

EMBEDDED SW DESIGN SPACE
EXPLORATION AND AUTOMATION USING
UML-BASED TOOLS

Flávio R. Wagner and Luigi Carro
Computer Science Institute, Federal University of Rio Grande do Sul (UFRGS), Brazil
{flavio, carro}@inf.ufrgs.br

Abstract: This tutorial discusses design space exploration and software automation
based on an UML front-end. First, we review software automation tools
targeted at the embedded systems domain. Following, we present an approach
for the estimation of memory, performance, and energy of a given application
modeled from an initial UML specification. We proceed with an analysis of
the possibilities of linking different modeling environments for software
generation (Simulink and UML, for example). Finally, we show the
possibilities of using other specification languages to obtain more abstraction
and allow design space exploration together with software automation.

Key words: Embedded Software, Design Space Exploration, High-level modeling, UML,
MDA, code generation

1. INTRODUCTION

The increasing complexity of embedded systems design, which is derived
from the amount of functionality that is required from these systems,
together with the shortening of the life cycle of embedded products, results
in a design scenario where productivity and quality are simultaneously
required in order to deliver competitive products.

Selic1 emphasizes that the use of techniques starting from higher
abstraction levels is crucial to the design success. The UML language has
gained in popularity as a tool for specification and design of embedded
systems. There are many efforts that describe the use of UML during the
different phases of an embedded system design 2.

438 Flávio R. Wagner and Luigi Carro

It is widely known that design decisions taken at higher abstraction levels
can lead to substantially superior improvements. This context suggests the
support to a fast design space exploration in the early design steps. However,
software engineers, when developing an application using UML, do not have
a concrete measure of the impact of their modeling decisions on issues such
as performance and energy for a specific embedded platform.

On the other hand, the specification of typical embedded systems
requires several models of computation, and in a single product (like a cell
phone) many of these models can be simultaneously found, like event-
driven, sequential code, and synchronous dataflow. This pushes the need for
supporting software automation under different models of computation, a
task not completely supported by any current software automation tool.

This tutorial discusses two critical aspects of embedded systems software
automation, namely the design space exploration (DSE) from high-level
UML models, and automation techniques to serve several models of
computation. The tutorial is organized in the topics that follow.

1) Review of current software automation tools
Most of the academic and commercial solutions for software automation

focus on the management of huge domain-specific systems, because
conventional software is usually suited for a single domain. Some tools
automate code generation for any application specified in a proper way, such
as Unimod3, which extracts code from UML diagrams and follows the
Model Driven Architecture4 approach. However, tools that automate general
and conventional software development are not aware of code optimizations
for memory or power, a crucial step for embedded systems because of their
tight restrictions.

More recent approaches targeted to embedded software development5
keep working on extensions of state machines, in an Esterel6 fashion, and try
to improve final code optimizations for control-dominated reactive systems.
The Model-Integrated Computing (MIC) approach fully adopts the model-
based development paradigm7. As the approach relies on domain-specific
modeling languages8, it is also not suited for applications that mix different
models of computation.

The Ptolemy framework9 provides simulation and prototyping for
heterogeneous embedded systems. Although Ptolemy provides abstraction
for many domains, it requires knowledge of several different languages, and
this may increase development time. As a matter of fact, none of the
presented approaches targets the ultimate goal of providing high abstraction
to increase software production, with the necessary design space exploration
to meet embedded systems’ tight constraints.

Embedded SW Design Space Exploration and Automation Using
UML-based Tools

439

2) UML modeling and high-level design space exploration
UML modeling solutions for the same application may result in very

different physical costs, as demonstrated by Oliveira10. We propose the
estimation of physical costs such as performance, energy, and memory
footprint directly from UML models. We show how these estimations may
be integrated into an automatic DSE process, which is guided by
optimization heuristics (such as simulated annealing or ant colony
optimization), following desired design goal and constraints.

3) Software synthesis using an MDA-based approach
In the context of platform-based design, software synthesis is mainly

based on the reuse of a library of previously designed components. For a
rapid DSE process, it is essential that a designer can quickly generate
software for different mappings from a specification of the application into
the platform. This can be accomplished by an MDA-based approach, where
the application and the platform are specified according to appropriate meta-
models and the mapping between them is implemented as a sequence of
model transformations. We present a DSE tool that can automatically
optimize the mapping of PIM (Platform Independent Model) into PSM
(Platform Specific Model). From this mapping, and according to an
implementation meta-model, the final software may be generated.

