
INTEGRATING WIRELESS SENSOR NETWORKS
AND THE GRID THROUGH POP-C++

Augusto B. de Oliveira1, Lucas F. Wanner1, Pierre Kuonen2 and Antônio
A. Fröhlich1

1Laboratory for Software and Hardware Integration

Federal University of Santa Catarina

PO Box 476 – 88049-900 – Florianópolis, SC, Brazil

{augusto, lucas, guto}@lisha.ufsc.br

2Grid and Ubiquitous Computing Group

University of Applied Sciences of Fribourg

PO Box 32 – CH-1705 – Fribourg, FR, Switzerland

pierre.kuonen@eif.ch

Abstract The topic of interaction between Wireless Sensor Networks (WSNs) and
other computation systems has received relatively low scientific atten-
tion, and the interface between the data source and the applications that
use that data remains a problem for the application programmer. This
work extends POP-C++, a programming language and runtime support
system for Grid programming, to enable Grid applications to seamlessly
and concurrently use WSNs’ sensing and processing capabilities.

Keywords: WSN, Grid, Remote Objects

1. Introduction

Even though Wireless Sensor Networks (WSNs) have been the focus
of many research effors in recent years, the topic of interaction of WSNs
with other computing systems has received relatively low attention. The
research efforts that do address this issue, such as TinyDB and Cougar,
abstract the individual sensor nodes and give access to the WSN as a
whole, allowing the applications to perform queries as they would to a
database; while this level of abstraction allows for the optimization of
queries, minimizing the amount of messages to be sent over the wireless
link, we feel that it takes power away from the application programmer,
as further exploration of the WSN nodes’ processing capabilities becomes

2

difficult. Furthermore, such a solution does not hide the frontier between
the WSN and the rest of the computing system.

In contrast to these approaches, we integrate WSNs and the Grid
seamlessly without removing power from the application programmer
by extending POP-C++ [Nguyen and Kuonen, 2007]. POP-C++ is
a pre-existing object-oriented grid programming language and runtime
support system, capable of supporting distributed, parallel objects over
a network. The specific goals of our extension are to allow:

Grid applications to communicate with WSNs seamlessly: By hid-
ing all network interaction under a remote method call interface,
details of the network stack and physical medium are transparent
to the application;

Concurrent use of the WSN sensing capabilities by multiple Grid
applications: By allowing multiple objects to run on each node
and each object to be used by multiple interfaces, concurrent use
of the WSN by multiple applications is made possible;

Application independent sensor node software: by allowing appli-
cations to use a common set of methods, we hope to minimize the
need for costly re-programming of node program memory and allow
additional applications to be initiated after the WSN is deployed.

The structure of this article is the following: In section 2 we introduce
the POP-C++ programming language and runtime support system; in
section 3 we detail how POP-C++ was extended into WSNs; in section
4 we evaluate our implementation; in section 5 we present the design
challenges found in WSNs; section 6 presents related works that share
our goal; finally, in section 7 we present our conclusions.

2. POP-C++

POP-C++ is an extension of C++ created to support requirement
driven, distributed parallel objects. In POP-C++’s object model, par-
allel objects have the ability to describe their resource needs at runtime
and are allocated in any of the remote nodes that can support its execu-
tion. The process of finding a suitable node and transmitting the object
code is transparent to the programmer. POP-C++ also has special
method invocation semantics, but syntatically the method invocation
statements do not differ between local and remote invocations. Further-
more, parallel objects are shareable, that is, references to an object can
be passed in any method, be it local or remote.

The POP-C++ runtime architecture consists of three actual objects
for each parallel class the user implements: the Interface, the Broker and

Integrating Wireless Sensor Networks and the Grid through POP-C++ 3

the actual Object. The Interface is an object itself, instantiated in the
caller side; it shares the method interface of the actual Object, giving
the transparency of interaction for the application.

The Broker is the callee-side correspondent to the Interface, it receives
method calls from the network, unpacks the data, calls the method on
the actual Object and then repacks the return value and sends it back
to the Interface. The actual Object is the implementation of the user,
with the code that is to be distributed.

POP-C++ introduces two syntax extensions to C++ in addition to
the declaration of parallel classes: Requirement descriptions and Method
Semantics.

Requirement descriptions: Using an associated object description,
the developer can express resource requirements in the form of a
hostname, the number of MFlops needed, the amount of memory
needed and the communication bandwidth needed between itself
and its interfaces.

