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Abstract: The time-triggered System-on-a-Chip (SoC) architecture provides a generic multi-
core system platform for a family of composable and dependable giga-scale SoCs. It 
supports the integration of multiple application subsystems of different criticality 
levels within a single hardware platform. A pivotal property of the architecture is 
the integrated error containment, which facilitates modular certification, robustness, 
and composability. By dividing the complete SoC into physically separated 
components that interact exclusively by the timely exchange of messages on a time-
triggered Network-on-a-Chip (NoC), we achieve error containment for both 
computational and communication resources. The time-triggered design allows 
protecting the access to the NoC with guardians that are associated with each 
component. Based on the protection of the time-triggered NoC with inherent 
predictability and determinism, the architecture also enables error containment for 
faulty computational results. These value message failures can be masked using 
active redundancy (e.g., off-chip and on-chip Triple Modular Redundancy (TMR)) 
or detected using diagnostic assertions on messages. The design of the error 
containment mechanisms systematically follows a categorization of significant fault 
classes that an SoC is subject to (e.g., physical/design, transient/permanent). 
Evidence for the effectiveness of the error containment mechanisms is available 
through experimental data from a prototype implementation.  

1. INTRODUCTION 

Many large embedded control systems can be decomposed into a number 
of nearly independent Distributed Application Subsystems (DASes). In the 
automotive domain, the power train control system, the airbag control 
system, the comfort electronics control system and the multimedia system are 
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examples for DASes. A similar decomposition is performed in control 
system design aboard an airplane. Different DASes can be of differing 
criticality level and are often developed by different organizations. At a high 
level of abstraction—at the Platform Independent Model (PIM) level—a 
DAS can be described by a set of processing Jobs that exchange messages in 
order to achieve its stated objective. In order to eliminate any error 
propagation path from one DAS to another DAS and to reduce the overall 
system complexity, each DAS is often implemented on its own dedicated 
hardware base, i.e., a computer is assigned to each job of a DAS and a 
shared physical communication channel (in the automotive domain a CAN 
network (Bosch 1991)) is provided for the exchange of the messages within 
a DAS. In case of a failure of a DAS function it is then straightforward to 
identify the organization responsible for the malfunction, even if it is not 
clear whether the failure is caused by a transient hardware fault or a software 
error. We call such an architecture, where each DAS has its own dedicated 
hardware base, a federated architecture. In the automotive domain the 
massive deployment of federated architectures has led to a large number of 
Electronic Control Units (ECUs, i.e., nodes) and networks aboard a car. In a 
typical premium car more than fifty ECUs and five different networks can be 
found (Leohold 2005). This large number of ECUs and networks has some 
negative consequences: the high number of cabling contact points (which are 
a significant cause of failures) and the high costs. These negative 
consequences could be eliminated if one ECU could host more than one job 
of a DAS and thus the number of ECUs, networks and cables is significantly 
reduced. We call such an architecture, where a single integrated hardware 
base for the execution of different DASes is provided, an integrated 
architecture. Hammett R. describes aptly the technical challenge in the 
design of an integrated architecture: The ideal future avionics systems would 
combine the complexity management advantages of the federated approach, 
but would also realize the functional integration and hardware efficiency 
benefits of an integrated system (Hammett 2003). 

In the recent past, a number of efforts have been made to develop an 
integrated architecture e.g., Integrated Modular Avionics (IMA) (Wilkinson 
2005) in the aerospace domain, AUTOSAR (Heinecke et al. 2004) in the 
automotive domain, and DECOS (Obermaisser et al. 2006) as a cross-
domain architecture. The key idea in these approaches is the provision of a 
partitioned operating system for a computer with a single powerful CPU. 
This operating system is intended to provide in each partition an 
encapsulated execution environment for a single job and eliminate any error 
propagation path from one job to another job. However, the required 
encapsulation, particularly w.r.t. to temporal properties and transient failures 
is difficult to achieve in such an architecture. 
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This paper follows another route. The recent appearance of multi-core 
Systems-on-a-Chip (SoCs) (e.g., the Cell multiprocessor (Kahle, Day et al. 
2005)), makes it possible to achieve the desired integration by assigning 
each job to a core of an SoC and by providing a time-triggered on-chip 
interconnect that supports composability and error containment between 
DASes. This paper focuses on a key property of this architecture, the error 
containment between DASes. The paper is structured as follows: In Section 
two we present an overview of the time-triggered SoC architecture. Section 
three is devoted to the issues of error containment with respect to design 
faults. Section four deals with error containment with respect to physical 
faults. Section five discusses implementation aspects and an experimental 
evaluation of the architecture. The paper terminates with a conclusion in 
Section six. 

