
Policy Provisioning for

Distributed Identity Management Systems

Hidehito Gomi

Yahoo! JAPAN Research, 9-7-1 Akasaka, Minato-ku, Tokyo 107-6211, JAPAN
hgomi@yahoo-corp.jp

Abstract. A policy provisioning framework is described that supports
the management of the lifecycle of identity information distributed be-
yond security domains. A model for creating data handling policies re-
flecting the intentions of its system administrator and the privacy prefer-
ences of the data owner is explained. Also, algorithms for systematically
integrating data handling policies from system entities in different admin-
istrative domains are presented. This framework enables data handling
policies to be properly deployed and enforced in a way that enhances
security and privacy.

1 Introduction

Many applications are being executed in distributed systems and among multiple
different organizations with the ongoing development of the Internet. Personal
information in such environments is often exchanged beyond the boundaries of
security domains. It is generally difficult for both administrators and owners
to control data once they are propagated outside their security domains. Thus,
identity management in distributed environments is one of the most important
issues in preserving security and privacy.

There have been several technical projects on identity management including
access control and privacy management. Privacy-aware access control [1, 2] has
especially aimed at incorporating privacy-related policies into traditional access
control policies. Another emerging concept of identity governance [3] has ad-
dressed user-centric control of access and introduced a method of tracking data
for propagating identity information. Although these research efforts have en-
abled fine-grained access control for managing identity from security and privacy
perspectives, they have not fully addressed how data handling policies can be
created and integrated, which satisfy the different requirements of distinct actors
in different security domains from a practical viewpoint. Since these actors are
involved with data practices, but generally have different responsibilities, the en-
forcing policies need to be created from administrative and privacy standpoints.

This paper proposes a policy provisioning framework that helps to man-
age the lifecycle of identity information using handling polices that reflect its
system administrator’s intentions and its data owner’s preferences from both
administrative and privacy viewpoints. Also described are algorithms that en-
able data handling policies or privacy preferences to be created and integrated

from multiple actors to control access to identity information. This work focuses
on collaboratively building a policy provisioning model and framework for dis-
tributed identity management systems, whereas the representation of policies
and detailed resolutions on policy conflicts are beyond the scope of this work.

The rest of this paper is organized as follows. Section 2 presents related work
and Section 3 introduces a policy provisioning model. Section 4 describes a policy
provisioning framework based on the proposed model. Section 5 discusses several
issues related to policy management and Section 6 concludes the paper with a
summary of the key points and an outline of future work.

2 Related Work

This section highlight research efforts in the area of access control, privacy man-
agement, and policy specification languages related to the work presented in this
paper.

The idea of controlling access to data even after they have been disseminated
has been considered especially by the digital rights management (DRM) commu-
nity [4, 5]. Their work has focused on protecting digital content from unautho-
rized copying and distribution by disseminating packages containing the content
data and access control policies. Several efforts [6, 7] toward managing privacy
have introduced the concept of “sticky policies”, in which handling policies are
directly associated with personal information. In their approaches, users retain
control over their personal information even after it has been disclosed by en-
forcing its privacy policies, which reflect their preferences about how it is to be
used next at its recipient site. The work here inherits the basic idea of tight
bundling of data and policy described above, regardless of whether the type of
policy is security or privacy related.

There have been numerous research efforts related to extensions of tradi-
tional mechanisms for access control to protect privacy [1, 2]. Ardagna et al. [2]
proposed a privacy-aware system to control access that enforced access control
policies together with privacy policies such as release and data handling poli-
cies that regulated the use of personal information in secondary applications.
They focused on the introduction of data handling policy language and the inte-
gration of traditional access control and data handling policies created from two
actors, i.e., a service provider that managed personal information and a user who
originally had the information. However, their work did not describe how data
handling policies were created and deployed in a system that consisted of enti-
ties that had distinct responsibilities or roles and that supported multiple chains
to disseminate data among those entities. The work described here instead fo-
cuses on policy management in which a data managing provider collaboratively
establishes data enforcing policies.

