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Abstract. As data analysis tasks often have to face the analysis of huge
and complex data sets there is a need for new algorithms that combine
vector quantization and mapping methods to visualize the hidden data
structure in a low-dimensional vector space. In this paper a new class
of algorithms is defined. Topology representing networks are applied to
quantify and disclose the data structure and different nonlinear map-
ping algorithms for the low-dimensional visualization are applied for the
mapping of the quantized data. To evaluate the main properties of the re-
sulted topology representing network based mapping methods a detailed
analysis based on the wine benchmark example is given.

1 Introduction

In the majority of practical data mining problems high-dimensional data has
to be analyzed. Because humans simply can not see high-dimensional data, it
is very informative to map and visualize the hidden structure of complex data
set in a low-dimensional space. The goal of dimensionality reduction is to map
a set of observations from a high-dimensional space (D) into a low-dimensional
space (d, d ¿ D) preserving as much of the intrinsic structure of the data as
possible. Three types of dimensionality reduction methods can be distinguished:
(i) metric methods try to preserve the distances of the data defined by a met-
ric, (ii) non-metric methods try to preserve the global ordering relations of the
data, (iii) other methods that differ from the previously introduced two groups.
Principal Component Analysis (PCA) [6, 7], Sammon mapping (SM) [14] and
multidimensional scaling (MDS) [2] are widely used dimensionality reduction
methods. Sammon mapping minimizes the Sammon stress function by the gra-
dient descent method, while the classical MDS though similarly minimizes the
cost function, but it uses an eigenvalue decomposition based (single step) al-
gorithm. So e.g. the optimization algorithm used by the Sammon mapping can
stuck in local minima,hence it is sensitive to the initialization. The MDS has
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a metric and a non-metric variant, thereby it can also preserve the pairwise
distances or the rank ordering among the data objects.

In the literature there are several neural networks proposed to visualize high-
dimensional data in low-dimensional space. The Self-Organizing Map (SOM) [8]
is one of the most popular artificial neural networks. The main disadvantage of
SOM is that it maps the data objects into a topological ordered grid, thereby it
is needed to utilize complementary methods (coloring scheme such as U-matrix)
to visualize the relative distances between data points on the map. The Visu-
alization Induced Self-Organizing Map (ViSOM) [18] is an effective extension
of SOM. ViSOM is an unsupervised learning algorithm, which is proposed to
directly preserve the local distance information on the map. ViSOM preserves
the inter-point distances as well as the topology of data, therefore it provides a
direct visualization of the structure and distribution of the data. ViSOM con-
strains the lateral contraction forces between neurons and hence regularizes the
interneuron distances so that distances between neurons in the data space are in
proportion to those in the input space [18]. The motivation of the development
of the ViSOM algorithm was similar to the motivation of this work, but here the
improvement of the Topology Representing Network based data visualization
techniques are in focus.

Dimensionality reduction methods in many cases are confronted with low-
dimensional structures nonlinearly embedded in the high-dimensional space. In
these cases the Euclidean distance is not suitable to compute distances among
the data points. The geodesic distance [1] is more suitable to catch the pairwise
distances of objects lying on a manifold, because it is computed in such a way
that it always goes along the manifold. To compute the geodesic distances a
graph should be built on the data. The geodesic distance of two objects is the sum
of the length of the edges that lie on the shortest path connecting them. Although
most of the algorithms utilize the neighborhood graphs for the construction of
the representative graph of the data set, there are other possibilities to disclose
the topology of the data, too. Topology representing networks refers to a group of
methods that generate compact, optimal topology preserving maps for different
data sets. Topology representative methods combine the neural gas (NG) [11]
vector quantization method and the competitive Hebbian learning rule [5].

There are many methods published in the literature proposing to capture
the topology of the given data set. Martinetz and Shulten [12] showed how the
simple competitive Hebbian rule forms Topology Representing Network (TRN).
Dynamic Topology Representing Networks (DTRN) were introduced by Si at
al. [15]. In their method the topology graph incrementally grows by adding and
removing edges and vertices. Weighted Incremental Neural Network (WINN)
[13] produces a weighted connected net. This net consists of weighted nodes
connected by weighted edges. Although, the TRN, DTRN and WINN algorithms
are quite similar, the TRN algorithm gives the most robust representation of the
data.

