the same 
values for the predefined parameters as in [12]. In addition, the algorithm uses a linear 
function of time to determine the time interval since the queue was empty. In our case, 
we use simple difference in measured times to achieve this effect.  

As the average queue length varies between the minimum and maximum 
thresholds, the packet marking probability varies between 0 and the maximum 
probability. The final marking probability increases linearly as the count since the last 
marked packet grows. For each frame that is to be sent out over the Ethernet layer, the 
average queue length is computed as in [12]. Fig. 7 represents results for queue size 
and average queue size sampled every 1000 successfully transmitted frames for the 
first 1000 samples at one of the two router interfaces we implemented using SpecC. 
All together, simulation of more than 3 million frames successfully transmitted over 
both router interfaces required 15 minutes of simulation time on a 2.8 GHz Linux 
workstation. 

4   Summary and Conclusions 

Embedded devices are being increasingly deployed in networked environments, often 
communicating via best-effort channels, e.g., in wireless sensor networks. Using 
TLM techniques, we have specified and validated a networked embedded system in 
which devices communicate via a shared best-effort channel, specifically the Half-
Duplex Ethernet sub-layer of the ISO/OSI Data Link layer. Our specification model 
can be easily integrated into the system level design process, using any appropriate 
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Fig. 7. Queue length and average queue length. 

toolset for exploration, prototyping and evaluation of design alternatives. To test if our 
specification model replicates reality, we have validated it using a multi-station bursty 
traffic scenario and a widely used network QoS protocol that operates at the Ethernet 
layer. In the future, we plan to deploy our Ethernet channel for modeling of various 
realistic, large-scale networked systems. In addition, future directions include 
analysis, customization and optimization of QoS algorithms for applications in typical 
resource constrained networked embedded system.  
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