Other relevant work on privacy management has been identity governance,
which is an emerging concept to provide fine-grained conditional disclosure of
identity information and enforce corresponding data handling policies. Liberty
Alliance specifies fundamental privacy constraints on such governance as the use,

display, retention, storage, and propagation of identity information [8]. Gomi [3]
introduced privacy-aware tracking policies and a data mechanism for monitoring
the status of a user’s identity information and enforcing its privacy policies to
regulate its secondary use after it had been disseminated. Although theses allow
access control that enhances privacy by defining new types of expressive privacy
policies, they do not fully take into consideration the integration or composition
of polices among distinct actors located in different administrative domains. The
proposed framework addresses a method of transmitting and incorporating data
handling policies associated with shared identity information between actors.

There has been a great deal of work on description languages and constraints
for privacy policies. P3P [9] and its complement APPEL [10] provide the means
for expressing comprehensive user preferences. XACML [11] specifies an access
control language to describe access control constraints and provides privacy ex-
tensions to support privacy related constraints. EPAL [12] provides a privacy
policy language for governing data practices in enterprise systems. The Lib-
erty Identity Governance Framework (IGF) [8] specifies privacy constraints. Al-
though the framework proposed here assumes such an expressive privacy policy
and access control language as basic building blocks, it focuses on managing the
lifecycles within which security and privacy policies are enforced irrespective of
their schema or the format they are represented in.

Relevant work has been done in the field of policy management such as policy
integration and conflict resolution. Mazzoleni et al. [13] proposed policy integra-
tion algorithms for XACML. They believed that XACML had not been built to
manage security for systems in which enterprises were dynamically constructed
with the collaboration of multiple independent subjects. The approach proposed
here is relevant in that entities located in different security domains collabora-
tively share data and their policies. Belokosztolszki and Moody [14] introduced
meta-policies for distributed Role-Based Access Control (RBAC). They found it
difficult to specify a policy that would not conflict with local requirements. Their
work is relevant in that they considered a hierarchical structure for managing
policy in distributed systems. Bettini et al. [15] formalized a rule-based policy
framework that controlled access by user requests for action by evaluating rules
associated with provisions and obligations, which were pre-conditions to be sat-
isfied before and post-conditions to be satisfied after the action was performed.
Their framework provided a mechanism for reasoning about the policy rules in
the presence of provisions and obligations in a single administrative domain to
derive an appropriate set of these. In contrast, the framework presented here
composes a set of policies using different actors with different responsibilities
in distinct domains and it enforces the composed policies reflecting a system
administrator and a user in distributed identity management systems.

3 Model

This section explains a model for policy provisioning.

A data subject (DS) is an individual to whom personal data is related.
A DS delegates the secure management and convenient utilization of his or her
personal data to other entities specifying privacy preferences on how the data
is to be handled by them. A DS can demonstrate his or her wishes by means
of consent to questions from other entities as one of representations of privacy
preferences.

A data controller (DC) is an entity that maintains DSs’ personal data on
his or her behalf in compliance with its own privacy or security policies reflecting
both their privacy preferences. A DC can securely provide a DS’s personal data to
another entity in a different administrative domain on the basis of the agreement
with the entity on how the data are to be used and handled. A DC is liable for
securely managing and propagating a DS’s personal data.

A data processor (DP) is an entity that processes a DS’s personal data
obtained from a DC in conformity with the agreement reached with the latter
on how the data are to be handled. A DP is placed in a distinct administrative
domain from that of a DC. A DP is liable for handling personal data originally
managed by a DC. This liability is different from that for a DC since a DP does
not need to maintain or determine the purposes for which the data are processed,
and since this liability depends on the agreement on data processing between a
DC and a DP.

The DC and DP are not actual entities; they are simply roles in the model.
Therefore, a single entity can play both roles. That is, when entity e1 acting as
a DP receives personal data from entity e2 acting as a DC with an agreed upon
policy allowing e1 to store and further propagate the received data to the other
entity, e3, e1 can act as a DC for e3. In other words, the relationship between
DC and DP is relative and one-way specific to the pair of two entities for the
particular types of personal data in this model. In this example, e1 can be a DC
for e3, but cannot be a DC for e2, because e2 was originally a DC for e1.