The aim of this paper is to analyze the different topology representing net-
work based data visualization techniques. For this purpose we round up the
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techniques being based on this method and perform an analysis on them. The
analysis compares the mapping qualities in the local environment of the objects
and the global mapping properties.

The organization of this paper is as follows. Section 2 gives an overview of
the Topology Representing Network and introduces the related mapping meth-
ods. Section 3 introduces the measurement of the mapping quality and gives
application example to show the results of the analysis. Section 4 concludes the
paper.

2 Topology Representing Network Based Mapping
Algorithms

2.1 Topology Representing Network

Given a set of data (X = {x1,x2, . . . ,xN}, xi ∈ RD, i = 1, . . . , N) and a set
of codebook vectors (W = {w1,w2, . . . ,wn}, wi ∈ RD, i = 1, . . . , n) (N > n).
TRN algorithm distributes the pointers wi between the data objects by neural
gas algorithm, and forms connections between them by applying competitive
Hebbian rule. The algorithm of the Topology Representing Network firstly selects
some random points (units) in the input space. The number of units (n) is a
predefined parameter. The algorithm then iteratively selects an object from the
input data set randomly and moves all units closer to this pattern. After this step,
the two units closest to the randomly selected input pattern will be connected.
Finally, edges exceeding a predefined age are removed. This iteration process
is continued until a termination criterion is satisfied. The run of the algorithm
results in a Topology Representing Network that means a graph G = (W,C),
where W denotes the nodes (codebook vectors, neural units, representatives)
and C yields the set of edges between them. The detailed description of the
TRN algorithm can be found in [12].

The algorithm has many parameters. The number of the iterations (tmax) and
the number of the codebook vectors (n) are determined by the user. Parameter
λ, step size ε and lifetime T are dependent on the number of the iterations. This
time dependence can be expressed by the following general form:

g(t) = gi

(
gf

gi

)t/tmax

(1)

where gi denotes the initial value of the variable, gf denotes the final value of the
variable, t denotes the iteration counter, and tmax denotes the maximum number
of iterations. (For example for parameter λ it means: λ(t) = λi(λf/λi)t/tmax .)
Paper [12] gives good suggestions to tune these parameters.

In the literature few methods are only published, that utilize the topology
representing networks to visualize the data set in the low-dimensional vector
space. The Online Visualization Neural Gas (OVI-NG) [3] is a nonlinear projec-
tion method, in which the codebook positions are adjusted in a continuous output
space by using an adaptation rule that minimizes a cost function that favors the
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local distance preservation. As OVI-NG utilizes Euclidean distances to map the
data set it is not able to disclose the nonlinearly embedded data structures. The
Geodesic Nonlinear Projection Neural Gas (GNLP-NG) [4] algorithm is an ex-
tension of OVI-NG, that uses geodesic distances instead of the Euclidean ones.
Abreast with these algorithms J.Abonyi and A. Vathy-Fogarassy from among
the authors of this article have developed a new group of the mapping meth-
ods, called Topology Representing Network Map (TRNMap) [16]. TRNMap also
utilizes the Topology Representing Network and the resulted graph is mapped
by MDS into a low-dimensional vector space. Hence TRNMap utilizes geodesic
distances during the mapping process, it is a nonlinear mapping method, which
focuses on the global structure of data. As the OVI-NG is not able to disclose
the nonlinearly embedded manifolds in the following we will not deal with this
method.