Our approach uses a meta-modeling infrastructure proposed by
Nascimento11, which is based on OMG standards, such as MOF and XMI.
Different languages for modeling the application, the platform, and the final
implementation may be used, given the existence of appropriate translators
from these languages into instances of the generic meta-models. This
approach, in fact, may be used also for the synthesis of dedicated hardware
modules, in a HW-SW co-design methodology. We support UML and
Simulink because recent efforts2,12,13 show that both languages are considered
attractive for System Level design.

4) Software modeling and synthesis for different models of computation
A comparison between UML and Simulink modeling approaches

concluded that both have pros and cons14. UML provides all benefits from
the object-oriented paradigm, like modularity, encapsulation, reusability, etc.
In the other side, Simulink supports multiple models of computation and
complete code generation. To address multiprocessor systems, a Simulink-
based software synthesis approach was recently developed15, which starts
from a Combined Architecture Application Model (CAAM) described in
Simulink and generates multithread code. It includes optimization techniques
to generate memory-efficient15 and communication-efficient code16.

440 Flávio R. Wagner and Luigi Carro

However, building the CAAM model using the Simulink GUI can be
error-prone, and usually software engineers prefer to employ UML. Then,
Brisolara17 proposes mapping rules to translate a UML model into a
Simulink CAAM, thus allowing the use of UML as a front-end for the
Simulink multithread code generation flow. It allows the integration of both
modeling languages in a unique design flow, which combines the benefits of
UML and Simulink.

REFERENCES

[1] B.Selic. Models, Software Models and UML. UML for Real: Design of Embedded Real-
Time Systems. Kluwer Academic Publishers, 2003. Chapter 1, p. 1-16.

[2] L.Lavagno, G.Martin, B.Selic. UML for Real: Design of Embedded Real-Time Systems.
Kluwer Academic Publishers, 2003.

[3] Executable UML Unimod. v.1.3, 2003. http://unimod.sourceforge.net.
[4] OMG. Model Driven Architecture. White Paper v. 3.2, November 2000.
[5] F.Balarin et al. Synthesis of Software Programs for Embedded Control Applications.

IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, v. 18,
n.6, June 1999.

[6] G.Berry et al. The Esterel Synchronous Programming Language: Design, Semantics,
Implementation. Science of Computer Programming, v. 19, n. 2, 1992.

[7] J. Sztipanovits et al. Model-Integrated computing. IEEE Computer. April 1997.
[8] G.Karsai et al. Model-Integrated Development of Embedded Software. Proceedings of the

IEEE, v. 91. n. 1, January 2003.
[9] J.Buck et al. Ptolemy: a framework for simulating and prototyping heterogeneous

systems. International Journal in Computer Simulation, v. 4, 1992.
[10] M.Oliveira et al. Early Embedded Software Design Space Exploration Using UML-

based Estimations. RSP’06, Chania, Greece. June 2006.
[11] F.A.Nascimento et al. ModES: Embedded Systems Design Methodology

and Tools based on MDE. MOMPES 2007, Braga, Portugal, March 2007.
[12] SysML: Systems Modeling Language. http://www.omgsysml.org/. July 2006.
[13] R.Boldt. Combining the Power of MathWorks Simulink and Telelogic UML/SysML-

based Rhapsody to Redefine the Model-Driven Development Experience. Telelogic White
Paper, June 2006. http://www.ilogix.com/whitepaper-overview.aspx.

[14] L.Brisolara et al.. A Comparison between UML and Function Blocks for
Heterogeneous SoC Design and ASIP Generation. In: G.Martin and W.Mueller (Ed.).
UML for SoC Design. Chapter 9. Springer, 2005.

[15] K. Huang et al. Simulink-Based MPSoC Design Flow: Case Study of Motion-JPEG
and H.264. DAC’07, San Diego, USA, June 2007.

[16] L.Brisolara et al. Reducing Fine-grain Communication Overhead in Multithread Code
Generation for Heterogeneous MPSoC. SCOPES’07. Nice, April 2007.

[17] L.Brisolara et al. Using UML as a front-end for an efficient Simulink-based
multithread code generation targeting MPSoCs. UML-SoC’07, San Diego, USA, June
2007.