It is assumed that these entities are trusted and can be expected to comply
with the agreement. The purpose of this work was to establish an agreement
on data handling between trusted entities and create and deploy policies to be
appropriately enforced, rather than to detect their misbehaviors.

3.1 Policy Binding to Data

Data and their handling policies in this model are tightly associated. When a
DC receives an access request to data, the DC determines whether to grant or
deny the access enforcing the handling policies associated with the data. When
a DP attempts to process data, the DP also uses the handling policies associated
with the data to make an authorization decision on the data processing.

If a DC needs to provide a DP with personal data, the DC encapsulates the
data and their associated policies and transfers both to the DP. The DP complies
with the policy agreed upon and received from the DC prior to receiving the data.
Namely, agreed upon policies migrate with the data to govern the data practices
of a DC that receives both the data and policies. The agreed upon policies

Meta-Domain Meta-Domain Policies

Domain Policies

Domain (DC)

Policies

Data

Provisioning

Provisioning

Subject Policies

Subject Preferences

Data

DS

Domain Policies

Subject Policies

Domain (DP)

Provisioning Provisioning

Provisioning

Sub-Domain

Provisioning

Provisioning

Domain Policies

Fig. 1. Hierarchical Policy Model.

correspond to an agreement between a DC and a DP when data are transferred
and are the legal grounds for appropriately restricting data processing by a DP.

The encapsulation and transport mechanisms of data and policies are beyond
the scope of this model. Instead, it focuses on the design of the framework for
hierarchically developing policies among distinct entities, which will be described
in the next section.

3.2 Policy Hierarchy

Figure 1 outlines a hierarchical policy model that encompasses the defined enti-
ties and exchanged policies.

The Meta-Domain is a meta-organization or system such as an industrial
department or a governmental body to which the Domains belong. The Domain
is an administrative organization or system independent of others that acts as
DC or DP entities. A meta-domain and a domain have a relative association.
The Sub-Domain belongs to its upper class domain. The relationships between
the Meta-Domain and Domain, and Domain and Sub-Domain are hierarchical.
These relationships generally hold true without limiting the representation in
Fig. 1. A domain acting as a DC provides a DS with a service that manages the
DS’s personal data. A domain acting as a DP provides a DS with a service that
uses a DS’s personal data.

A meta-domain has Meta-Domain Policies that are meta-level and general
policies constraining the activities of all domains that belong to the meta-
domain, by reflecting its laws or regulations with which the domains need to
comply.

Domain Policies are organizational domain-specific policies that inherit the
meta-domain policies in the meta-domain, and are not specific to DSs. When
a DC propagates personal data to a DP, the DC and the DP agree on a set of
policies on how the data are to be used and handled prior to being propagated.
The agreed upon policies migrate with the data from the DC to the DP.

… Domain P Domain Q

Policies

Data

Policies

…

DP DC DP

Domain O

DC

Fig. 2. Policy Provisioning Chain.

Subject Policies are specified by a domain for a DS, reflecting Subject Prefer-
ences, which are a DS’s privacy-related preferences for handling the DS’s personal
data. As a result of incorporating subject preferences into subject policies, a DS
needs to follow the subject policies specified by domains to enjoy their services.
More detailed descriptions on how these policies are created and provided will
be given in the sections that follow.

3.3 Policy Provisioning Chain

A DS’s data possibly propagates from domain to domain. Here, the data handling
policies associated with the data also propagate from a domain acting as a DC to
a domain acting as a DP. The flow of the policies constitutes a chain of domains
as seen in Fig. 2.

