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Abstract. In this paper, the uplink multiuser code division multiple access (CDMA) communication 
system model is described in the form of space-time domain through antenna array and multipath 
fading expression. Novel suitable neural network technique is proposed as an effective signal 
processing method for the receiver of such an uplink multiuser CDMA system. By the appropriate 
choice of the channel state information for the neural network parameters, the neural network can 
collectively resolve the effects of both the inter-symbol interference due to the multipath fading 
channel and the multiple access interference in the receiver of the uplink multiuser CDMA 
communication system. The dynamics of the proposed neural network receiver for the uplink multiuser 
CDMA communication system is also studied. 
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1  Introduction 

Wireless communications for mobile telephone and data transmission is currently undergoing very 
rapid development. Many of the emerging wireless systems will incorporate considerable signal 
processing intelligence in order to provide advanced services such as multimedia transmission [1]. 
In order to make optimal use of available bandwidth and to provide maximal flexibility, many 
wireless systems operate as multiple-access systems, in which channel bandwidth is shared by many 
users on a random access basis. One type of multiple access technique that has become very popular 
in recent years is code division multiple access (CDMA). CDMA implemented with direct sequence 
spread spectrum signaling is among the most promising multiplexing technologies for cellular 
telecommunications services, such as personal communications, mobile telephony, and indoor 
wireless networks. The advantages of direct-sequence spread-spectrum for these services include 
superior operation in multipath fading environments, flexibility in the allocation of channels, the 
ability to operate asynchronously, increased capacity in bursty or fading channels, and the ability to 
share bandwidth with narrow-band communication systems without undue degradation of either 
system’s performance [2]. CDMA or wideband CDMA is one of the more promising candidates for 
third-generation (3G) or beyond 3G cellular services [3-4]. Inter-symbol interference (ISI) and 
multiple access interference (MAI) are two major problems in CDMA or wideband CDMA. 
Different advanced signal processing techniques have been proposed to deal with these problems. 
Multiuser detection [5] and space-time processing [6] are the two main category techniques to 
combat interference and multipath fading channel distortion.  



A variety of multiuser detectors have been proposed to deal with MAI through demodulation of 
mutually interfering signals. However, the computational effort required for the solution of 
optimum receiver by using conventional multiuser detection and space-time processing methods 
becomes prohibitively large for real-time implementations [2], [5]. 

Neural networks [7], [8] are layer networks with output feedback consisting of simple processors 
(neurons) that can collectively provide good solutions to difficult optimization problems.  

With the advent of neural networks, detectors based on well-known structures like multilayer 
perceptrons [9] were proposed. With increasing attention focused on the application of neural 
networks to the field of pattern recognition, more neural network–based multiuser detectors were 
implemented. In [10], [11], Miyajima and Kechriotis uses neural network as the signal processing 
method for the multiuser receiver under AWGN channel environment and shows to have excellent 
sub-optimum performance. However, the neural network signal processing method proposed in [10], 
[11] is unable to exhibit good performance for the uplink multiuser CDMA communication system 
with both multiple access interference (MAI) and inter-symbol interference (ISI) due to the 
multipath fading channel. The reason behind this is that neural network parameters set in [10], [11] 
are not considering the whole channel characteristics of the uplink multiuser CDMA 
communication system. Recently, blind detectors [12] and kernel-based detectors [13] have been 
investigated. 

In this paper, we consider the signal processing problem by using neural network technique for 
the receiver of the uplink multiuser CDMA system with both multiple access interference (MAI) 
and inter-symbol interference (ISI) due to the multipath fading channel. The uplink multiuser 
CDMA communication system model is described in the form of space-time domain through 
antenna array and multipath fading expression. By the appropriate choice of the channel state 
information for the neural network parameters, the neural network can collectively resolve the 
effects of both the multipath fading and the multiple access interference for the receiver of the 
uplink multiuser CDMA system. 