Method invocation semantics: The invocation semantic options are
defined at compile time by the application programmer and can
be classified in two types, Interface-side and Object-side:

– Interface side semantics can be either Synchronous or Asyn-
chronous; they control at which time the Interface-side method
returns. In Synchronous mode, the caller waits until the
method on the Object returns; this is analogous to tradi-
tional method invocation. Asynchronous methods return im-
mediately, allowing the caller to continue execution.

– Object side semantics can be either Mutex, Sequential or Con-
current. Mutex semantics guarantee no concurrency on the
object, Sequencial semantics guarantee no concurrency on the
particular method it is applied to, and Concurrent semantics
allow full multi-threaded execution.

3. Extending POP-C++ into WSNs

To give the system architect an uniform model with which to program
grid applications that use WSNs, we extended the POP-C++ model to
WSNs. That means that not only should the programmer be able to
instantiate Interfaces in sensor nodes to Objects running in other nodes,
but also instantiate Interfaces to those Objects from inside the Grid.
There should be no difference between ”normal” Grid-to-Grid remote
method calls and those performed from the Grid to the WSN.

4

parclass SensorNode

{

public :

SensorNode (int node , string machine) @{ od.url(machine);};

async seq void setLEDs (char val);

sync conc int getTemperature ();

};

Figure 1. Basic SensorNode POP-C++ Class

Figure 1 illustrates the implementation and instantiation of an Object
that runs on the WSN and receives function calls from the Grid. The
implementation has methods to read temperature sensor values and set
a value to be displayed on the LEDs of the node. Any node on the
Grid may instantiate an Interface to this object and transparently call
methods to it.

3.1 Compromises

Due to the low-resource nature of WSN nodes, the WSN implemen-
tation of the POP-C++ runtime support system had to occupy as little
program and main memory as possible. This has caused us to make
some compromises in the implementation:

No interchangeable communication protocols: When in a Grid en-
vironment, it is not only interesting but necessary to support mul-
tiple, interchangeable communication protocols. When in WSNs,
though, the communication protocol over the wireless link is very
likely to be constant and global. Therefore, our implementation
does not support multiple communication protocols at runtime.

No dynamic resource allocation: While in Grid nodes the process
of dynamic resource allocation is just a matter of downloading and
executing a binary, re-writing program memory on WSN nodes is
a very costly procedure, in terms of energy [Dunkels et al., 2006].
To diminish the need for re-programming, the system architect is
encouraged to provide low level functions in addition to his appli-
cations’ high-level routines; if a problem is found on the high-level
code or a new application is to be run on the Grid, similar func-
tionality can be attained from the aggregation of lower level calls.

Limited Parallelism: Because of the very small amount of main
memory available on sensor nodes, the amount of concurrent threads

Integrating Wireless Sensor Networks and the Grid through POP-C++ 5

that can run on a node is also very small. This means a limited
amount of method calls, regardless of semantic, will be able to
execute in real concurrency, and that the following incoming calls
will have to be queued.

3.2 Addressing

To allow direct access to each individual sensor node, we had to extend
the addressing method for POP-C++ objects. There is the possibility
for POP-C++ Interfaces to be instantiated with a hostname parameter,
forcing the Object to be allocated in that machine. We expanded this
method to the sensor nodes, requiring two addresses:

Address 1 - Point of contact between Grid and WSN: All WSNs
must have at least one point of contact to the Grid. This point of
contact must be able to communicate in both the protocol used by
the Grid and the protocol used by the WSN, so it will most likely
require special hardware such as the radio transceiver found in the
sensor nodes. By taking this parameter we are able to instantiate
a Proxy Broker in the appropriate Grid node, creating the logical
bridge that forwards the method calls directed at the WSN.

Address 2 - WSN Node: This address enables the Proxy Broker to
direct the method calls to the correct sensor node. Its format is
left open because different addressing methods can be used inside
different WSNs.

3.3 The Proxy Broker

To allow the method calls to be forwarded into the WSN, a special
Broker object has been created. This is a generic Broker that simply
receives method calls from the Grid as if it was the Object’s real broker,
then forwards them to the WSN node. Once the WSN node returns from
the method call, this Broker forwards the return value to the original
caller. This creates the effect of transparency to the Interfaces of that
Object; to them, the method calls are never leaving the Grid.

Figure 2 shows the Grid connected to the WSN through the Proxy
Brokers; note that there may be more than one point of contact between
the Grid and each WSN.