When domain P manages data, it obtains meta-domain policies from its
meta-domain, and additionally agreed upon policies if the data have originally
been propagated by another domain acting as a DC to incorporate them into
its domain policies. P, acting as a DC, propagates the data and their handling
policies to domain Q, acting as a DP, after P and Q have agreed upon the
policies. As a result of data being propagated and policies being agreed on, Q
becomes responsible for handling the data. In this way, if data propagate from
domain to domain, their associated handling policies change to ones reflecting
local domain policies and propagate together with data for enforcing the behavior
of another domain receiving the data. The first entity that provides policies in
a provisioning chain is called the Root Domain, which is denoted by domain O
in Fig. 2.

There are two types of relationships between adjacent domains in the policy
provisioning chain. The first is a hierarchical relationship. In this case, since the
upper domain manages the lower domain in a policy hierarchy, the lower domain
inherits the policies from those of the upper domain. The second is a propagation
relationship in different domains that are placed on the same level in the policy
hierarchy. Here, policies are propagated from a DC to a DP after they reach
agreement on how data are to be handled.

3.4 Policy Components

This model has several components related to policies, which are relevant to the
ones defined in XACML.

– Action. An action is a specific activity that invokes a function call or sends
a request to other domains.

– Data. Data represents a subject’s personal data identified by its data type.
– Rule. A rule is the basic element of a policy.
– Policy. A policy is a combination of one or more rules.
– Policy set. A policy set is a collection of one or more policies.

Policies are represented in the following sections in declarative form irrespec-
tive of the language or format for coding policies.

4 Policy Provisioning Framework

This section explains detailed procedures on managing the lifecycle of policies
as well as on the data to be managed using the policies.

4.1 Policy Creation

Meta-Domain Policy Creation Meta-domain policies are created by the
administrator of the domain. Since a root domain corresponds to an adminis-
trative organization such as an industrial company or governmental body, its
meta-policies are created from the administrative viewpoints of privacy protec-
tion laws or cooperate compliance.

There are two types of meta-domain policies, i.e., common policies and gov-
ernance policies. Common policies are general and do not specify concrete con-
straints in them such as data types, subjects, and context. For example, a meta-
domain policy statement in a natural language is “No entities must propagate
personal data owned by subjects to other subjects and domains without their
consent.” This statement can be specified in the following declarative form:

(P0.a) : ¬doable(a) ⇐ subject(u1) ∧ subject(u2) ∧ own(u1, data)
∧ action(send(u1, u2, data), a) ∧ ¬consent(u1, a).

In the above representation, operators ¬, ∧, and ⇐ respectively specify log-
ical negation, conjunction, and reverse implication. Axiom doable(·) indicates
that a specified action is allowed to be executed if all the constraints specified
after operator ⇐ are satisfied. subject(u) means that u is a DS in this domain. In
action(send(u1, u2, data), a), action a is defined as an action where DS u1 prop-
agates data to DS u2. Axioms own(u1, data) and consent(u1, a) respectively
indicate that u1 owns data and that u1 consents to the execution of action a.

Governance policies are meta-level and directive ones for managing the priv-
ileges and behavior of sub-domains. For example, information on personal at-
tributes such as name and address can ultimately be managed by the DS that
owns them, assuming the concept is acceptable from the viewpoint of local laws.

(P0.b) : doable(a) ⇐ subject(u) ∧ own(u, att) ∧ action(manage(u, att), a)
∧ attributes(att, name) ∧ attributes(att, address).

In the form above, att denotes personal attributes and attributes(att, type)
indicates that att includes data type type. Axiom action(manage(u, att), a) de-
notes that action a is defined as a set of actions for managing att including
“read” and “write” actions. Here, DS u has privileges to manage his or her own
name and address.

In contrast, a digital content owner can state that no subscribers have any
right to propagate the content in the following form, which has been used as an
example:

(P0.c) : ¬doable(a) ⇐ subject(u1) ∧ subscriber(u2) ∧ ¬subscriber(u3)
∧ own(u1, cont) ∧ action(send(u2, u3, cont), a),

where subscriber(u) denotes a subscriber of the digital content. own(u1, cont)
indicates that DS u1 owns digital content cont. send(u2, u3, cont) corresponds
to an action where u2 propagates digital content cont to u3.

