
Transaction Level Modeling of Best-Effort Channels for
Networked Embedded Devices

Amal Banerjee, Andreas Gerstlauer

Department of Electrical and Computer Engineering, University of Texas at Austin,
Austin, Texas 78712, USA

{abanerj, gerstl}@ece.utexas.edu

Abstract. We use Transaction Level Modeling techniques to specify and
validate best-effort channels for networked embedded devices, to integrate the
generated specification model in system-level design flow, for prototyping,
exploration and validation of design alternatives. A best-effort channel does not
provide any guarantees on final data delivery or delivery rate. With more
embedded devices existing in networked environments, often sharing a
common communication channel, devices compete with each other for all
common network resources, e.g., in a wireless sensor network where low power
devices share a low bandwidth best-effort channel. To examine such systems,
we specify Half-Duplex Ethernet using the SpecC language and Transaction
Level Modeling techniques. All models are validated in a multi-station test
setup using Ethernet-based network algorithms.

Keywords: Best-effort Channel, Networked Embedded Systems, Transaction
Level Model (TLM), System Level Design Language (SLDL).

1 Introduction

Most of today’s embedded systems exist in some form of a networked environment.
Inspired by Ethernet as the most cost-effective local area network technology in
general computing, embedded system designers have adapted it for industrial
automation. In order to understand the behavior of these networked embedded
devices, for better control and reliable inter-device communication, more design
support and robust models are essential. For any communication channel in any
network, an arbitration scheme is required to decide which device can use the channel
at any given time. Such schemes could either be centralized (e.g., ARM AMBA bus)
or distributed (e.g., Ethernet or wireless networks), the latter often in combination
with best-effort channels. A best-effort communications protocol (e.g., Half-Duplex
Ethernet) provides no guarantees on final data delivery or rate of data delivery.
Though replaced by Full-Duplex Ethernet and variants like Time Triggered Ethernet
in wired networks, best-effort and contention mechanisms resulting in uncertainty and
unreliability underlying the Ethernet protocol are also at the heart of wireless
embedded networks [19], e.g., mobile device interfaces, wireless local area networks
(WLANs) and wireless sensor networks. As such, modeling concepts developed for
Ethernet are applicable to a wide variety of networked embedded systems.

In the ISO/OSI network model, the Ethernet [11] sub-layer of the Data Link layer
manipulates frames coming in/going out (from/to Physical layer). In the beginning,
Ethernet was half-duplex in nature. A half-duplex channel allows two way
communication, but only in one direction at a time, i.e., the transmitter must stop
before the receiver can reply. A Half-Duplex Ethernet channel has active transmitters
and passive receivers. It relies on a contention resolution algorithm, Truncated Binary
Exponential Back-Off, that allows a failed transmitter to decide how long to wait
before the next transmission attempt. While communication channels have been
modeled using networks simulators such as ns-2 [22], these do not allow the modeling
of complete systems (hardware and software). In contrast, systems are modeled with a
System Level Design Language (SLDL), combined with Transaction-Level Modeling
(TLM) techniques. To the best of our knowledge, there are currently no network-
oriented TLM channel models.

Transaction-Level Modeling (TLM) [6] allows modeling of digital systems with
inter-module communication details abstracted and separated from those of the
implementation of computation modules. Communication mechanisms such as busses
or FIFOs, are modeled as channels, and modules access them via interfaces. Channel
models encapsulate low-level details of the information exchange. Transaction
requests occur when modules call interface functions of the channel models. The
emphasis is on what data is being transferred, rather than how it is being transmitted.
Thus, the system designer can experiment, with different bus architectures
(supporting a common abstract interface) without re-coding models that interact with
any of the buses. Our choice of the SpecC SLDL [21] supports TLM, along with the
crucial concept of time with delta cycles, essential for effective hardware/system and
network modeling, unlike traditional network simulators such as ns-2 [22], OPNet
[23] or OMNet++ [24].

1.1 Related Work

The Ethernet protocol [11] was developed in a very straightforward way. One of the
earliest attempts to specify Half-Duplex Ethernet by Weinberg and Zuck [1] uses
Henzinger's real-time models and transition diagrams. Bochmann and Sunshine [2]
provide an overview of formal methods used in communication protocol design while
Schmaltz and Borrione [3] present an ACL2 logic based scheme for the specification
of System-on-Chip (SoC) communication architectures. Georges et al. [4] use
concepts of network calculus to formulate a mathematical model of industrial
Ethernet, while Shalunov et al. [5] study the properties of half and full duplex
Ethernet to devise techniques to detect mismatch between the two modes in a given
communication channel and its effects on TCP throughput.

