

ERROR CONTAINMENT IN THE TIME-
TRIGGERED SYSTEM-ON-A-CHIP
ARCHITECTURE

R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber
Vienna University of Technology, Austria

Abstract: The time-triggered System-on-a-Chip (SoC) architecture provides a generic multi-
core system platform for a family of composable and dependable giga-scale SoCs. It
supports the integration of multiple application subsystems of different criticality
levels within a single hardware platform. A pivotal property of the architecture is
the integrated error containment, which facilitates modular certification, robustness,
and composability. By dividing the complete SoC into physically separated
components that interact exclusively by the timely exchange of messages on a time-
triggered Network-on-a-Chip (NoC), we achieve error containment for both
computational and communication resources. The time-triggered design allows
protecting the access to the NoC with guardians that are associated with each
component. Based on the protection of the time-triggered NoC with inherent
predictability and determinism, the architecture also enables error containment for
faulty computational results. These value message failures can be masked using
active redundancy (e.g., off-chip and on-chip Triple Modular Redundancy (TMR))
or detected using diagnostic assertions on messages. The design of the error
containment mechanisms systematically follows a categorization of significant fault
classes that an SoC is subject to (e.g., physical/design, transient/permanent).
Evidence for the effectiveness of the error containment mechanisms is available
through experimental data from a prototype implementation.

1. INTRODUCTION

Many large embedded control systems can be decomposed into a number
of nearly independent Distributed Application Subsystems (DASes). In the
automotive domain, the power train control system, the airbag control
system, the comfort electronics control system and the multimedia system are

340 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

examples for DASes. A similar decomposition is performed in control
system design aboard an airplane. Different DASes can be of differing
criticality level and are often developed by different organizations. At a high
level of abstraction—at the Platform Independent Model (PIM) level—a
DAS can be described by a set of processing Jobs that exchange messages in
order to achieve its stated objective. In order to eliminate any error
propagation path from one DAS to another DAS and to reduce the overall
system complexity, each DAS is often implemented on its own dedicated
hardware base, i.e., a computer is assigned to each job of a DAS and a
shared physical communication channel (in the automotive domain a CAN
network (Bosch 1991)) is provided for the exchange of the messages within
a DAS. In case of a failure of a DAS function it is then straightforward to
identify the organization responsible for the malfunction, even if it is not
clear whether the failure is caused by a transient hardware fault or a software
error. We call such an architecture, where each DAS has its own dedicated
hardware base, a federated architecture. In the automotive domain the
massive deployment of federated architectures has led to a large number of
Electronic Control Units (ECUs, i.e., nodes) and networks aboard a car. In a
typical premium car more than fifty ECUs and five different networks can be
found (Leohold 2005). This large number of ECUs and networks has some
negative consequences: the high number of cabling contact points (which are
a significant cause of failures) and the high costs. These negative
consequences could be eliminated if one ECU could host more than one job
of a DAS and thus the number of ECUs, networks and cables is significantly
reduced. We call such an architecture, where a single integrated hardware
base for the execution of different DASes is provided, an integrated
architecture. Hammett R. describes aptly the technical challenge in the
design of an integrated architecture: The ideal future avionics systems would
combine the complexity management advantages of the federated approach,
but would also realize the functional integration and hardware efficiency
benefits of an integrated system (Hammett 2003).

In the recent past, a number of efforts have been made to develop an
integrated architecture e.g., Integrated Modular Avionics (IMA) (Wilkinson
2005) in the aerospace domain, AUTOSAR (Heinecke et al. 2004) in the
automotive domain, and DECOS (Obermaisser et al. 2006) as a cross-
domain architecture. The key idea in these approaches is the provision of a
partitioned operating system for a computer with a single powerful CPU.
This operating system is intended to provide in each partition an
encapsulated execution environment for a single job and eliminate any error
propagation path from one job to another job. However, the required
encapsulation, particularly w.r.t. to temporal properties and transient failures
is difficult to achieve in such an architecture.