4. Evaluation of POP-C++ over WSNs

In this section we evaluate the overhead that our POP-C++ runtime
system introduces by comparing two implementations of the following
application: getting and setting an 8-bit value, that is to be displayed

6

1

...

n

1

...

n

Wired Grid

Proxy Broker 1

Extended Grid

Proxy Broker n

Figure 2. Proxy Brokers integrating the wired Grid and the WSN nodes

at the node’s LEDs. One version was implemented over POP-C++
and the other directly on top of the operating system. In the case of
the POP-C++ implementation, the client instantiates an Interface to a
“SensorNode” Object that is executed on the other node, and calls the
get() and set() methods to retrieve and set the data. In the native
implementation, the client sends pre-formatted packets that are opened
by the server and replied to with the data as payload.

4.1 Hardware testbed

The tests were made using two Mica2 sensor nodes developed at
Berkeley; they use a single-channel CC1000 radio, an 8MHz Atmel At-
mega128 8-bit microcontroller, 4KB of main memory and 128KB of pro-
gram flash memory.

4.2 Runtime support

To provide the communication, memory management and concur-
rency support that both applications need we used the Embedded Paral-
lel Operating System [Fröhlich and Schröder-Preikschat, 1999] (EPOS).
It consists in a component-based framework for generating runtime sup-
port for dedicated computing applications. For this test EPOS’ MAC
protocol was configured for reliability, ensuring packet delivery through
acknowledgements and minimizing network delays through an always-on
duty cycle.

Integrating Wireless Sensor Networks and the Grid through POP-C++ 7

C
R

C

F
ro

m

O
bj

ec
t

M
et

ho
d

S
em

an
tic

s

R
ea

di
ng

T
o

P
ro

to
co

l

Le
ng

th

POP−C++

Native

F
ro

m

T
o

P
ro

to
co

l

Le
ng

th

M
et

ho
d

R
ea

di
ng

C
R

C

Bytes 0 1 2 3 4 5 6 7 8 9 10

Figure 3. Packet Size Comparison

4.3 Benchmarks

Packet size: Figure 3 details the network packet size and content
for both implementations of this aplication; POP-C++ packets are
larger for 2 reasons:

– Object Field: To allow for more than one Object to be exe-
cuted in each node, packets are individually addressed;

– Semantic Value Field: The semantic values of the method to
be called are also represented in the header.

The addition of equivalent functionality on the native implementa-
tion would result in a similar packet size, which is justified by the
additional information that must be transferred when supporting
a complex set of applications.

Grid-Sensor Requests-per-Second: To evaluate the overall over-
head of the POP-C++ runtime system on this application we con-
ducted a performance test that measured the Requests-per-Second
that could be made from the client node to the server node. Figure
4 shows that the POP-C++ implementation could perform 6.875
remote method calls per second, and the native implementation
was able to perform 7.046 requests per second. This difference of
2.42% is due to the additional processing performed by the POP-
C++ runtime system as method calls arrive from the network.

5. Design Challenges

In this section we discuss the new issues brought by the environment
POP-C++ would now work in.

8

 8 7 6 5 4 3 2 1

0

Native

Requests per second

POP−C++

Figure 4. Requests-per-Second Comparison

5.1 Network Load

Payload Data Overhead: To transport the additional fields nec-
essary to make the function call, we include them in the header
of our packets. This is an overhead that the original POP-C++
system also has, but it has a greater negative effect in the WSN
implementation because of the high energy cost of transmitting
data over the wireless link. To minimize this issue we reduced the
size of each of these fields from the original 32 bit values, expecting
sensor nodes to host a smaller amount of objects and methods.

Packet Exchange Overhead: While the original POP-C++ system
used additional ACKs, in the WSN implementation we leave any
error correction or flow control up to the network stack of the op-
erating system; this way, the medium access and routing protocols
can handle communication in the way they see fit.

5.2 Scalability

If all method calls from the Grid to the WSN are routed through a
single Grid node, failure of that node would cause all Objects running on
the sensor network to become incommunicable. Under very heavy loads
it may also become a network bottleneck, causing heavy contention at
the physical level. To circumvent that, we allow multiple, concurrent
points of contact between the Grid and the WSN, ideally physically
separated so all can transmit concurrently.

5.3 Security/QoS

The issues of Security and QoS in WSNs are still relatively unexplored,
but current research on these areas propose solutions at the network

Integrating Wireless Sensor Networks and the Grid through POP-C++ 9

level, specially at the routing layer. There are groups working on meth-
ods to protect WSNs against DoS attacks [Deng et al., 2005], guarantee
packet confidentiality [Banerjee and Mukhopadhyay, 2006] and provide
QoS [Ouferhat and Mellouck, 2006] on a shared WSN. POP-C++ uses
the network stack of its underlying operating system as an application
would, and in a similar way to the Grid implementation, we rely on
EPOS to provide this kind of functionality.