With the emergence of TLM techniques, a number of researchers have applied it to
specify existing systems. Cai et al. [6] explain the benefits of the use of TLM
techniques. Moussa et al. [7] describe VISTA, a new methodology and tool to analyze
SoCs. Klingauf et al. [8] present a generic interconnect fabric for TLM. Wieferink
et al. [9] use built-in TLM features of SystemC to propose a methodology for
exploring SoC multiprocessor systems. Schirner et al. [10] have proposed some novel
techniques to address some of the drawbacks of TLM related to efficient
communication modeling. In addition, a number of researchers have applied TLM
techniques to analyzing the AMBA bus, mostly with SystemC [14-17]. Bombieri et al.

[18] combine SystemC's TLM features with the ns-2 network simulator to analyze
voice-over-IP (VOIP) systems using the AMBA bus.

1.2 Goals

Available literature indicates that the focus so far has been on mostly on higher level
concepts/theoretical issues and TLM techniques as applied to the analysis of systems
using widely used system busses. In contrast, our focus is entirely on best-effort
communication channels, which by definition use distributed bus arbitration. Unlike
[18], we do not use any network simulator and create our own specification model for
a best effort communication channel. Our main goals, based on TLM and SLDL
principles, are to combine the two. Specifically:

 Specification and validation of real-world networked embedded systems based
on best-effort communication channels, e.g., Ethernet, WLANs and wireless
sensor networks.

 Integration of the resulting specification model into the overall system level
design process, i.e., a flexible and robust model of networked embedded
devices for prototyping of design alternatives, validation of networking effects
and rapid, early network-level design space exploration [20].

Networked embedded systems, and wireless networks in particular, often use best-
effort communication channels. TLM, with its ability to separate low-level
communication details from actual transferred data provides the best means to
understand the overall behavior of such a system. In accordance with TLM principles,
we design our own abstract Half-Duplex Ethernet channel, including techniques for
handling conflicts amongst devices attempting to use the channel simultaneously. The
final specification model can be applied as input to system-level design and synthesis
tools.

The remainder of this paper is organized as follows. In the next section we
introduce our specification/validation model for Half-Duplex Ethernet created with
SpecC, with details of how various SpecC language features were used, along with
the TLM principles on which the specification model is based. In Section 3 we test
the accuracy and validity of our specification model by describing an experiment and
its results to analyze the behavior of a widely-used network quality of service (QoS)
protocol that operates on Ethernet frames. Finally, we conclude with a brief summary
of work performed and future possibilities.

2 Specification and Validation of Half-Duplex Ethernet

The Half-Duplex Ethernet [11] sub-layer of the ISO/OSI Data Link layer is a best-
effort protocol, with active senders and passive receivers. Only one of two
communicating devices can be sending data at any time. All transmitters share a
common channel with maximum specified bandwidth, and transmitters compete with
others to gain control of the channel. A transmitter which gains control of the channel
has exclusive rights to send data to a receiver of its choice, and can retain control of
the channel for as long as it wants. Failed transmitters must wait and use the
Truncated Binary Exponential Back-Off algorithm to decide on the duration. Each
failed attempt to gain control of the channel is a 'collision'. Each failed transmitter
waits for a duration derived from the slot time and the number of failed attempts to

retransmit. After i collisions, a random number of slot times between 0 and 2i − 1 is
chosen. For the first collision, each transmitter might wait 0 or 1 slot times, and after
the second collision, each failed transmitter might wait 0, 1, 2, or 3 slot times. The
term 'truncated' indicates that the retransmission timeout has a strict upper bound,
e.g., for a ceiling of i=10, the maximum delay is 1023 slot times. A slot time is the
round-trip time interval for one ASCII character and is set at 51.2 µs. As transmission
delays can cause transmitting stations to collide, a busy network might have hundreds
of senders caught in a single collision set. Because of this, after 16 attempts at
transmission of one particular frame, the process is aborted.

Fig. 1. Basic Ethernet test bench. Four Ethernet stations share a common half duplex Ethernet
channel. A media access layer (MAC) in each station implements contention resolution and
network access. 'App' is an application exchanging data over the network.