Error Containment in the Time-Triggered SoC Architecture 341

This paper follows another route. The recent appearance of multi-core
Systems-on-a-Chip (SoCs) (e.g., the Cell multiprocessor (Kahle, Day et al.
2005)), makes it possible to achieve the desired integration by assigning
each job to a core of an SoC and by providing a time-triggered on-chip
interconnect that supports composability and error containment between
DASes. This paper focuses on a key property of this architecture, the error
containment between DASes. The paper is structured as follows: In Section
two we present an overview of the time-triggered SoC architecture. Section
three is devoted to the issues of error containment with respect to design
faults. Section four deals with error containment with respect to physical
faults. Section five discusses implementation aspects and an experimental
evaluation of the architecture. The paper terminates with a conclusion in
Section six.

2. TIME-TRIGGERED SOC ARCHITECTURE

The central element of the presented SoC architecture is a time-triggered
NoC that interconnects multiple, possibly heterogeneous IP blocks called
micro components (see Figure 1), each one hosting a job of a DAS. The SoC
introduces a trusted subsystem, which ensures that a fault (e.g., a software
fault) within the host of a micro component cannot lead to a violation of the
micro component’s temporal interface specification in a way that the
communication between other micro components would be disrupted.
Therefore, the trusted subsystem prevents a faulty micro component from
sending messages during the sending slots of any other micro component.

Another focus of the SoC architecture is integrated support for
maintenance. The diagnostic unit is an architectural element that executes
assertions on the messages sent by the micro components and stores
diagnostic information in persistent storage for a later analysis.

Furthermore, the time-triggered SoC architecture supports dynamic
integrated resource management. For this purpose, a dedicated architectural
element called the Trusted Network Authority (TNA) accepts run-time
resource allocation requests from the micro components and reconfigures the
SoC, e.g., by dynamically updating the time-triggered communication
schedule of the NoC and switching between power modes of micro
components.

2.1 Micro Component

The introduced SoC can host jobs of multiple DASes (possibly of
different criticality levels), each of which provides a part of the service of

342 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

the overall system. A nearly autonomous IP-block, which is used by a
particular DAS is denoted as a micro component. A micro component is a
self-contained computing element, e.g., it can be implemented as a general
purpose processor with software, and FPGA or as special purpose hardware.
A DAS can be realized on a single micro component or by using a group of
possibly heterogeneous micro components (either located on one or on
multiple interconnected SoCs).

The interaction between the micro components of an application
subsystem occurs solely through the exchange of messages on the time-
triggered NoC. Each micro component is encapsulated, i.e., the behavior of a
micro component can neither disrupt the computations nor the
communication performed by other micro components. For this purpose,
each micro component contains a so-called Trusted Interface Subsystem
(TISS), which guards the access of the micro component to the time-
triggered NoC (see also Section 3).

 Encapsulation prevents by design temporal interference (e.g., delaying
messages or computations in another micro component) and spatial
interference (e.g., overwriting a message produced by another micro
component). The only manner, in which a faulty micro component can affect
other micro components, is by providing faulty input value to other micro
components of the application subsystem via the sent messages.

Due to the provided encapsulation, the SoC architecture supports the
detection and masking of such a value failure of a micro component using
Triple Modular Redundancy (TMR). Encapsulation is necessary for ensuring
the independence of the replicas. Otherwise, a faulty micro component could
disrupt the communication of the replicas, thus causing common mode
failures.

Figure 1: Structure of Time-Triggered SoC Architecture: trusted subsystem
(shaded) and non trusted subsystem (hosts of micro components)

Error Containment in the Time-Triggered SoC Architecture 343

Encapsulation is also a key mechanism for the correctness-by-
construction of application subsystems on an SoC. The SoC architecture
ensures that upon the incremental integration of micro components, the prior
services of the already existing micro components are not invalidated by the
new micro components. This property, which is denoted as composability
(Kopetz and Obermaisser 2002), is required for the seamless integration of
independently developed DASes and micro components.

Also, encapsulation is of particular importance for the implementation of
SoCs encompassing DASes of different criticality levels. Consider for
example a future automotive system, which will incorporate DASes ranging
from a safety-critical drive-by-wire DAS to a non safety-critical comfort
DAS. In such a mixed criticality system, a failure of micro components of a
non safety-critical application subsystem must not cause the failure of
application subsystems of higher criticality.