The rest of the paper is organized as follows. In Section 2, the model of uplink multiuser CDMA 
communication system is presented. In Section 3, neural network technique is proposed as an 
effective signal processing method for the receiver of the uplink multiuser CDMA communication 
system. In Section 4, simulation studies are performed for the evaluation of the system performance 
of the uplink multiuser CDMA communication systems under different channel situations. In 
Section 5, conclusions are given. 

In what follows, boldface capital (lowercase) letters refer to matrices (vectors), the superscript 
( )T⋅ denotes the transpose operation. 

2  Communication System Model 

The uplink in an asynchronous direct sequence code division multiple access (DS-CDMA) cellular 
mobile radio network with K  active users is considered. 

The transmitted baseband signal due to the thk  user is given by 
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where M , T , [ ]ibk , respectively denotes, the number of data symbols per frame, the symbol 

interval, the thi  transmitted symbol by the thk  user. It is assumed that for each user k , the 
symbol stream [ ]{ }ibk  is a collection of independent equiprobable 1±  random variables, and the 

symbol streams of different users are independent. kA , ( )tsk , 
kq  ( )Tqk <≤0 , respectively 

denotes, the amplitude, the normalized signaling waveform, the delay of the thk  user's signal. 
At the base station receiver, a uniform linear antenna array of P  elements is employed. Assume 

that the channel can be modeled as a tapped delay line with L  complex coefficients as the number 
of resolvable multipaths. The baseband multipath channel between the thk  user's transmitter and 
the base station receiver can be modeled as a single-input multiple-output channel in the form of 
space-time domain through antenna array and multipath expression. 

When the fractionally sampled (oversampled) received signals are used in the digital receivers of 
the mobile wireless communication systems, oversampling gives rise to cyclostationarity (CS) and 
provides more statistical information which can be used to improve the communication system 
performance [2]. Therefore, chip oversampling is used in the base station receiver of the uplink 
CDMA mobile communication systems. The total received signal vector )(ty , superposed all the 

users' signals and additive Gaussian noise, is sampled at a multiple (m ) of the chip-rate, i.e., the 
sampling time interval is ( ) ( )MTmTc ==∆ , where NmM =  is the total number of samples per 

symbol interval, m  is the chip oversampling factor.  
Denote 

 ( ) ∑ ∑
−

= =

−−−=
1

0 1
)(

N

j

L

l
klkcklklkk qjTtgAt τψag  (2) 

 ( ) [ ] ( )∑
−

=

=
1

0

N

j
kkk tjct gh  (3) 

 ( ) ( ) ( ) ( )[ ]TP tntntnt ,,, 21 L=n  (4) 

 Nt
T
T

T
Tq

k
c

cklk
k ≤








⋅

++
=

τ
ν  (5) 

 ( ) TTqt cklkk ++= τ  (6) 

 { }kKk tt ≤≤= 1max  (7) 

 ( ) ( ) tKMKMmsmoothing −+=  (8) 

where ( )tkg  is the composite channel response vector, taking into account the effects of transmitted 

power, antenna array response, chip pulse waveform, and the multipath channels. N , [ ]{ } 1
0
−
=
N
nk nc , 

)(tψ , respectively denotes, the processing gain, the binary )1(±  spreading code, the normalized 

chip waveform of duration cT . [ ]TPklklklkl aaa ,2,1, ,,, L=a , klg , klτ , respectively denotes, the 

array response vector, the complex gain, the delay, corresponding to the thl  path of the thk  user's 
signal. ( )tn p  ( )Pp ≤≤1  is the additive Gaussian noise at the thp  antenna. 

smoothingm  is the 

smoothing factor. 
Denote following discrete vectors and matrices 
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where ktj ,,1,0 L= , 1,,1,0 −= Mn L , { }diag  denotes diagonal operation, [ ]njk ,C  is a PP×  

matrix, H  is a ( ) ( )11 +×+ kk tKtNmP  matrix. In this paper, we let the chip oversampling factor 