Domain Policy Creation Domain policies are created using meta-domain
policies from the meta-domain or other domains. Algorithm 1 shows the proce-
dure for a domain that creates domain policies whose meta domain is em.

An array, pols(d), is initially created by calling a utility function, new array(),
for storing a list of policies (step 1). em’s meta-domain policies are stored in a
list of policies pols(m) by calling getMetaDomainPolicies(em) that return the
meta-policies obtained from a database in this domain or retrieve them from em

(step 2). The appropriateness of all meta-domain policies in schema and content
is examined (step 3). Function verify(pi) examines whether policies are valid
comparing them with meta-policies such as the ones from the root domain if
they can be obtained (step 4). If a policy is verified, it is instantiated by calling
function instantiate(·) as a new policy encoding abstract axioms in concrete
data types and action types used in this domain (step 5), and it is registered in
the policy list (step 6). For example, an instantiated policy applying the above
approach to policy P0.a is

(P1) : ¬doable(a) ⇐ subject(u1) ∧ subject(u2) ∧ own(u1, data)
∧ action(send(u1, u2, data), a) ∧ ¬consent(u1, a)
∧ data type(data, medical records).

In policy P1, axiom data type(·) is added to constrain the specified data type of
personal data. Here, the administrator of this domain restricts the propagation
of personal medical records without obtaining the DS’s consent strengthening
the meta-domain policies as baseline policies.

Next, the administrator of this domain creates a list of domain specific poli-
cies pols by calling function createDomainSpecificPolicies(·) (step 9). Each
policy created in the above step is verified (step 11) and its relationship with
existing policies is checked. The relationships between two policies are listed in
Fig. 3 [13].

Algorithm 1 createDomainPolicies(em)
1: pols(d) ← new array()
2: pols(m) ← getMetaDomainPolicies(em)
3: for all i such that pi ∈ pols(m) do
4: if verify(pi) = true, then
5: pi ← instantiate(pi)
6: pols(d).add(pi)
7: end if
8: end for
9: pols← createDomainSpecificPolicies()

10: for all j such that pj ∈ pols do
11: if verify(pj) = true, then
12: for all k such that pk ∈ pols(d) do
13: if pk.diverges(pj), then
14: pols(d).del(pk)
15: else if pk.extends(pj), then
16: pols(d).del(pk)
17: pols(d).add(pj)
18: else if pk.shuffles(pj), then
19: p← createMeetPolicy(pk , pj)
20: pols(d).del(pk)
21: pols(d).add(p)
22: end if
23: end for
24: end if
25: end for
26: return pols(d)

Policy Similarity Type

Converges

Diverges

Restricts

Extends

Shuffles

Authorized Requests

=i
p

j
p

i
p

i
p

i
p

i
p

i
p

i
p

i
p

i
p

i
p

j
p

j
p

j
p

j
p

j
p

j
p

j
p

j
p

j
p

Fig. 3. Similarity Types of Policies.

There are five types of similarity in policies, “converges”, “diverges”, “re-
stricts”, “extends”, and “shuffles”. Note that the similarity between two policies
is viewed with respect to which of their conditions hold and that the area cov-
ered by a circle representing a policy corresponds to the scope with which it
grants execution. Of these, the relationship between an existing policy instanti-
ated from a meta-policy and a new policy created as being domain specific one
corresponds to “diverges” (step 13); the existing policy is registered (step 14),
since the policy has a different constraint from that of the existing one. If the
relationship corresponds to “extends” (step 15), the existing policy is deleted
and the new policy is registered (steps 16–17). Otherwise, if the two policies are
in a “shuffles” relationship (step 18), a policy for the union of the existing and
the new one is newly created by calling function createMeetPolicy(·) (step 19);
the existing one is deleted (step 20), and the new intersection policy is added
into the list of domain policies (step 21). Finally, this function returns a set of
registered domain policies (step 26). Note that the above approach to integrat-
ing policies strengthens policy constraints except for “converges” and “restricts”
cases in which the existing policy encompasses the new one.