2.2 Time-Triggered Network-on-a-Chip

The time-triggered NoC interconnects the micro components of an SoC.
The purposes of the time-triggered NoC encompass clock synchronization
for the establishment of a global time base, as well as the predictable
transport of periodic and sporadic messages.

Clock Synchronization: The time-triggered NoC performs clock
synchronization in order to provide a global time base for all micro
components despite the existence of multiple clock domains. The time-
triggered NoC is based on a uniform time format for all configurations,
which has been standardized by the OMG in the smart transducer interface
standard (OMG 2002).

Predictable Transport of Messages: Using Time-Division Multiple
Access (TDMA), the available bandwidth of the NoC is divided into
periodic conflict-free sending slots. We distinguish between two utilizations
of a periodic time-triggered sending slot by a micro component. A sending
slot can be used either for the periodic or the sporadic transmission of
messages. In the latter case, a message is only sent if the sender must
transmit a new event to the receiver. If no event occurs at the sender, no
message is sent and thus no energy is consumed.

2.3 Diagnostic Unit

The diagnostic unit helps maintenance engineers in choosing appropriate
maintenance actions. A maintenance action is either an update of the
software in the host of a micro component to eliminate a design fault, or the
replacement of a SoC component that is subject permanent physical faults.

344 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

For this purpose, the diagnostic unit collects error indications from micro
components and also performs error detection itself. For each detected error,
an entry is inserted into an error log for a later analysis.

Attribute Interface Feature Check
Valid A message is valid if it meets CRC, range and logical checks
Checked A message is checked if it passes the output assertion
Permitted A message is permitted w.r.t. a receiver, if it passes the input

assertion of that receiver
Timely A message is timely if it is in agreement with its temporal

specifications
Correct A message is correct if its value and temporal specifications are

met
Insidious A message is insidious if it is permitted but incorrect (requires a

global judgment)
Table 1: DSoS Message Classification

The error detection is based on the message classification defined in the
Dependable Systems-of-Systems (DSoS) conceptual model (Jones, Kopetz
et al. 2001). In the DSoS model (see Table 1), a message is classified as
checked, if it passes the output assertion. In addition, each message has to
pass an input assertion in order to be processed by the receiving micro
component. Once a message passes the input check it is called permitted.
The input and output assertions consist of syntactic, temporal, and semantic
checks. A message is called valid, if it passes the syntactic check. The CRC
ensures that the content is in agreement with the checksum. We term a
message timely if it is in agreement with the temporal specification. The
value-correctness of a message can only be fully judged by an omniscient
observer. However, application-specific plausibility checks can be applied.
Note, that this implies the possibility that a message is judged as being
permitted and therefore passing the input assertion but classified as incorrect
by the omniscient observer. Such a message is called insidious.

In order to perform this message classification, the following three types
of checks are executed at the SoC:
1. Output assertions: The output assertions are computed at the diagnostic

unit. The diagnostic unit observes all messages that are exchanged on the
time-triggered NoC and executes predicates encoding a priori knowledge
w.r.t. to the message syntax and semantics.

2. Temporal checks: For sporadic communication, the TISS detects
overflows of message queues. These checks apply both to queues with
received messages (i.e., input ports), as well as to queues with messages
that shall be sent (i.e., output ports).

Error Containment in the Time-Triggered SoC Architecture 345

3. Input assertions: Input assertions are computed by micro components that

receive messages from other micro components. Input assertions test the
message syntax and the message semantics.

Errors detected via these three mechanisms are stored in the error log. While
the results of (1) are already available at the diagnostic unit, the checks in (2)
and (3) employ error indication messages on a diagnostic communication
channel. The diagnostic communication channel of a micro component is
realized as a statically reserved slot of the time-triggered NoC.

3. ERROR CONTAINMENT FOR DESIGN FAULTS

In his classical paper (Gray 1986), Jim Gray proposed to distinguish
between two types of software design errors, Bohrbugs and Heisenbugs.
Bohrbugs are design errors in the software that cause reproducible failures.
Heisenbugs are design errors in the software that seem to generate quasi-
random failures. From a phenomenological point of view, a transient failure
that is caused by a Heisenbug cannot be distinguished from a failure caused
by transient hardware malfunction.