2. TIME-TRIGGERED SOC ARCHITECTURE 

The central element of the presented SoC architecture is a time-triggered 
NoC that interconnects multiple, possibly heterogeneous IP blocks called 
micro components (see Figure 1), each one hosting a job of a DAS. The SoC 
introduces a trusted subsystem, which ensures that a fault (e.g., a software 
fault) within the host of a micro component cannot lead to a violation of the 
micro component’s temporal interface specification in a way that the 
communication between other micro components would be disrupted. 
Therefore, the trusted subsystem prevents a faulty micro component from 
sending messages during the sending slots of any other micro component. 

Another focus of the SoC architecture is integrated support for 
maintenance. The diagnostic unit is an architectural element that executes 
assertions on the messages sent by the micro components and stores 
diagnostic information in persistent storage for a later analysis. 

Furthermore, the time-triggered SoC architecture supports dynamic 
integrated resource management. For this purpose, a dedicated architectural 
element called the Trusted Network Authority (TNA) accepts run-time 
resource allocation requests from the micro components and reconfigures the 
SoC, e.g., by dynamically updating the time-triggered communication 
schedule of the NoC and switching between power modes of micro 
components. 

2.1 Micro Component 

The introduced SoC can host jobs of multiple DASes (possibly of 
different criticality levels), each of which provides a part of the service of 
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the overall system. A nearly autonomous IP-block, which is used by a 
particular DAS is denoted as a micro component. A micro component is a 
self-contained computing element, e.g., it can be implemented as a general 
purpose processor with software, and FPGA or as special purpose hardware. 
A DAS can be realized on a single micro component or by using a group of 
possibly heterogeneous micro components (either located on one or on 
multiple interconnected SoCs). 

The interaction between the micro components of an application 
subsystem occurs solely through the exchange of messages on the time-
triggered NoC. Each micro component is encapsulated, i.e., the behavior of a 
micro component can neither disrupt the computations nor the 
communication performed by other micro components. For this purpose, 
each micro component contains a so-called Trusted Interface Subsystem 
(TISS), which guards the access of the micro component to the time-
triggered NoC (see also Section 3). 

 Encapsulation prevents by design temporal interference (e.g., delaying 
messages or computations in another micro component) and spatial 
interference (e.g., overwriting a message produced by another micro 
component). The only manner, in which a faulty micro component can affect 
other micro components, is by providing faulty input value to other micro 
components of the application subsystem via the sent messages.  

Due to the provided encapsulation, the SoC architecture supports the 
detection and masking of such a value failure of a micro component using 
Triple Modular Redundancy (TMR). Encapsulation is necessary for ensuring 
the independence of the replicas. Otherwise, a faulty micro component could 
disrupt the communication of the replicas, thus causing common mode 
failures. 

Figure 1: Structure of Time-Triggered SoC Architecture: trusted subsystem 
(shaded) and non trusted subsystem (hosts of micro components) 
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Encapsulation is also a key mechanism for the correctness-by-
construction of application subsystems on an SoC. The SoC architecture 
ensures that upon the incremental integration of micro components, the prior 
services of the already existing micro components are not invalidated by the 
new micro components. This property, which is denoted as composability 
(Kopetz and Obermaisser 2002), is required for the seamless integration of 
independently developed DASes and micro components. 

Also, encapsulation is of particular importance for the implementation of 
SoCs encompassing DASes of different criticality levels. Consider for 
example a future automotive system, which will incorporate DASes ranging 
from a safety-critical drive-by-wire DAS to a non safety-critical comfort 
DAS. In such a mixed criticality system, a failure of micro components of a 
non safety-critical application subsystem must not cause the failure of 
application subsystems of higher criticality.  