2.2 Geodesic Nonlinear Projection Neural Gas

The GNLP-NG algorithm is a nonlinear mapping procedure, which includes
the following two major steps: (1) creating a topology representing network to
depict the structure of the data set, and (2) mapping this approximate structure
into a low-dimensional vector space. The first step utilizes the neural gas vector
quantization method to define the codebook vectors (wi) in the input space, and
it uses the competitive Hebbian rule for building a connectivity graph linking
these codebook vectors. The applied combination of the neural gas method and
the Hebbian rule differs slightly from the TRN algorithm: it connects not only
the first and the second closest codebook vectors to the randomly selected input
pattern, but it creates connection between the k-th and the k+1-th nearest units
(1 ≤ k ≤ K), if it does not exist already, and the k + 1-th nearest unit is closer
to the k-th nearest unit than to the unit closest to the randomly selected input
pattern. The parameter K is an accessory parameter compared to the TRN
algorithm, and in [4] it is suggested to set to K = 2. Furthermore GNLP-NG
increments not only the ages of all connections of the nearest unit, but it also
extends this step to the k-th nearest units.

During the mapping process the GNLP-NG algorithm applies an adaptation
rule for determining the positions of the codebook vectors (wi, i = 1, 2, . . . , n) in
the (low-dimensional) projection space. The mapped codebook vectors are called
codebook positions (zi, i = 1, 2, . . . , n). The mapping process can be summarized
as follows:

1. Compute the geodesic distances between the codebook vectors based on the
connections of the previously calculated topology representing network. Set
t = 0.

2. Initialize the codebook positions zj , randomly.
3. Select an input pattern x with equal probability for each x. Increase the

iteration step t = t + 1.
4. Find the codebook vector wi0 in input space that is closest to x.
5. Generate the ranking (mj ∈ 0, 1, . . . , n− 1) for each codebook vector wi

with respect to the wi0 .
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6. Update the codebook positions in the output space:

znew
i = zold

i + αe−( mj
σ(t) )

2 (Di0,i − δi0,i)
Di0,i

(zi0 − zi) (2)

7. If t < tmax go back to step 3.

Parameter α is the learning rate, σ is the width of the neighborhood, and they
typically decrease with the number of iterations t, in the same way as Equation
1. Dj,k denotes the Euclidean distance of the codebook vectors zj and zk defined
in the output space, δj,k yields the geodesic distance between codebook vectors
wj and wk measured in the input space, and mj yields the ranking value of the
codebook vector wj . Paper [4] gives an extension to the GNLP-NG, to tear or
cut the graphs with non-contractible cycles.

2.3 Topology Representing Network Map

Topology Representing Network Map (TRNMap) refers to a group of nonlinear
mapping methods, which combines the TRN algorithm and the MDS method
to visualize the data structure to be analyzed. The algorithm has the following
major steps: (0) data normalization to avoid the influence of the range of the
attributes, (1) creating the Topology Representing Network of the input data
set, (2) if the resulting graph is unconnected, the algorithm connects the sub-
graphs together, (3) calculation of the pairwise graph distances, (4) mapping the
modified TRN, (5) creating the component planes. A component plane displays
the value of one component of each node. If the input data set has D attributes,
the TRNMap component plane includes D different maps according to the D
components. The structure of these maps is the same as the TRNMap map, but
the nodes are represented in greyscale. The mapping process of the TRNMap al-
gorithm can be carried out by the use of metric or non-metric multidimensional
scaling, as well.

The Topology Representing Network Map algorithm

0. Normalize the input data set X.
1. Create the Topology Representing Network of X by the use of the TRN

algorithm. Yield M (D) = (W,C) the resulting graph, let wi ∈ W the repre-
sentatives (nodes) of M (D). If exists an edge between the representatives wi

and wj (wi,wj ∈ W , i 6= j), ci,j = 1, otherwise ci,j = 0.
2. If M (D) is not connected, connect the subgraphs in the following way:

While there are unconnected subgraphs (m(D)
i ⊂ M (D), i = 1, 2, . . .):

(a) Choose a subgraph m
(D)
i .