In the SoC architecture, an error that is caused by a design fault in the
sending micro component could only propagate to another micro component
via a message failure, i.e., a sent message that deviates from the
specification. In general, a message failure can be a message value failure or
a message timing failure (Cristian and Aghili 1985). A message value failure
implies that a message is either invalid or that the data structure contained in
a valid message is incorrect. A message timing failure implies that the
message send instant or the message receive instant are not in agreement
with the specification.

The propagation of an error due to a message timing failure is prevented
by design in the SoC architecture. The TISS acts as a guardian for a micro
component and prevents that a micro component can violate its temporal
specification. In contrast, the value failure detection is in the responsibility
of the receiving micro components and the diagnostic unit of the SoC
architecture.

In order to avoid the propagation of an error caused by a message failure
we need error detection mechanisms that are in different Fault Containment
Regions (FCRs) than the message sender. Otherwise, the error detection
mechanism may be impacted by the same fault that caused the message
failure.

346 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

3.1 Fault Containment Regions for Design Faults

The FCRs of the SoC architecture with respect to design faults are as
follows:

Trusted Subsystem: We assume that the trusted subsystem is free of
design faults. In order to justify this strong assumption, the design of the
trusted subsystem must be made as small and simple as possible in order to
facilitate formal analysis. The time-triggered design of the trusted subsystem
reduces the probability of Heisenbugs (e.g., no race conditions, clear
separation of logical and temporal control). The control signals are derived
from the progression of the sparse global time base (Kopetz 1992), which
guarantees that all TISSes will visit the same state within a silence interval
of the sparse time base.

Micro Components: The non safety-critical software of a micro
component is encapsulated by the trusted subsystem such that even a
malicious fault in the non safety-critical software of the host will not affect
the correct function of the safety-critical software in the hosts of other micro
components.

3.2 Timing Failure Containment

For the purpose of error containment w.r.t. message timing failures, each
micro component comprises two parts: a host and a Trusted Interface
Subsystem (TISS). The host implements the application services. Using the
TISS, the time-triggered SoC architecture provides a dedicated architectural
element that protects the access to the time-triggered NoC. Each TISS
contains a table which stores a priori knowledge concerning the global points
in time of all message receptions and transmissions of the respective micro
component. Since the table cannot be modified by the host, a design fault
restricted to the host of a micro component cannot affect the exchange of
messages by other micro components.

3.3 Value Failure Containment

Since value failures are highly application-specific, their detection in the
SoC architecture relies on the host. An important baseline for these detection
mechanisms is the timing failure containment of the time-triggered NoC.
The SoC architecture ensures that a received message truly stems from the
associated sender (i.e. masquerading protection) and that the message is
temporally correct.

It is the responsibility of each micro component, to decide whether the
actual message should be accepted or not. Therefore, it can run tests

Error Containment in the Time-Triggered SoC Architecture 347

exploiting application-specific knowledge concerning the values of the
signals (variables) that are transported within the message. Such tests are
usually called executable assertions (Hecht 1976; Saib 1987). Executable
assertions are statements, which can be made about the signals within a
message. They are executed whenever a message is received in order to see
if they hold. If not, the message is regarded as incorrect and will be
discarded.

In the SoC architecture we support various types of assertions. For
example executable assertions with signal range checks and slew rate checks
can be applied to check whether a value is within its physical limits (e.g., the
speed of a car cannot change within one second from zero to 200 kilometers
per hour). The combination of signal range checks and slew rate checks into
a single assertion offers the possibility to define bounds for extreme values
in dependency on the actual rate of change.

A more elaborated technique is “model-based fault detection” (Isermann,
Schwarz et al. 2002), where a process model of the controlled system is used
to detect errors by relating two or more system variables to each other.

4. ERROR CONTAINMENT FOR PHYSICAL FAULTS

Depending on the persistence of a fault, one can classify physical faults
into permanent faults and transient faults (Avizienis, Laprie et al. 2001). A
permanent fault occurs, if the hardware of an FCR brakes down
permanently. An example for a permanent fault is a stuck-at-zero fault of a
memory cell. A transient fault is caused by some random event. An example
for a transient fault is a Single Event Upset (SEU) caused by a radioactive
particle (Normand 1996).