2.2 Time-Triggered Network-on-a-Chip 

The time-triggered NoC interconnects the micro components of an SoC. 
The purposes of the time-triggered NoC encompass clock synchronization 
for the establishment of a global time base, as well as the predictable 
transport of periodic and sporadic messages. 

Clock Synchronization: The time-triggered NoC performs clock 
synchronization in order to provide a global time base for all micro 
components despite the existence of multiple clock domains. The time-
triggered NoC is based on a uniform time format for all configurations, 
which has been standardized by the OMG in the smart transducer interface 
standard (OMG 2002). 

Predictable Transport of Messages: Using Time-Division Multiple 
Access (TDMA), the available bandwidth of the NoC is divided into 
periodic conflict-free sending slots. We distinguish between two utilizations 
of a periodic time-triggered sending slot by a micro component. A sending 
slot can be used either for the periodic or the sporadic transmission of 
messages. In the latter case, a message is only sent if the sender must 
transmit a new event to the receiver. If no event occurs at the sender, no 
message is sent and thus no energy is consumed. 

2.3 Diagnostic Unit 

The diagnostic unit helps maintenance engineers in choosing appropriate 
maintenance actions. A maintenance action is either an update of the 
software in the host of a micro component to eliminate a design fault, or the 
replacement of a SoC component that is subject permanent physical faults. 
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For this purpose, the diagnostic unit collects error indications from micro 
components and also performs error detection itself. For each detected error, 
an entry is inserted into an error log for a later analysis. 

Attribute Interface Feature Check 
Valid A message is valid if it meets CRC, range and logical checks 
Checked A message is checked if it passes the output assertion 
Permitted A message is permitted w.r.t. a receiver, if it passes the input 

assertion of that receiver 
Timely A message is timely if it is in agreement with its temporal 

specifications 
Correct A message is correct if its value and temporal specifications are 

met 
Insidious A message is insidious if it is permitted but incorrect (requires a 

global judgment) 
Table 1: DSoS Message Classification 

The error detection is based on the message classification defined in the 
Dependable Systems-of-Systems (DSoS) conceptual model (Jones, Kopetz 
et al. 2001). In the DSoS model (see Table 1), a message is classified as 
checked, if it passes the output assertion. In addition, each message has to 
pass an input assertion in order to be processed by the receiving micro 
component. Once a message passes the input check it is called permitted. 
The input and output assertions consist of syntactic, temporal, and semantic 
checks. A message is called valid, if it passes the syntactic check. The CRC 
ensures that the content is in agreement with the checksum. We term a 
message timely if it is in agreement with the temporal specification. The 
value-correctness of a message can only be fully judged by an omniscient 
observer. However, application-specific plausibility checks can be applied. 
Note, that this implies the possibility that a message is judged as being 
permitted and therefore passing the input assertion but classified as incorrect 
by the omniscient observer. Such a message is called insidious.  

In order to perform this message classification, the following three types 
of checks are executed at the SoC:  
1. Output assertions: The output assertions are computed at the diagnostic 

unit. The diagnostic unit observes all messages that are exchanged on the 
time-triggered NoC and executes predicates encoding a priori knowledge 
w.r.t. to the message syntax and semantics. 

2. Temporal checks: For sporadic communication, the TISS detects 
overflows of message queues. These checks apply both to queues with 
received messages (i.e., input ports), as well as to queues with messages 
that shall be sent (i.e., output ports). 
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3. Input assertions: Input assertions are computed by micro components that 

receive messages from other micro components. Input assertions test the 
message syntax and the message semantics. 

Errors detected via these three mechanisms are stored in the error log. While 
the results of (1) are already available at the diagnostic unit, the checks in (2) 
and (3) employ error indication messages on a diagnostic communication 
channel. The diagnostic communication channel of a micro component is 
realized as a statically reserved slot of the time-triggered NoC. 

3. ERROR CONTAINMENT FOR  DESIGN FAULTS 

In his classical paper (Gray 1986), Jim Gray proposed to distinguish 
between two types of software design errors, Bohrbugs and Heisenbugs. 
Bohrbugs are design errors in the software that cause reproducible failures. 
Heisenbugs are design errors in the software that seem to generate quasi-
random failures. From a phenomenological point of view, a transient failure 
that is caused by a Heisenbug cannot be distinguished from a failure caused 
by transient hardware malfunction.  