(b) Let the terminal node t1 ∈ m
(D)
i and its closest neighbor t2 /∈

m
(D)
i from:

‖t1 − t2‖ = min‖wj −wk‖, t1,wj ∈ m
(D)
i , t2,wk /∈ m

(D)
i

(c) Set ct1,t2=1.
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Yield M∗(D) the modified M (D).
3. Calculate the geodesic distances between all wi,wj ∈ M∗(D).
4. Map the graph M (D) into a 2-dimensional vector space by MDS based on

the graph distances of M∗(D).
5. Create component planes for the resulting Topology Representing Network

Map based on the values of wi ∈ M (D).

The parameters of the TRNMap algorithm are the same as those of the Topology
Representing Networks algorithm. The TRNMap algorithm has different varia-
tions based on the mapping used. If the applied MDS is a metric MDS method,
the mapping process will preserve the pairwise distances of the objects. On the
other hand, if the TRNMap algorithm applies a non-metric MDS, the resulted
map tries to preserve the global ordering relations of the data.

Table 1 gives a systematic overview of GNLP-NG, metric TRNMap (DP -
TRNMap, DP from distance preserving) and non-metric TRNMap (NP TRNMap,
NP from neighborhood preserving). It also includes the combination of the
non-metric TRNMap and the GNLP-NG algorithms (NP TRNMap-GNLP NG),
which means the fine tuning of the non-metric TRNMap with the GNLP-NG
as follows: after the running of the non-metric TRNMap the projected code-
book vectors were ’fine tuned’ by the mapping of the GNLP-NG algorithm. This
table comparable summarizes the applied topology learning methods, distance
measures, and mapping techniques.

Table 1. Systematic overview of the Topology Representing Network based mapping
methods

Algorithm topology
learning

distance
measure

mapping

GNLP NG modified
TRN

geodesic iterative adaptation rule

DP TRNMap TRN geodesic metric MDS
NP TRNMap TRN geodesic non-metric MDS
NP TRNMap-GNLP NG TRN geodesic combined non-metric MDS

and iterative adaptation rule

3 Analysis of the Topology Representing Network Based
Mapping Methods

The aim of this section is to analyze the Topology Representing Network based
mapping methods that are able to unfold the nonlinearly embedded manifolds.
We have shown that GNLP-NG and TRNMap algorithms are nonlinear map-
ping methods, which utilize a topology representing network to visualize the
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high-dimensional data structure in the low-dimensional vector space. Because
the GNLP-NG method utilizes a non-metric mapping procedure, and the TRN-
Map also has a non-metric variant, their mapping qualities of the neighborhood
preservation can be compared.

3.1 Mapping Quality

A projection is said to be trustworthy [9, 17] if the nearest neighbors of a point in
the reduced space are also close in the original vector space. Let n be the number
of the objects to be mapped, Uk(i) be the set of points that are in the k size
neighborhood of the sample i in the visualization display but not in the original
data space. The measure of trustworthiness of visualization can be calculated in
the following way:

M1(k) = 1− 2
nk(2n− 3k − 1)

n∑

i=1

∑

j∈Uk(i)

(r (i, j)− k) , (3)

where r(i, j) denotes the ranking of the objects in the input space.
The projection onto a lower dimensional output space is said to be continuous

[9, 17] if points near to each other in the original space are also nearby in the
output space. Denote Vi(k) the set of those data points that belong to the k-
neighbors of data sample i in the original space, but not in the visualization. The
measure of continuity of visualization is calculated by the following equation:

M2(k) = 1− 2
nk(2n− 3k − 1)

n∑

i=1

∑

j∈Vk(i)

(r̂ (i, j)− k) , (4)

where r̂(i, j) is the rank of the data sample i from j in the output space.

3.2 Analysis of the Methods

In this subsection the local and global mapping qualities of GNLP-NG, TRN-
Map and its combination are analyzed. The presentation of the results comes
true through the well known wine data set coming from the UCI Repository
of Machine Learning Databases (http://www.ics.uci.edu). The common param-
eters of GNLP-NG and TRNMap algorithms were in the simulations set as
follows: tmax = 200n, εi = 0.3, εf = 0.05, λi = 0.2n, λf = 0.01, Ti = 0.1n,
Tf = 0.5n. The auxiliary parameters of the GNLP-NG algorithm were set as
αi = 0.3, αf = 0.01, K = 2, and if the influence of the neighborhood size was
not analyzed, the values of parameter σ were set as follows: σi = 0.7n, σf = 0.1.