Our test bench is shown in Fig. 1. Each station can be configured as sender or
receiver, and the test setup consists of two senders talking to two receivers. Fig. 2
shows our implementation of the core Ethernet channel. The challenges in modeling
the Half-Duplex Ethernet channel are:

 The channel must correctly detect and handle collisions.
 An Ethernet station that has failed to send a frame in the current attempt has to

be able to choose the correct wait duration, depending on the total number of
failed attempts so far to send this frame (provided that the total number of
failed transmission attempts so far do not exceed a pre-defined limit).

The Truncated Binary Exponential Back-Off algorithm is implemented in each
station. Ethernet frames are 128 bytes long, with 64 byte header and 64 byte payload.

2.1 Half-Duplex Ethernet Channel

As per SpecC design principles, the Ethernet channel implements the
EthernetInterface interface. Ethernet receivers are passive devices, and each
waits for a dataready event to read data from the channel. Most of the activity on the
channel is when a transmitter tries to send a frame.

We only consider collisions occurring during sending of the Ethernet header. Once
an Ethernet station has successfully transmitted the frame header, it gains control of
the channel and does not have to check for frame collisions while sending the
payload.

const unsigned int INTER_FRAME_INTERVAL = 10;
const unsigned int SLOT_TIME = 52;
const unsigned int FRAME_PAYLOAD_INTERVAL = 3328;

interface EthernetInterface
{
 bool send_frame(unsigned char *, unsigned int);
 void recv_frame(unsigned char *);
};

channel EthernetChannel implements EthernetInterface
{
 unsigned int busy;
 unsigned char localbuffer[128];
 unsigned int i;
 bool collision;
 event dataready;

 bool send_frame(unsigned char *frame,
 unsigned int stationID)
 {
 while(busy == 2)

 waitfor(SLOT_TIME*64 + INTER_FRAME_INTERVAL);
 if(busy == 1) {
 collision = true;
 return false;
 }
 busy = 1;
 for(i = 0; i < 64; i++) {
 waitfor(SLOT_TIME);
 if(collision) {
 collision = false;
 busy = 0;
 return false;
 }
 }
 busy = 2;
 waitfor(FRAME_PAYLOAD_INTERVAL);
 memcpy(localbuffer, frame, 128);
 busy = 0;
 collision = false;
 notify(dataready);
 return true;
 }

 void recv_frame(unsigned char *recvframe)
 {
 wait(dataready);
 memcpy(recvframe, localbuffer, 128);
 }
};

Fig. 2. SpecC behavior implementing the basic Half-Duplex Ethernet channel.

Fig. 3. Ethernet station media access layer state machine.

In SpecC, only behaviors are associated with threads, channels are passive. If a
behavior calls a channel method it is a regular function call. Any code in the channel
(including waitfor statements) is executed in the context of the calling
behavior/thread.

Now, let an Ethernet station A want to send a frame. It invokes the send_frame
function of the Ethernet channel:

1. A checks if the channel's busy variable has value 2, which indicates that
another Ethernet station is sending its payload. A waits in a loop until busy is
not equal to 2. During each iteration of the loop, it waits for a time period equal
to that required to send a 64 byte payload, plus the mandatory inter frame gap.

2. If instead A finds that the busy variable has value 1, then a collision has just
occurred. If not, A sets the busy variable to 1, and starts to send the 64 byte
Ethernet header of the current frame, checking for a collision after sending
each header byte.

3. When A has successfully sent the Ethernet header, it sets the busy variable to 2,
indicating it has acquired complete control over the channel, and starts sending
that Ethernet frame payload. On completion, the frame payload contents are
copied into a local channel buffer. A resets the status variable busy to 0, and
sets an event (dataready) variable to indicate to all receivers that a frame is
available. It is now ready to send/receive any frame to/from any station.

2.2 Media Access Layer

Each Ethernet station is a finite-state machine, with three possible states,
JAM_BACKOFF, RECV and SENSE_TRANSMIT, as shown in Fig. 3:

1. Each Ethernet station starts in the SENSE_TRANSMIT state. It invokes the
send_frame function of the Ethernet channel, which returns a Boolean true if
the frame was sent successfully.