In the SoC architecture, an error that is caused by a design fault in the 
sending micro component could only propagate to another micro component 
via a message failure, i.e., a sent message that deviates from the 
specification. In general, a message failure can be a message value failure or 
a message timing failure (Cristian and Aghili 1985). A message value failure 
implies that a message is either invalid or that the data structure contained in 
a valid message is incorrect. A message timing failure implies that the 
message send instant or the message receive instant are not in agreement 
with the specification. 

The propagation of an error due to a message timing failure is prevented 
by design in the SoC architecture. The TISS acts as a guardian for a micro 
component and prevents that a micro component can violate its temporal 
specification. In contrast, the value failure detection is in the responsibility 
of the receiving micro components and the diagnostic unit of the SoC 
architecture. 

In order to avoid the propagation of an error caused by a message failure 
we need error detection mechanisms that are in different Fault Containment 
Regions (FCRs) than the message sender. Otherwise, the error detection 
mechanism may be impacted by the same fault that caused the message 
failure.  
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3.1 Fault Containment Regions for Design Faults 

The FCRs of the SoC architecture with respect to design faults are as 
follows: 

Trusted Subsystem: We assume that the trusted subsystem is free of 
design faults. In order to justify this strong assumption, the design of the 
trusted subsystem must be made as small and simple as possible in order to 
facilitate formal analysis. The time-triggered design of the trusted subsystem 
reduces the probability of Heisenbugs (e.g., no race conditions, clear 
separation of logical and temporal control). The control signals are derived 
from the progression of the sparse global time base (Kopetz 1992), which 
guarantees that all TISSes will visit the same state within a silence interval 
of the sparse time base. 

Micro Components: The non safety-critical software of a micro 
component is encapsulated by the trusted subsystem such that even a 
malicious fault in the non safety-critical software of the host will not affect 
the correct function of the safety-critical software in the hosts of other micro 
components. 

3.2 Timing Failure Containment 

For the purpose of error containment w.r.t. message timing failures, each 
micro component comprises two parts: a host and a Trusted Interface 
Subsystem (TISS). The host implements the application services. Using the 
TISS, the time-triggered SoC architecture provides a dedicated architectural 
element that protects the access to the time-triggered NoC. Each TISS 
contains a table which stores a priori knowledge concerning the global points 
in time of all message receptions and transmissions of the respective micro 
component. Since the table cannot be modified by the host, a design fault 
restricted to the host of a micro component cannot affect the exchange of 
messages by other micro components. 

3.3 Value Failure Containment 

Since value failures are highly application-specific, their detection in the 
SoC architecture relies on the host. An important baseline for these detection 
mechanisms is the timing failure containment of the time-triggered NoC. 
The SoC architecture ensures that a received message truly stems from the 
associated sender (i.e. masquerading protection) and that the message is 
temporally correct.  

It is the responsibility of each micro component, to decide whether the 
actual message should be accepted or not. Therefore, it can run tests 
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exploiting application-specific knowledge concerning the values of the 
signals (variables) that are transported within the message. Such tests are 
usually called executable assertions (Hecht 1976; Saib 1987). Executable 
assertions are statements, which can be made about the signals within a 
message. They are executed whenever a message is received in order to see 
if they hold. If not, the message is regarded as incorrect and will be 
discarded.  

In the SoC architecture we support various types of assertions. For 
example executable assertions with signal range checks and slew rate checks 
can be applied to check whether a value is within its physical limits (e.g., the 
speed of a car cannot change within one second from zero to 200 kilometers 
per hour). The combination of signal range checks and slew rate checks into 
a single assertion offers the possibility to define bounds for extreme values 
in dependency on the actual rate of change.  

A more elaborated technique is “model-based fault detection” (Isermann, 
Schwarz et al. 2002), where a process model of the controlled system is used 
to detect errors by relating two or more system variables to each other. 

4. ERROR CONTAINMENT FOR PHYSICAL FAULTS 

Depending on the persistence of a fault, one can classify physical faults 
into permanent faults and transient faults (Avizienis, Laprie et al. 2001). A 
permanent fault occurs, if the hardware of an FCR brakes down 
permanently. An example for a permanent fault is a stuck-at-zero fault of a 
memory cell. A transient fault is caused by some random event. An example 
for a transient fault is a Single Event Upset (SEU) caused by a radioactive 
particle (Normand 1996). 