4.1 Fault-Containment Region for Physical Faults

In non safety-critical systems, we distinguish the same types of FCRs on
the SoC architecture for physical faults as for design faults, namely the
trusted subsystem and individual micro components. For a physical fault that
affects a micro component, the SoC is capable of recovering from its
induced errors. The performed recovery strategy depends on the persistence
of the fault.

A permanent fault affecting a micro component requires reallocating the
functionality of the affected micro component to a correct one. If the SoC
contains multiple micro components of identical hardware, where the
functional differentiation is provided by application software, the allocation
of application subsystems to micro components can be dynamically

348 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

reconfigured by the TNA. Relaxing the requirement for 100% correctness
for devices and interconnections may dramatically reduce the cost of
manufacturing, verification and test of SoCs. However, a permanent fault
affecting the trusted subsystem is not tolerated by the SoC architecture. For
transient faults, on the other hand, a restart of the micro component can be
triggered.

Contrary to non safety-critical systems, for safety-critical systems we
have to consider the entire SoC as a single FCR. Due to the shared power
supply, physical components (e.g. housing), and the proximity we cannot
assume with a probability demanded for, e.g., ultra dependable systems that
a physical fault like a SEU affects only a single micro component while
sparing the trusted subsystem of the SoC. Therefore, masking of physical
faults for safety-critical systems has to be performed at cluster level, where
multiple SoC are interconnected to a distributed system.

4.2 Non Safety-Critical Systems

The masking of timing failures occurs in the same manner as for design
faults. In case the host of a micro component is affected by a physical fault,
the trusted subsystem ensures that there is no interference with the timely
exchange of messages by other micro components.

Value failure detection is not in the responsibility of the SoC architecture,
but in the responsibility of the micro components. For example, in non
safety-critical systems value failure detection and correction can be
performed in a single step by on-chip triple modular redundancy (TMR). In
contrast to design faults, the masking of value failures resulting from
physical faults can be performed in a systematic application-independent
manner through active redundancy such as TMR. In this case, three
replicated deterministic micro components perform the same operations in
their host. They produce – in the fault-free case – correct messages with the
same content that are sent to three replicated receivers that perform a
majority vote on these three messages.

Value failure detection and timing failure detection are not independent.
In order to implement a TMR structure for value failure masking at the
application level in the micro components, the integrity of the timing of the
architecture must be assumed. An intact sparse global time-base is a
prerequisite for the system-wide definition of the distributed state, which
again is a prerequisite for masking value failures by voting.

Error Containment in the Time-Triggered SoC Architecture 349

4.3 Safety-Critical Systems

In ultra-dependable systems, a maximum failure rate of 10−9 critical
failures per hour is demanded (Suri, Walter et al. 1995). Today’s technology
does not support the manufacturing of chips with failure rates low enough to
meet these reliability requirements. Since component failure rates are usually
in the order of 10−5 to 10−6 (e.g., (Pauli et al. 1998) uses a large statistical
basis and reports 100 to 500 failures out of 1 Million ECUs in 10 years),
ultra-dependable applications require the system as a whole to be more
reliable than any one of its components. This can only be achieved by
utilizing fault-tolerant strategies that enable the continued operation of the
system in the presence of component failures. Therefore, it is demanded to
realize a distributed system based on the SoC architecture. For this purpose,
the SoC architecture supports gateways for accessing chip-external networks
(e.g., TTP (Kopetz and Grünsteidl 1994), TTE (Kopetz, Ademaj et al.
2005)).

By the use of a time-triggered protocol (e.g. TTP or TTE) for the chip
external network, timing failure containment can be realized by a guardian,
which judges a message as untimely based on a priori knowledge of the send
and receive instants of all messages of a single SoC.

As for non-safety-critical systems, value failure containment can be
implemented by the use of TMR. However, for safety-critical systems the
three replicated micro components have to reside on different micro
components.