Subject Policy Creation Subject policies in a domain are policies for a par-
ticular DS restricting a specific type of the DS’s personal data within a certain
context.

If the data are created by the domain by which they are managed or if the
DS owns the data and delegates their management to the domain, the subject
policies are created using the domain policies. The domain policies are instan-
tiated for the DS in the same way as described by Algorithm 1. For example,
policy P2 has an application for the same approach and modus ponens to policy
P1.

(P2) : ¬doable(a) ⇐ subject(Alice)∧ subject(Bob) ∧ own(Alice, data)
∧ action(send(Alice, Bob, data), a) ∧ ¬consent(Alice, a)
∧ data type(data, medical records).

In contrast, if the data originally propagate from a different domain acting
as a DC to a domain acting as a DP, the agreed upon policies are provided by
the DC as a result of the policy being adjusted between the two domains. Here,
the DP domain incorporates the agreed upon policies into their subject policies
to handle the data. The detailed on the procedure are explained in the following
section.

4.2 Policy Agreement between Administrative Domains

Algorithm 2 has the procedure for DP entity ep requesting and obtaining DS u’s
personal data whose attribute type is at from DC entity ec.

Algorithm 2 getDataWithPolicies(at, u, ep, ec)

1: pols(c) ← getControllorPolicies(at, u, ep, ec)
2: pols(p) ← getProcessorPolicies(at, u)
3: for all j such that pj ∈ pols(p) do
4: if ¬(∃p ∈ pols(c)); p.converges(pj) or p.extends(pj), then
5: return null
6: end if
7: end for
8: pols(a) ← getAgreedPolicies(at, u, pols(p), ep, ec)
9: for all k such that pk ∈ pols(a) do

10: if verify(pk) = false or ¬(∃q ∈ pols(p)); q.converges(pk), then
11: return null
12: end if
13: end for
14: save(pols(a))
15: hash val← HMACK(pols(a).id || ep)
16: data← getData(at, u, ep, ec, hash val)
17: return data

DP ep initially retrieves the subject policies for DC ec (controller policies) by
calling getControllorPolicies(·) (step 1). ep obtains its subject policies (pro-
cessor policies) for data type at and DS u by calling getProcessorPolicies(·)
(step 2). Every policy contained in pols(p) is checked whether it has a “con-
verges” or “extends” relationship with a policy contained in pols(c) or not, since
ep needs to comply with the controller policies that ec presents (steps 3–7). If
no processor policy satisfies a controller policy, this function returns null and ep

cannot obtain the requested data since ep and ec cannot agree on how data are
handled.

If the processor policies are appropriate, ep sends a request to ec for policy
agreement on handling the specified data invoking getAgreedPolicies(·) and
obtains agreed upon policies pols(a) (step 8). ep verifies the agreed upon policies
and checks whether all policies contained in pols(a) are the same as policies
pols(p) or not (steps 9–13). If the agreed upon policies are appropriate, ep stores
them to confirm the contract on the personal information practices between ep

and ec (step 14).

The procedure for data retrieval is executed in steps 15–16. A keyed hashing
for message authentication code (HMAC) [16] mechanism is used to access the
data. HMACK(·) indicates a HMAC function returning a hash value. Operator “||”
stands for a concatenation of two strings. Here, the strings of the identifier of
agreed upon policies pols(a) and ep are concatenated and given as input to the
above function (step 15). This hash value, as well as at, u, ep, and ec, is required
as a credential to call function getData(·), in which ep sends a request to ec for
u’s data at and obtains the specified data from ec (steps 16–17).

DCDP

1. Request for Agreement (Processor Policies)

5. Response with Agreed Upon Policies

6. Request for Data (Subject, Data Type, Hash_Value)

8. Response with Data

DS

2. Request for Consent

3. Response with Consent

4. Incorporate Consent and Create Agreed Upon Policies

7. Verify and Authorize Request

Fig. 4. Data Controller’s Policy and Procedure for Data Provisioning.