4.1 Fault-Containment Region for Physical Faults 

In non safety-critical systems, we distinguish the same types of FCRs on 
the SoC architecture for physical faults as for design faults, namely the 
trusted subsystem and individual micro components. For a physical fault that 
affects a micro component, the SoC is capable of recovering from its 
induced errors. The performed recovery strategy depends on the persistence 
of the fault. 

A permanent fault affecting a micro component requires reallocating the 
functionality of the affected micro component to a correct one. If the SoC 
contains multiple micro components of identical hardware, where the 
functional differentiation is provided by application software, the allocation 
of application subsystems to micro components can be dynamically 
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reconfigured by the TNA. Relaxing the requirement for 100% correctness 
for devices and interconnections may dramatically reduce the cost of 
manufacturing, verification and test of SoCs. However, a permanent fault 
affecting the trusted subsystem is not tolerated by the SoC architecture. For 
transient faults, on the other hand, a restart of the micro component can be 
triggered.  

Contrary to non safety-critical systems, for safety-critical systems we 
have to consider the entire SoC as a single FCR. Due to the shared power 
supply, physical components (e.g. housing), and the proximity we cannot 
assume with a probability demanded for, e.g., ultra dependable systems that 
a physical fault like a SEU affects only a single micro component while 
sparing the trusted subsystem of the SoC. Therefore, masking of physical 
faults for safety-critical systems has to be performed at cluster level, where 
multiple SoC are interconnected to a distributed system. 

4.2 Non Safety-Critical Systems 

The masking of timing failures occurs in the same manner as for design 
faults. In case the host of a micro component is affected by a physical fault, 
the trusted subsystem ensures that there is no interference with the timely 
exchange of messages by other micro components. 

Value failure detection is not in the responsibility of the SoC architecture, 
but in the responsibility of the micro components. For example, in non 
safety-critical systems value failure detection and correction can be 
performed in a single step by on-chip triple modular redundancy (TMR). In 
contrast to design faults, the masking of value failures resulting from 
physical faults can be performed in a systematic application-independent 
manner through active redundancy such as TMR. In this case, three 
replicated deterministic micro components perform the same operations in 
their host. They produce – in the fault-free case – correct messages with the 
same content that are sent to three replicated receivers that perform a 
majority vote on these three messages. 

Value failure detection and timing failure detection are not independent. 
In order to implement a TMR structure for value failure masking at the 
application level in the micro components, the integrity of the timing of the 
architecture must be assumed. An intact sparse global time-base is a 
prerequisite for the system-wide definition of the distributed state, which 
again is a prerequisite for masking value failures by voting.  
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4.3 Safety-Critical Systems 

In ultra-dependable systems, a maximum failure rate of 10−9 critical 
failures per hour is demanded (Suri, Walter et al. 1995). Today’s technology 
does not support the manufacturing of chips with failure rates low enough to 
meet these reliability requirements. Since component failure rates are usually 
in the order of 10−5 to 10−6 (e.g., (Pauli et al. 1998) uses a large statistical 
basis and reports 100 to 500 failures out of 1 Million ECUs in 10 years), 
ultra-dependable applications require the system as a whole to be more 
reliable than any one of its components. This can only be achieved by 
utilizing fault-tolerant strategies that enable the continued operation of the 
system in the presence of component failures. Therefore, it is demanded to 
realize a distributed system based on the SoC architecture. For this purpose, 
the SoC architecture supports gateways for accessing chip-external networks 
(e.g., TTP (Kopetz and Grünsteidl 1994), TTE (Kopetz, Ademaj et al. 
2005)). 

By the use of a time-triggered protocol (e.g. TTP or TTE) for the chip 
external network, timing failure containment can be realized by a guardian, 
which judges a message as untimely based on a priori knowledge of the send 
and receive instants of all messages of a single SoC. 

As for non-safety-critical systems, value failure containment can be 
implemented by the use of TMR. However, for safety-critical systems the 
three replicated micro components have to reside on different micro 
components. 