2. If the return value is false, the station transitions to the JAM_BACKOFF state.
The maximum number of times any station might attempt to re-send a frame is
16. In the JAM_BACKOFF state, the station first waits for a mandatory jam
period. It then decides, using the Truncated Binary Exponential Back-Off
algorithm and the number of failed attempts so far how long to wait before the
next transmission attempt. At the end of the wait period, the Ethernet station
transitions to the SENSE_TRANSMIT state and attempts to send that frame
again. If the Ethernet station finds in the JAM_BACKOFF state that the
maximum number of transmit attempts for the current frame has exceeded the
pre-defined maximum limit, it drops the frame and transitions back to the
SENSE_TRANSMIT state in order to send or receive the next frame.

3. The Ethernet station transitions between the SENSE_TRANSMIT and RECV
states to send the next frame or to receive frames available on the channel,
respectively.

Our specification models for both Half-Duplex Ethernet channels and stations adhere
strictly to TLM design concepts and make extensive use of SpecC's detailed time
construct, which allows time to be simulated in two nested loops, an outer time loop
and inner one for events in each simulation step, called the delta cycle. In addition,
the Ethernet channel behavior exploits SpecC's event mechanism to notify receivers
when data is available for them.

In accordance with TLM principles, each Ethernet station invokes the send_frame
function of the Ethernet channel when attempting to send a frame. The channel
internally tackles the frame collision and only informs the transmitter if one has
occurred (by returning a false value). The transmitter in turn can then decide how long
to wait before attempting to retransmit again. The Ethernet channel's underlying data
transfer mechanism is transparent to the transmitter.

3 Experiments

We devised a set of experiments with increasing levels of complexity to determine if
our specification model for Half-Duplex Ethernet meets design goals. We define the
average delay for an Ethernet station (transmitter or receiver) as:

 The average delay for a transmitter is the time interval (averaged over 1000
successful frame transmissions) between the station starting to send a frame (in
SENSE_TRANSMIT state) and returning to same state to send the next frame.

 The average delay for a receiver is the time interval (averaged over 1000
successful frame receptions) between the station receiving a frame and it
returning to the same state (RECV) to receive the next frame.

As required for the Truncated Binary Exponential Back-Off algorithm, the wait
periods after a collision in each Ethernet station are strictly bound between lower and
upper limits.

3.1 Channel Model

To simulate realistic network conditions, our specification model includes bursty
traffic generators [13]. Bursty traffic is an infinite sequence of frames with sub-
sequences of closely spaced (in time) frames interspersed with sub-sequences of
widely spaced (in time) frames, i.e., a plot of frames over time shows peaks and
plateaus. Bursty traffic has a long tailed (power law) probability distribution and is
typically modeled using a Poisson Pareto Burst Processes with heuristics to enable a
close fit to observed data. To circumvent the issue of having to choose correct
heuristics, a simple power law distribution is used in our setup.

The effect of adding the power law distributed delays is to increase the average
delay in all cases when this delay interval is non-zero, see Fig. 4. This is because the
number of collisions increases with the incoming frame rate (bursty traffic). In
contrast, when the power law distributed delay interval is zero, the average delay has
approximately the same value as if this additional delay is not present at all.

0

100000

200000

300000

400000

500000

600000

0 20 40 60 80 100 120 140

Sample

S
im

u
la

te
d

 d
el

ay
 [

µ
s]

Non-bursty

Bursty

Fig. 4. Bursty and non-bursty average transmitter delays.

3.2 QoS Application

The next phase of our experiments involves creating specification models for a widely
used network quality-of-service (QoS) algorithm that works at the Ethernet layer.
QoS algorithms share some common characteristics:

1. Always applied to the interfaces of a router, e.g., WAN and LAN interfaces.
2. QoS features work on the producer-consumer model and rely on non-

deterministic queues.
Some common QoS operations on network traffic are:

1. Shaping – delay frames/packets to meet a certain rate
2. Scheduling – rearrange frames/packets for output
3. Classifying – separating traffic into queues
4. Policing – measuring and limiting traffic on queues

With these in mind, the simulated QoS architecture is shown in Fig. 5. One sender
and one receiver on each side of a router exchange frames with a receiver and sender
on the other, respectively. The Token Source/Token Channel pair for each
EthernetHandler behavior implements the chosen QoS algorithm, as will be
explained shortly.

The router interconnects the two networks consisting of Ethernet channels 1 and 2,
where behaviors EthernetHandler1 and EthernetHandler2 transfer frames between
channels 1 and 2 via router interfaces 1 and 2. QoS algorithms/features are imposed
on the router via the Token Source/Token Channel combination for each
EthernetHandler. Internally, each EthernetHandler behavior is an Ethernet station
with two ports, one dedicated to transferring frames originating in network 1 to
network 2 and vice versa.