6. Related Work

In this section we briefly discuss other projects of note that share our
goal of allowing the Grid to communicate with WSNs, and discuss how
their approach relates to ours.

TinyDB [Madden et al., 2003], Cougar [Yao and Gehrke, 2002] and
other research efforts [Madden et al., 2002] [Bonnet et al., 2001] im-
plement distributed query processors, putting great effort into query
optimization and efficient routing. Using these techniques they have
achieved considerable reduction in power consumption in addition to
externalizing a more friendly SQL-like interface to the application pro-
grammer. Our extension of POP-C++ does share all these goals, but
instead of active optimization, it gets out of the way of the application
programmer allowing full access to the sensor nodes’ hardware. Also,
we see the possibility of implementing the query optimization features
of TinyDB and Cougar as POP-C++ object code, yielding similar func-
tionality.

Hourglass [Gaynor et al., 2004] inserts a Data-Collection Network
(DCN) between the application and the sensor networks they acquire
data from. Hourglass abstracts the internals of the sensor networks com-
pletely, and provides traditional functionality such as service registration
and discovery, as well as routing the data from the sensor networks to
the applications. Hourglass’ approach is very internet-oriented, and uses
several estabilished standards such as XML, SOAP and OGSA. In this
scheme, our POP-C++ extension could be used behind the Sensor En-
try Point to perform all communication in the WSNs and provide a data
stream to the DCN.

7. Conclusion

In this article we describe a way to use remote parallel objects to
integrate the Grid and WSNs, by extending the POP-C++ runtime
system into the sensor network. We believe that by using POP-C++
to perform this integration we enable the application programmer to

10

use the WSN for multiple applications transparently, by using locally
instantiated interfaces to objects that run on the sensor nodes.

When comparing a functionally equivalent application implemented
with and without POP-C++, our runtime system showed a small over-
head cost that was justified by the ability to support multiple applica-
tions concurrently.

References

Banerjee, S. and Mukhopadhyay, D. (2006). Symmetric key based authenticated
querying in wireless sensor networks. In InterSense ’06: Proceedings of the first in-
ternational conference on Integrated internet ad hoc and sensor networks, page 22,
New York, NY, USA. ACM Press.

Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards sensor database systems.
In MDM ’01: Proceedings of the Second International Conference on Mobile Data
Management, pages 3–14, London, UK. Springer-Verlag.

Deng, J., Han, R., and Mishra, S. (2005). Defending against path-based dos attacks in
wireless sensor networks. In SASN ’05: Proceedings of the 3rd ACM workshop on
Security of ad hoc and sensor networks, pages 89–96, New York, NY, USA. ACM
Press.

Dunkels, A., Finne, N., Eriksson, J., and Voigt, T. (2006). Run-time dynamic linking
for reprogramming wireless sensor networks. In SenSys ’06: Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 15–28, New
York, NY, USA. ACM Press.

Fröhlich, A. A. and Schröder-Preikschat, W. (1999). EPOS: an Object-Oriented Op-
erating System. In 2nd ECOOP Workshop on Object-Orientation and Operating
Systems, volume CSR-99-04 of Chemnitzer Informatik-Berichte, pages 38–43, Lis-
bon, Portugal.

Gaynor, M., Moulton, S. L., Welsh, M., LaCombe, E., Rowan, A., and Wynne, J.
(2004). Integrating wireless sensor networks with the grid. IEEE Internet Comput-
ing, 8(4):32–39.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. (2002). Tag: a tiny ag-
gregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–
146.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. (2003). The design of an
acquisitional query processor for sensor networks. In SIGMOD ’03: Proceedings of
the 2003 ACM SIGMOD international conference on Management of data, pages
491–502, New York, NY, USA. ACM Press.

Nguyen, T.-A. and Kuonen, P. (2007). Programming the grid with pop-c++. In Future
Generation Computer Systems (FGCS), volume 23. N.H. Elsevier.

Ouferhat, N. and Mellouck, A. (2006). Qos dynamic routing for wireless sensor net-
works. In Q2SWinet ’06: Proceedings of the 2nd ACM international workshop on
Quality of service & security for wireless and mobile networks, pages 45–50, New
York, NY, USA. ACM Press.

Yao, Y. and Gehrke, J. (2002). The cougar approach to in-network query processing
in sensor networks. SIGMOD Rec., 31(3):9–18.