5. IMPLEMENTATION

Using a distributed system, the prototype implementation emulates an
SoC with four micro components, as well as the TNA. A Time-Triggered
Ethernet (TTE) network emulates the NoC and supports the time-triggered
exchange of periodic and sporadic messages.

5.1 Implementation of Micro Components

Each micro component consists of two single board computers, namely
one implementing the host and the second one implementing the TISS. The
single board computer of the host is a Soekris Engineering net4521, which
incorporates a 133Mhz 468 class ElanSC520 processor from AMD, 64
MBytes of RAM, and two 100 Mbit Ethernet ports. The implementation of
the TISS is based on a single board compact computer of type Soekris
Engineering net4801, which incorporates a 266 MHz 586 class NSC SC1100

350 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

processor. As an operating system, both single board computers use the
realtime Linux variant Real-Time Application Interface (RTAI) (Beal,
E.Bianchi et al. 2000).

In our prototype implementation we emulate the time-triggered NoC with
TTE (Kopetz, Ademaj et al. 2005). For this purpose, a hardware
implementation of the TTE controller is employed which is based on a
PCMCIA FPGA card.

Dynamic reconfiguration of the NoC occurs via configuration messages
sent by the TNA to the TISSes. The reconfiguration is triggered by the TTE
controller via a dedicated reconfiguration interrupt at a predefined periodic
instant with reference to the global time. Thus the reconfiguration is
consistently performed at all TISSs at the same tick of the global time. At the
reconfiguration instant, the TTE controller is switched to inactive and the
MEDL is updated. The controller is reactivated after the update has finished.

The prototype implementation implements the memory interface between
host and TISS via a standard Ethernet connection. On top of an optimized
version of the standard real-time driver as distributed by the RTnet open-
source project (Kiszka, Wagner et al. 2005) we have implemented a
request/reply protocol through which the host can access the CNI and the
local configuration parameters of the TISS.

5.2 Experimental Evaluation of Encapsulation

As part of the prototype implementation, we have also performed an
early experimental evaluation for validating the encapsulation mechanisms
provided by the trusted subsystem. The goal of the experiments is to test the
spatial and temporal partitioning in the presence of an arbitrary behavior of
faulty hosts. Therefore, the prototype setup contains a micro component with
a host performing fault injection, as well as a monitoring device realized by
a standard PC. As part of the experiments, the faulty host has systematically
iterated through all possible message header values of a request message
destined to the TISS.

The monitoring device has been connected to the TTE switch and has
used its Ethernet interface in promiscuous mode. The tool WireShark has
been used to observe and log the traffic of the entire TTE network. The
analysis of the collected logs has yielded the following results:

• No discontinuities. In the experiments, all sent messages have included
sequence numbers. The logs have indicated that no messages have been lost
due to the behavior of the faulty lost.

• No additional messages. Other than the messages configured by the
TNA, no messages have been observed on the TTE network.

Error Containment in the Time-Triggered SoC Architecture 351

• No effect on temporal properties. The temporal properties (i.e.,
bandwidth, latency, message order) of the TTE network with fault injection
by a host have been identical to the temporal properties without fault
injection.

In extension to these encouraging results, a more comprehensive
validation using fault injection experiments is required as part of future
work, e.g., focusing on physical fault injection with radioactive particles.

6. CONCLUSION

The advances of the semiconductor industry are leading to the
appearance of billion transistors SoCs, where multiple computers – called
cores – can be implemented in a single die (Kahle, Day et al. 2005). These
developments are opening new alternatives for the design of an integrated
architecture for embedded control systems. By assigning each job of a
distributed application subsystem (DAS) to a core of a multi-core SoC, the
direct interference between jobs of different DASes is eliminated without
the introduction of a complex partitioned operating system. The indirect
interference among DASes is eliminated by the provision of a dynamic time-
triggered NoC that is controlled by a trusted network authority. This paper
has focussed on the error containment properties of the integrated TT-SoC
architecture, which in our opinion is superior to the error containment that
can be achieved in federated architectures where ECUs are interconnected
by a CAN network. The paper contains experimental data on a prototype
implementation of the architecture that support our claims.