This credential-issuing scheme based on agreement enables fine-grained con-
trol of access, since the credential required for data cannot be obtained until its
requestor has agreed on data practices.

4.3 Control of Data Access and Incorporation of Subject
Preferences

A domain’s subject policies are generally not sufficient to enforce them when the
domain attempts to make a decision to authorize a data access request because
it is difficult for a domain’s administrators to statically specify any constraints
dependent on data types and DSs, or because it is impossible for a DS to specify
his or her subject preferences unless conditions are presented. If the policies
include a DS’s decision or consent, the domain especially needs to interact with
the DS and obtain it at runtime. Since this DS’s decision or consent indicates
one of the DS’s subject preferences, they need to be incorporated into a domain’s
subject policies.

Figure 4 outlines the procedure when a DC receives requests from a DP in
accordance with Algorithm 2. The procedure includes a DC’s control to access
managed personal data and dynamically incorporate the subject preferences of
the DS.

When the DP sends a request for attaching an agreement to its processor
policies (step 1), the DC verifies the request message and checks with its con-
troller policies, and requests for a consent to the DS that owns the target data
to consent by describing how the data will be used by the DP (step 2). The DS
shows the consent to the DC, which is one of the subject preferences. Therefore,
the consent is incorporated into controller policies and agreed upon policies are
created based on the updated controller policies (step 4). The policies are agree-
ments including an identifier that can be used to identify the authenticity of the
data request arriving from the DP. After the DC responds with the above agreed
upon policies (step 5), the DP makes a new request for the DS’s personal data
with a hash value (step 6). This value is verified to authenticate the received

request from the DP, reproducing a value with the received identifiers. The use
of HMAC protects the resource from snooping and extension attacks (step 7).
Finally, the requested data are propagated to the DP (step 8).

In the above example, a DC incorporates a DS’s consent into its subject
policies at runtime when a decision on access control to propagate data is needed.
In the same way, a DP also incorporates a DS’s consent to process the DS’s data
at runtime when the DP attempts to do so.

4.4 Protection from Unauthorized Policy Updates

DC needs to have an access control mechanism for unauthorized policy updates
and modifications. Here, the subject policies of DCs are regarded as restricted
resources in the same way as personal data at DC.

Whenever a DC deploys new policies such as agreed upon policies and domain
policies, it verifies their validity and authenticity. If the DC finds any inappro-
priateness in policies, it stops integrating them to mitigate the risk of unfair
information practices.

5 Discussion

This section discusses several topics and issues related to the proposed model
and framework.

5.1 Retaining Data Management

Policies in the proposed model that reflect local laws or regulations of social orga-
nizations or computer systems are appropriately provided beyond administrative
domains in distributed environments since the model has a hierarchical structure
for creating and propagating policies and supports a policy propagation chain in
accordance with data propagation. By means of this approach, the administrator
of a root domain can retain the management of data enforcing their provisioned
policies that reflect his or her intentions regarding data governance even after the
data have been propagated in the distributed system. In addition, participating
parties in the system can clarify their liabilities concerning data practices and
improve the accountability of their activities on handling data. To further sup-
port the lifecycle management of data and policies, a mechanism for updating
provisioned policies at runtime is needed if it is difficult for an administrator to
statically specify policies containing various types of constraints.

5.2 Policy Conflicts

The proposed model facilitates the avoidance of policy conflicts between entities
detecting similarities between policies when new policies are created or inte-
grated. Since DP entities need to accept DC’s controlling policies or strengthen
their constraints, there is no room for policy negotiation in policy between them.

This is appropriate from the governance and compliance viewpoints of a root do-
main’s administrator. However, this approach may reduce the expressiveness of
policies when flexible representations such as exceptional action rules are needed.
Although this is a problem involving a trade-off, finding an appropriate balance
between administrative restrictive descriptions and rich representations of poli-
cies is an open issue that needs further investigation.