The Token Channel is a non-deterministic custom queue that, in addition to
blocking reads and writes, allows the user to check if it is empty – a feature
unavailable for any built-in SpecC queue. We define the average delay for a router
interface as:

 The time interval (averaged over 1000 successful attempts) between the router
interface receiving a frame successfully, sending it out over the other Ethernet
channel, and returning to the state where it can receive the next frame.

Fig. 5. Simulated Quality of Service architecture.

This is completely independent of the average delay for the basic Half-Duplex
Ethernet.

3.2.1 Random Early Detection

Random Early Detection (RED) [12] is used for congestion control and manages
queue size intelligently (Fig. 6). Unlike regular queues that drop packets from the tail
when they are full, RED does it in a controlled and gradual way.

Once the queue size attains a certain average length, enqueued packets have a finite
probability of being marked. A marking probability exceeding a predefined threshold
means that the marked packet will be dropped. The marking probability increases
linearly with the queue size up to a maximum dropping probability. The average
queue size used for determining the marking probability is calculated using an
Exponential Weighted Moving Average, insensitive to bursts.

When the average queue size is below a preset minimum bound, no packet is
marked. When the average queue size exceeds the minimum queue length, the
marking probability increases linearly until the average queue size attains the preset
maximum queue length. As probability is normally not set to 100%, the queue size
might rise above the maximum preset size. Hence, a limit parameter is provided to set
a hard maximum for the size of the queue.

3.2.1 Experimental Validation

For the purposes of this experiment, the two Token Source behaviors supply marking
probabilities to the two EthernetHandler behaviors via the token channels. Both token
channels are non-deterministic and non-blocking. Each EthernetHandler behavior can
thus check if a token (marking probability) is available before trying to extract one.
Our implementation of the Token Source/Token Channel pair uses the same functions
and parameters as in [12] to generate the marking probabilities. This allows us to
compare the results generated by our model (specifically queue length and average
queue length) with the original ones in [12].

Packet arrival

Compute

?

Probability?

Calculate packet
dropping probability

Drop packetEnqueue packet

Wait for packet

≥ Max< Max

< >

Fig. 6. Random Early Detection (RED) congestion control (AvgQ: average queue length,
MaxThres: maximum queue length threshold, MinThres: minimum queue length threshold).

RED uses a number of predefined and computed parameters. The predefined
parameters are maximum dropping or marking probability, minimum and maximum
queue lengths and queue weight. The parameters computed per iteration are count,
average queue length, queue length and dropping or marking probability. Count is the
number of frames since the last marked frame. For our simulation, we used the same
values for the predefined parameters as in [12]. In addition, the algorithm uses a linear
function of time to determine the time interval since the queue was empty. In our case,
we use simple difference in measured times to achieve this effect.

As the average queue length varies between the minimum and maximum
thresholds, the packet marking probability varies between 0 and the maximum
probability. The final marking probability increases linearly as the count since the last
marked packet grows. For each frame that is to be sent out over the Ethernet layer, the
average queue length is computed as in [12]. Fig. 7 represents results for queue size
and average queue size sampled every 1000 successfully transmitted frames for the
first 1000 samples at one of the two router interfaces we implemented using SpecC.
All together, simulation of more than 3 million frames successfully transmitted over
both router interfaces required 15 minutes of simulation time on a 2.8 GHz Linux
workstation.

4 Summary and Conclusions

Embedded devices are being increasingly deployed in networked environments, often
communicating via best-effort channels, e.g., in wireless sensor networks. Using
TLM techniques, we have specified and validated a networked embedded system in
which devices communicate via a shared best-effort channel, specifically the Half-
Duplex Ethernet sub-layer of the ISO/OSI Data Link layer. Our specification model
can be easily integrated into the system level design process, using any appropriate

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Sample

Q
u

eu
e

le
n

g
th

Actual Average

Fig. 7. Queue length and average queue length.

toolset for exploration, prototyping and evaluation of design alternatives. To test if our
specification model replicates reality, we have validated it using a multi-station bursty
traffic scenario and a widely used network QoS protocol that operates at the Ethernet
layer. In the future, we plan to deploy our Ethernet channel for modeling of various
realistic, large-scale networked systems. In addition, future directions include
analysis, customization and optimization of QoS algorithms for applications in typical
resource constrained networked embedded system.