2=m , then, we have a PNPN 22 ×  matrix [ ] [ ] [ ]{ }12,,1,0diag ,,,, −= Njkjkjkjk CCCC L . For other 

values of m , the matrix 
jk ,C  can be similarly constructed. Suppose that user k  is the user of 

interest, and at every based station received antenna p , ),,2,1( Pp L= , for every propagation path 

j , ( ktj ,,1,0 L= ), the spreading sequence [ ] [ ] [ ]{ }12,,1,0 ,,,,,, −Nccc pjkpjkpjk L  is known to the 

receiver (and therefore 
jk ,C  is known to the receiver). Then, the received discrete signals can be 

expressed in a matrix form as 

 [ ] [ ] [ ]iii nbHy σ+=  (25) 

where [ ]iy , [ ]in , [ ]ib , H  are, respectively, a ( ) 11 ×+ktNmP  received signal vector, a 

( ) 11 ×+ktNmP  independent zero-mean complex white Gaussian noise vector with variance of 2σ , 

a ( ) 11 ×+ktK  transmitted symbol vector, a ( ) ( )11 +×+ kk tKtNmP  multipath channel matrix. 

3  Neural Network-based Receiver 

From equation (25), based on the minimization of the likelihood function, the transmitted symbol 
vector of the optimal receiver can be estimated as [5] 
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Note that if the value of ( )1+ktNmP  is relatively large, even for a small-to-moderate number of 

users K , the computational effort required for the solution of (26) becomes prohibitively large for 
real-time implementations. 

Neural networks are layer networks with output feedback consisting of simple processors 
(neurons) that can collectively provide good solutions to difficult optimization problems. Neural 
networks have been employed extensively to solve a variety of difficult combinatorial optimization 
problems [7]-[19]. 

Next, we will transform the minimization of the likelihood function given in (26) into the 
minimization of neural network energy function NNE  described by the expression 

 OMOOI
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By setting [ ] Ti HyI =  and HHM T−= , then in (27), O  is the output of neural network 

neurons and M is the interconnection matrix between neural network neurons.  

Once the above transformation is done, the sub-optimum estimation of the transmitted symbol 
vector could be simply driven from the neural network receiver output by using 

 [ ] Ob ≈iˆ  (28) 

From equation (25) to equation (28), we can see that by the appropriate choice of the channel 
state information used for the neural network parameters, the neural network can collectively 
resolve the effects of both the inter-symbol interference due to the multipath fading and the multiple 
access interference in the receiver of the uplink multiuser CDMA communication system.  

The channel state information is very crucial to the proposed neural network receiver of the 
uplink multiuser CDMA communication system. Imperfections in channel state information degrade 
the neural network receiver performance. Channel estimation can be achieved by sending training 
sequences, using pilot channel, or using blind methods. Periodic transmission of training sequences 
make the identification of channel state information feasible since both input and output signals are 
known during the transmission of these sequences. 

In the following, more information about the dynamics of neural network receiver will be 
discussed. 

The dynamic equation implemented by the neural network energy function NNE  is  
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Where iC  is the output capacity and iG  is the parasite conductance of neuron i . Assuming for 

simplicity that CCi =  and GGi =  for all the neurons, then, the dynamic behavior of the neural 

network energy function NNE  is 
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Equation (30) shows that the neural network energy function NNE  goes toward the minimum 

value. Thus, for any initial value, the neural network evolves toward the minimum, and the energy 
function has a global minimum point. 

The gradient of the neural network energy function NNE  is  

 ( ) MOIO −−=∇ NNE  (31) 

Equation (31) shows that the neural network energy function NNE  has a unique minimum value 

IMO 1
opt
ˆ −−= . It is important to note that the minimum value derived according to the above 

procedure equals to the optimum minimum value  

 IMO 1
opt

−−=  (32) 

From above discussion, we can see that the neural network energy function has a global 
minimum point and is stable for any initial value.  