The wine database consists of the chemical analysis of 178 wines from three
different cultivars in the same Italian region. Each wine is characterized by 13
continuous attributes, and there are three classes distinguished. Figure 1 shows
the trustworthiness and the continuity of mappings at different number of code-
book vectors (n = 35 and n = 45). These quality measures are functions of the
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(b) n=45

0 2 4 6 8 10 12 14 16 18 20
0.94

0.95

0.96

0.97

0.98

0.99

1
Continuity

DP_TRNMap

NP_TRNMap

GNLP

NP_TRNMap−GNLP_NG

(c) n=35
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Fig. 1. Trustworthiness and continuity as a function of the number of neighbors k, for
the wine data set

number of neighbors k. As small k-nn-s the local reconstruction performance of
the model is tested, while at larger k-nns the global reconstruction is measured.
It can be seen, that the NP TRNMap and DP TRNMap methods give better
performances at larger k-nn values, furthermore these techniques are much less
sensitive to the number of the mapped codebooks than the GNLP-GL method.
Opposite this the GNLP-NG technique in most cases gives better performance
at the local reconstruction, and it is sensitive to the number of the neurons.
This could be caused by the fact that GNLP-NG applies a gradient based iter-
ative optimization procedure that can be stuck in local minima (e.g. Fig. 1(b)).
The GNLP-NG-based fine tuning of the NP TRNMap improves the local conti-
nuity performance of the NP TRNMap at the expense of the global continuity
performance.

Figure 1 shows that GNLP-NG is very sensitive to the number of the code-
book vectors. This effect can be controlled by the σ parameter that controls
the locality of the GNLP-NG. Figure 2 shows, that the increase of the values
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σ increases the efficiency of the algorithm. At larger σ the algorithm tends to
focus globally, the probability of getting into local minima is decreasing.
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Fig. 2. Trustworthiness and continuity as a function of the number of neighbors k, for
the wine data set at different values of σ (n = 45)

The CPU time of different mappings have been also analyzed. The DP TRNMap
and NP TRNMap require significantly shorter calculation than the GNLP-NG
method. The combination of NP TRNMap with GNLP-NG method decreases
the computational time of the GNLP-NG method by a small amount.

The mapping methods have also been tested on other benchmark examples,
and the results confirmed the previous statements.

4 Conclusion

In this paper we have defined a new class of mapping methods, that are based on
the topology representing networks. To detect the main properties of the topol-
ogy representing network based mapping methods an analysis was performed on
them. The primary aim of the analysis was the examination of the preservation
of the neighborhood from local and global viewpoint. Both the class of TRN-
Map methods and the GNLP-NG algorithm utilize neighborhood preservation
mapping method, but the TRNMap is based on the MDS technique, while the
GNLP-NG utilize an own adaptation rule. It has been shown that: (1) MDS is a
global technique, hence it is less sensitive to the number k-nearest neighbors at
the calculation of the trustworthiness and continuity. (2) MDS-based techniques
can be considered as global reconstruction methods, hence in most cases they
give better performances at larger k-nn values. (3) MDS-based techniques are
much less sensitive to the number of the mapped codebook vectors than the
GNLP-NG technique, which tends to give worse performances when the number
of codebook vectors is increased. This could be caused by the fact that GNLP
applies a gradient based iterative optimization procedure that can be stuck in
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local minima. (4) This effect is controlled by parameter σ that influences the
locality of the GNLP-NG method. (5) The GNLP-NG-based fine tuning of the
MDS-based mapping methods improves the local performance at the expense
of the global performance. (6) The GNLP-NG needs more computational time,
than the MDS based TRNMap methods. Further research could be the compar-
ison of ViSOM and the proposed TRNMap methods.
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