5. IMPLEMENTATION 

Using a distributed system, the prototype implementation emulates an 
SoC with four micro components, as well as the TNA. A Time-Triggered 
Ethernet (TTE) network emulates the NoC and supports the time-triggered 
exchange of periodic and sporadic messages. 

5.1 Implementation of Micro Components 

Each micro component consists of two single board computers, namely 
one implementing the host and the second one implementing the TISS. The 
single board computer of the host is a Soekris Engineering net4521, which 
incorporates a 133Mhz 468 class ElanSC520 processor from AMD, 64 
MBytes of RAM, and two 100 Mbit Ethernet ports. The implementation of 
the TISS is based on a single board compact computer of type Soekris 
Engineering net4801, which incorporates a 266 MHz 586 class NSC SC1100 
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processor. As an operating system, both single board computers use the 
realtime Linux variant Real-Time Application Interface (RTAI) (Beal, 
E.Bianchi et al. 2000). 

In our prototype implementation we emulate the time-triggered NoC with 
TTE (Kopetz, Ademaj et al. 2005). For this purpose, a hardware 
implementation of the TTE controller is employed which is based on a 
PCMCIA FPGA card.  

Dynamic reconfiguration of the NoC occurs via configuration messages 
sent by the TNA to the TISSes. The reconfiguration is triggered by the TTE 
controller via a dedicated reconfiguration interrupt at a predefined periodic 
instant with reference to the global time. Thus the reconfiguration is 
consistently performed at all TISSs at the same tick of the global time. At the 
reconfiguration instant, the TTE controller is switched to inactive and the 
MEDL is updated. The controller is reactivated after the update has finished. 

The prototype implementation implements the memory interface between 
host and TISS via a standard Ethernet connection. On top of an optimized 
version of the standard real-time driver as distributed by the RTnet open-
source project (Kiszka, Wagner et al. 2005) we have implemented a 
request/reply protocol through which the host can access the CNI and the 
local configuration parameters of the TISS. 

5.2 Experimental Evaluation of Encapsulation 

As part of the prototype implementation, we have also performed an 
early experimental evaluation for validating the encapsulation mechanisms 
provided by the trusted subsystem. The goal of the experiments is to test the 
spatial and temporal partitioning in the presence of an arbitrary behavior of 
faulty hosts. Therefore, the prototype setup contains a micro component with 
a host performing fault injection, as well as a monitoring device realized by 
a standard PC. As part of the experiments, the faulty host has systematically 
iterated through all possible message header values of a request message 
destined to the TISS. 

The monitoring device has been connected to the TTE switch and has 
used its Ethernet interface in promiscuous mode. The tool WireShark has 
been used to observe and log the traffic of the entire TTE network. The 
analysis of the collected logs has yielded the following results: 

• No discontinuities. In the experiments, all sent messages have included 
sequence numbers. The logs have indicated that no messages have been lost 
due to the behavior of the faulty lost. 

• No additional messages. Other than the messages configured by the 
TNA, no messages have been observed on the TTE network. 
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• No effect on temporal properties. The temporal properties (i.e., 
bandwidth, latency, message order) of the TTE network with fault injection 
by a host have been identical to the temporal properties without fault 
injection. 

In extension to these encouraging results, a more comprehensive 
validation using fault injection experiments is required as part of future 
work, e.g., focusing on physical fault injection with radioactive particles. 

6. CONCLUSION 

The advances of the semiconductor industry are leading to the 
appearance of billion transistors SoCs, where multiple computers – called 
cores – can be implemented in a single die (Kahle, Day et al. 2005). These 
developments are opening new alternatives for the design of an integrated 
architecture for embedded control systems. By assigning each job of a 
distributed application subsystem (DAS) to a core of a multi-core SoC, the 
direct interference between jobs of different DASes is eliminated without 
the introduction of a complex partitioned operating system. The indirect 
interference among DASes is eliminated by the provision of a dynamic time-
triggered NoC that is controlled by a trusted network authority. This paper 
has focussed on the error containment properties of the integrated TT-SoC 
architecture, which in our opinion is superior to the error containment that 
can be achieved in federated architectures where ECUs are interconnected 
by a CAN network. The paper contains experimental data on a prototype 
implementation of the architecture that support our claims. 
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