ACKNOWLEDGEMENTS

This work has been supported in part by the European IST project
ARTIST2 under project No. IST-004527 and the European IST project
DECOS under project No. IST-511764.

REFERENCES

Avizienis, A., J. Laprie, et al. (2001). Fundamental concepts of dependability.

Beal, D., E.Bianchi, et al. (2000). "RTAI: Real-Time Application Interface." Linux Journal.

Bosch (1991). CAN Specification, Version 2.0. Stuttgart, Germany, Robert Bosch Gmbh.

Cristian, F. and H. Aghili (1985). Atomic Broadcast: From simple message diffusion to
Byzantine agreement. Proc. 15th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-15).

352 R. Obermaisser, H. Kopetz, C. El Salloum, B. Huber

Gray, J. (1986). Why do Computers Stop and What can be done about it? Proc. of the 5th
Symp. on Reliability in Distributed Software and Database Systems. Los Angeles, CA, USA.

Hammett, R. (2003). "Flight-critical distributed systems: design considerations [avionics]."
IEEEAerospace and Electronic Systems Magazine 18(6): 30–36.

Hecht, H. (1976). "Fault-Tolerant Software." ACM Computing Survey 8(4): 391-407.

Heinecke, H., et al. (2004). AUTomotive Open System ARchitecture - An Industry-Wide
Initiative to Manage the Complexity of Emerging Automotive E/E-Architectures. Proc. of the
Convergence Int. Congress & Exposition On Transportation Electronics.

Isermann, R., R. Schwarz, et al. (2002). "Fault-Tolerant Drive-by-Wire Systems." Control
Systems Magazine 22: 64-81.

Jones, C. H., H. Kopetz, et al. (2001). Revised Conceptual Model of DSOS, University of
Newcastle upon Tyne, Computer Science Department.

Kahle, J. A., M. N. Day, et al. (2005). "Introduction to the Cell multiprocessor." IBM Journal
of Research and Development 49(4/5): 589–604.

Kiszka, J., B. Wagner, et al. (2005). RTnet – a flexible hard real-time networking framework.
Proc. of 10th IEEE Int. Conference on Emerging Technologies and Factory Automation.

Kopetz, H. (1992). Sparse time versus dense time in distributed real-time systems. Proc. of
12th Int. Conference on Distributed Computing Systems. Japan.

Kopetz, H., A. Ademaj, et al. (2005). The Time-Triggered Ethernet (TTE) design. Proc. of 8th
IEEE Int. Symposium on Object-oriented Real-time distributed Computing (ISORC).

Kopetz, H. and G. Grünsteidl (1994). "TTP– a protocol for fault-tolerant real-timesystems."
Computer 27(1): 14–23.

Kopetz, H. and R. Obermaisser (2002). "Temporal composability." Computing & Control
Engineering Journal 13: 156–162.

Lamport, L. and R. Shostak (1982). "The Byzantine Generals Problem." ACM Trans. on
Programming Languages and Systems 4(3): 382-401.

Leohold, J. (2005). Automotive Systems Architecture. Architectural Paradigms for
Dependable Embedded Systems. Vienna, Austria: 545-592.

Normand, E. (1996). "Single Event Upset at Ground Level." IEEE Trans. on Nucl. Science
43: 2742.

Obermaisser, R., et al. (2006). "DECOS: An Integrated Time-Triggered Architecture." journal
of the Austrian professional institution for electrical and information engineering 3: 83-95.

OMG (2002). Smart Transducers Interface Specification, Object Management Group.

Pauli, B., et al. (1998). "Reliability of electronic components and control units in motor
vehicle applications." VDI Berichte 1415, Electronic Systems for Vehicles: 1009–1024.

Saib, S. H. (1987). Executable Assertions - An Aid to Reliable Software. Proc. of Asilomar
Conference on Circuits Systems and Computers.

Suri, N., C. J. Walter, et al. (1995). Advances in Ultra-Dependable Distributed Systems,
Chapter 1, IEEE Computer Soc. Press.

Wilkinson, C. (2005). "IMA aircraft improvements." Aerospace and Electronic Systems
Magazine, IEEE 20(9): 11-17.