References

1. Weinberg, H. B., and Zuck, L. D.: Timed Ethernet: Real-Time Formal Specification of
Ethernet, Lecture Notes in Computer Science, vol. 630, pp. 370-385, 1992.

2. Bochmann, G., and Sunshine, C.: Formal Methods in Communication Protocol Design,
IEEE Transactions on Communications, vol.28, no.4, pp. 624-631, April 1980.

3. Schmaltz, J., and Borrione., D.: A Functional Approach to the Formal Specification of
Networks on Chip, Lecture Notes in Computer Science, vol. 3312, pp. 52-66, 2004.

4. Georges, J.-P., Rondeau, E. and Divoux, T.: Evaluation of Switched Ethernet in an
Industrial Context using Network Calculus, 4th IEEE International Workshop on Factory
Communication Systems, Vasteras, Sweden, August 2002.

5. Shalunov, S. and Carlson, R.: Detecting Duplex Mismatch on Ethernet, Lecture Notes in
Computer Science, vol. 3431, pp. 135-148, 2005.

6. Cai, L., and Gajski, D.: Transaction Level Modeling: An Overview, Proceedings of the 1st
International Conference on Hardware/Software Codesign and System Synthesis, 2003.

7. Moussa, I., Grellier, T. and Nguyen, G.: Exploring SW Performance using SoC
Transaction-Level Modeling, Design, Automation and Test in Europe, 2003.

8. Klingauf, W., Günzel, R., Bringmann, O., Partfuntseu, P. and Burton, M.: GreenBus: A
Generic Interconnect Framework for Transaction Level Modeling, Design Automation
Conference, 2006.

9. Wieferink, A., Kogel, T., Leupers, R., Ascheid, G., Meyr, H., Braun, G. and Nohl, A.: A
System Level Processor/Communication Co-Exploration Methodology for Multiprocessor
System-on-Chip Platforms, Design, Automation and Test in Europe, 2004.

10. Schirner, G., and Doemer, R.: Fast and Accurate Transaction Level Models using Result
Oriented Modeling, International Conference on Computer Aided Design, 2006.

11. Metcalfe, R. M., and Boggs, D.R.: Ethernet: Distributed Packet Switching for Local
Computer Networks, Communications of the ACM, vol. 19, no. 7, pp. 395-404, 1976.

12. Floyd, S. and Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance,
IEEE/ACM Transaction on Networking, 1993.

13. Karasaridis, A. and Hatzinakos, D.: Network Heavy Traffic Modeling using Alpha-Stable
Self-Similar Processes, IEEE Transactions on Communications, vol. 49, no. 7, pp. 1203-
1214, July 2001.

14. Caldari, M., Conti, M., Coppola, M., Curaba, S., Pieralisi, L., and Turchetti, C.: Transaction
Level Models for AMBA Bus Architecture Using SystemC, Design, Automation and Test
in Europe: Designers' Forum, 2003.

15. Schirner, G., and Doemer, R.: Quantitative Analysis of Transaction Level Models for the
AMBA Bus, Design, Automation and Test in Europe, 2006.

16. Pasricha, S., Dutt, N. and Ben-Romdhane, M.: Extending the Transaction Level Modeling
Approach for Fast Communicating Architecture Exploration, Design Automation
Conference, 2004.

17. Xu, S. And Pollit-Smith, H.: A TLM Platform for System-on-Chip Simulation and
Verification, VLSI Design, Automation and Test, April 2005.

18. Bombieri, N., Fummi, F., and Quaglia, D.: TLM/Network Design Space Exploration for
Networked Embedded Systems, International Conference on Hardware/Software Codesign
and System Synthesis, 2006.

19. Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Whiting, P., and Vijaykumar, R.:
Providing Quality of Service Over Shared Wireless Link, IEEE Communications, February
2001.

20. Bonivento, A., Carloni, L. and Sangiovanni-Vincentelli, A.: Platform-Based Design for
Wireless Sensor Networks, Mobile Networks and Applications, vol. 11, no. 4, August 2006.

21. Gajski, D., Zhu, J., Doemer, R., Gerstlauer, A. and Zhao, S.: SpecC: Specification
Language and Methdology, Kluwer, 2000.

22. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns.
23. OPNET Technologies, Inc.: OPNET Modeler, http://www.opnet.com.
24. OMNet++, http://www.omnetpp.org.

http://www.isi.edu/nsnam/ns
http://www.opnet.com/
http://www.omnetpp.org/