Therefore, the implementation of the neural network based receiver proposed for the uplink 
multiuser CDMA communication system is feasible. 
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Figure 1. System performance of matched-filter-based neural network method proposed in [10], [11] 
under different channel situations. 
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Figure 2. System performance of channel-state-information-parameters-assisted neural network 
method proposed in this paper under different channel situations. 
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Figure 3. System performance of channel-state-information-parameters-assisted neural network 
method proposed in this paper with different errors of the channel state information parameters. 

4  Performance Evaluation 

The simulated CDMA system is an asynchronous system adopting 31=N  Gold codes as spreading 
sequences, with users 15=K , antenna elements 3=P , multipath diversity order 2=L , 5=L  or 

9=L , the number of symbols per frame is 300=M , the chip pulse is a raised cosine pulse with 
roll-off factor 5.0 , the initial delay kq  of each user is uniformly generated on [ ]cLT,0 , the delay 

of each path klτ  is uniformly generated on [ ]cLT,0 . The modulation scheme is BPSK.  

In the following, the system performance studies of the method proposed in [10], [11] (we call it 
the matched-filter-based neural network method) are provided for the references with the proposed 
method in this paper (we call it the channel-state-information-parameters-assisted neural network 
method). 

When the matched-filter-based neural network method proposed in [10], [11] is used as the signal 
processing method, the simulated bit error rate (BER) versus average signal-to-noise ratio (SNR) 
performance is shown in figure 1 for different near-far ratio (NFR) and different multipath diversity 
order L .  

From figure 1, we can see that the BER versus average SNR performance of the matched-filter-
based neural network method proposed in [10], [11] is unable to resistant to the inter-symbol 
interference (ISI) due to the multipath fading channel (with different multipath diversity order L ). 
When the average SNR is larger than 20 dB, the BER versus average SNR performance of the 



matched-filter-based neural network method proposed in [10], [11] becomes much worse as the 
multipath diversity order is increasing. 

When the channel-state-information-parameters-assisted neural network method proposed in this 
paper is used as the signal processing method, the simulated bit error rate (BER) versus average 
signal-to-noise ratio (SNR) performance is shown in figure 2 for different near-far ratio (NFR) and 
different multipath diversity order L . (The channel estimation method proposed in [20] is used 
here to estimate the channel state information for the neural network parameters.) 

From figure 2, we can see that the channel-state-information-parameters-assisted neural network 
method proposed in this paper can collectively resolve the effects of both the multipath fading (with 
different multipath diversity order L ) and the multiple access interference (with different near-far 
ratio NFR ). When the average SNR is larger than 20 dB, the BER versus average SNR 
performance of the channel-state-information-parameters-assisted neural network method proposed 
in this paper becomes only a little worse as the multipath diversity order is increasing and the near-
far ratio is increasing.  

Since the accuracy of the channel state information for the neural network parameters is very 
crucial to the channel-state-information-parameters-assisted neural network method proposed in this 
paper, the system performance affected by the error in the channel state information parameters will 
be studied in the following. 

When near-far ratio (NFR) is dB10NFR =  and multipath diversity order is 5=L , the average 

simulated bit error rate (BER) versus signal-to-noise ratio (SNR) system performance for the case in 
which the channel state information parameters delivered to the proposed channel-state-
information-parameters-assisted neural network receiver contains different errors are shown in 
figure 3.  

From figure 3, we can see that the less the error in the channel state information parameters, the 
better the channel-state-information-parameters-assisted neural network receiver performance.  

5   Conclusions 

In this paper, a novel suitable neural network technique is proposed as an effective signal processing 
method for the receiver of the uplink multiuser CDMA system. The dynamics of the proposed 
neural network receiver for the uplink multiuser CDMA communication system is discussed. 
Simulation studies show that the proposed neural network receiver can collectively resolve the 
effects of both the inter-symbol interference due to the multipath fading channel and the multiple 
access interference in the receiver of the uplink multiuser CDMA communication system if the 
channel state information for the neural network parameters is appropriately chosen. The accuracy 
of the channel state information for the neural network parameters is crucial to the system 
performance of the proposed neural network receiver for the uplink multiuser CDMA 
communication system. 
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