5.3 Directive and Recommendation Policies

As explained in Section 4.1, governance policies state that personal information
can be managed by DS as its owner from a user-centric perspective. However, it
is difficult for a DS to take an appropriate action in all environments. For exam-
ple, privacy laws and privacy guidelines such as those of the OECD [17] dictate
that enterprises should take into account the consent given by people to use
their data for specified purposes. However, people may possibly act inappropri-
ately if they do not understand what their consent involves, which unfortunately
does not match the intentions of legislators of privacy-related guidelines. In such
cases, administrators can specify complementary directive policies stating that
enterprises should provide sufficient explanations to people about how their data
are used or that enterprises should suggest to them possible actions that can be
taken.

6 Conclusion and Future Work

This paper described a policy provisioning model in which distinct entities in
distributed environments collaboratively create and propagate data handling
policies. Algorithms for creating and integrating policies enable data handling
policies to be deployed and enforced to securely and privacy control access to
personal data in an enhancing manner. The proposed framework helps to man-
age the lifecycle of personal data using their handling policies that reflect the
intentions of the system administrator and their owner. Future work includes
that on updating policies and resolving conflicts in them.

References

1. Byun, J.W., Bertino, E., Li, N.: Purpose Based Access Control of Complex Data
for Privacy Protection. In: Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies (SACMAT’05). (2005) 102–110

2. Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: A
Privacy-Aware Access Control System. Journal of Computer Security 16(4) (2008)
369–397

3. Gomi, H.: A Persistent Data Tracking Mechanism for User-Centric Identity Gov-
ernance. Identity in the Information Society (March 2010)

4. Schneck, P.: Persistent Access Control to Prevent Piracy of Digital Information.
Proceedings of the IEEE 87(7) (July 1999) 1239–1250

5. Sibert, O., Bernstein, D., Wie, D.: DigiBox: A Self-Protecting Container for Infor-
mation Commerce. In: Proceedings of the 1st Conference on USENIX Workshop
on Electronic Commerce (WOEC’95). (1995) 15–15

6. Karjoth, G., Schunter, M., Waidner, M.: Platform for Enterprise Privacy Practices:
Privacy-Enabled Management of Customer Data. In: Proceedings of the 2nd Inter-
national Conference on Privacy Enhancing Technologies (PET’02). (2002) 69–84

7. Casassa Mont, M., Pearson, S., Bramhall, P.: Towards Accountable Management of
Identity Privacy: Sticky Policies and Enforceable Tracing Services. In: Proceedings
of the 14th Internatinal Workshop on Database and Expert Systems Applications
(DEXA’03). (2003) 377–382

8. Liberty Alliance Project: Liberty IGF Privacy Constraints Specification (2008)
http://www.projectliberty.org/specs.

9. W3C: The Platform for Privacy Preferences 1.0 (P3P1.0) Specification (2002)
http://www.w3.org/TR/P3P/.

10. W3C: A P3P Preference Exchange Language 1.0 (APPEL1.0) (2002) http://www.
w3.org/TR/P3P-preferences/.

11. OASIS: eXtensible Access Control Markup Language (XACML) (2005)
12. IBM: Enterprise Privacy Authorization Language (EPAL 1.2) (2003) http://www.

w3.org/Submission/2003/SUBM-EPAL-20031110/.
13. Mazzoleni, P., Crispo, B., Sivasubramanian, S., Bertino, E.: XACML Policy Inte-

gration Algorithms. ACM Transactions on Information and System Securiry 11(1)
(July 2008) 1–29

14. Belokosztolszki, A., Moody, K.: Meta-Policies for Distributed Role-Based Access
Control Systems. In: Proceedings of the third International Workshop on Policies
for Distributed Systems and Networks (POLICY’02). (2002) 3–18

15. Bettini, C., Jajodia, S., Sean Wang, X., Wijesekera, D.: Provisions and Obligations
in Policy Management and Security Applications. In: Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB’02). (2002) 502–513

16. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication (1997) RFC 2104.

17. OECD: OECD Guidelines on the Protection of Privacy and Transbor-
der Flows of Personal Data (2004) http://www.oecd.org/document/18/0,2340,

en 2649 201185 1815186 1 1 1 1,00.html.

