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Abstract. Due to the non-stationarity of EEG signals, online training and 
adaptation is essential to EEG based brain-computer interface (BCI) systems. 
Asynchronous BCI offers more natural human-machine interaction, but it is a 
great challenge to train and adapt an asynchronous BCI online because the 
user’s control intention and timing are usually unknown. This paper proposes a 
novel motor imagery based asynchronous BCI for controlling a simulated robot 
in a specifically designed environment which is able to provide user’s control 
intention and timing during online experiments, so that online training and 
adaptation of motor imagery based asynchronous BCI can be effectively 
investigated. This paper also proposes an online training method, attempting to 
automate the process of finding the optimal parameter values of the BCI system 
to deal with non-stationary EEG signals. Experimental results have shown that 
the proposed method for online training of asynchronous BCI significantly 
improves the performance. 
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training, automated learning. 

1   Introduction 

A brain-computer interface (BCI) is a communication system in which an individual 
sends commands to the external world by generating specific patterns in brain signals 
and a computer detects and translates the brain signal patterns into commands that 
accomplish the individual’s intention. BCI systems can be categorised into systems 
operating in cue-paced (synchronous) or self-paced (asynchronous) mode. The 
majority of the existing EEG-based BCI systems are synchronous [1]-[3], in which 
the analysis and classification of brain signals is locked to predefined time windows. 
This means that users are supposed to generate commands only during specific 
periods determined by the BCI system. The advantage of synchronous BCI systems is 
that the onset of mental activity is known in advance and associated with a specific 
cue or trigger stimulus, and thus any signal outside the predefined time windows is 
treated as idling and ignored by the BCI system. On the other hand, asynchronous 
BCI systems offer a more natural mode of human-machine interaction than 
synchronous BCIs [4]-[9]. In asynchronous BCIs, no cue stimulus is used, the users 
control the BCI output whenever they want by intentionally performing a specific 



mental/cognitive task, and the EEG signals have to be analysed and classified 
continuously. The disadvantage of asynchronous BCI is that the lack of indications of 
the user’s control intention and timing brings about challenges in asynchronous BCI 
design and performance evaluation. 

It is well-known that EEG signals, particularly in EEG-based BCI systems, are 
non-stationary. The non-stationarities may be caused by the subject’s brain conditions 
or dynamically changing environments. To some extent, a realistic BCI system has to 
be trained online and adaptive even in application phases where the true labels of 
ongoing EEG trials are unknown [10]-[17]. It is a great challenge to train and adapt an 
asynchronous BCI online because the user’s control intention and timing are usually 
unknown to the BCI system. Existing methods for obtaining the user’s control 
intention and timing in asynchronous BCI are to analyse continuous EEG data 
consisting of defined cue-triggered mental states (simulated asynchronous BCI) [4], 
use self-report by subjects [5][6], rely on subjects to perform a predefined sequence of 
mental tasks [5][7], or analyse real movement EEG data recorded along with time 
stamp of actual movements [8][9]. It should be noted that the above methods are not 
so suitable for online training purpose, except for the latter approach which assumes 
that the imagined movements will have enough similarity to actual movements. 
However, realistic BCI applications should be based on motor imagery or other 
mental activities rather than real movements. 

This paper proposes a novel motor imagery based asynchronous BCI control of a 
simulated robot in a specifically designed environment, which is able to provide 
user’s control intention and timing during online experiments, so that online training 
and adaptation of motor imagery based asynchronous BCI can be effectively 
investigated. This paper also proposes an online training method, attempting to 
automate the process of finding the optimal parameter values of the BCI system to 
deal with non-stationary EEG signals. Experiments have been conducted, producing 
promising results on performance improvement of asynchronous BCI by online 
training in terms of accuracy and deviation of real paths from optimal paths. 

2   Methods 

2.1   BCI Experiment Setup 

The experiments were carried out with able-bodied subjects who sat on an armchair at 
1m distance in front of a computer screen. The EEG recording was made with a g.tec 
amplifier (Guger Technologies OEG Austria). Five bipolar EEG channels using 10 
electrodes, as shown in Fig. 1, were measured over C3 (FC3 vs. CP3), C1 (FC1 vs. 
CP1), Cz (FCz vs. CPz), C2 (FC2 vs. CP2), and C4 (FC4 vs. CP4). The EEG was 
sampled at 250Hz.  
 



 
Fig. 1. Five bipolar electrode positions. 

2.2   Offline Training 

A simple synchronous BCI paradigm, proposed by the Graz BCI Lab [3], was used to 
record data for training classifiers offline before online experiments. The subjects 
were asked to imagine left versus right hand movements. The experiment consisted of 
6 runs with 40 trials each. In each trial the subjects relaxed until a green cross 
appeared on screen at t = 2s (s for second). At t=3s, a red arrow (cue) pointing either 
left or right direction appeared on screen for 2 seconds. The subject’s task was to 
respond to the arrow by imagine left or right hand movements until the green cross 
disappeared at t = 8s. The order of left and right cues was random, and there was a 
random interval of 2~3 seconds between trials. 

Logarithmic band power features were extracted from EEG signals and used to 
classify the imagery movements into left or right class. Two frequency bands that 
give good separation were manually selected for each subject. Using the selected 
frequency bands, EEG signals were digitally bandpass filtered, squared, averaged 
over a 1 second sliding window, and a natural logarithm was then applied to obtain 
the features. Using the extracted features and their corresponding class labels (from 
the cue signals), two linear discriminant analysis (LDA) classifiers were trained, with 
one to distinguish left imagery movement from others (right imagery movement or no 
imagery movement) and the other to separate right imagery movement from others. 

It was shown in the BCI competition 2003 and 2005 that LDA performs as well as 
(sometimes even outperforms) non-linear classifier, and almost all the winning 
classifiers are linear [18]. Therefore, we chose to use LDA in our design. 

2.3   Online Asynchronous Event Detection 

During online asynchronous BCI experiments, the extracted features, which are 
related to the user’s control intent, were continuously classified by the offline trained 
LDA classifiers and used to control a robot simulator that is described in detail in 
section 2.4. The online asynchronous event detection system used in the experiments 
is shown in Fig. 2, which works as follows. LDA outputs below a threshold will be 
set to zero. If a LDA output, used as a class’s confidence value, is above the threshold 
long enough (>Dwell_Length), the dwell requirement of an event onset is met, a class 



(either left or right) will be selected as a command to control the simulated robot, and 
a refractory period will be switched on at the same time to reject new class/action to 
be triggered until the refractory period ends. The threshold and dwell mechanism plus 
refractory period are effective methods for reducing false positive rate. Refractory 
period also introduce a competition mechanism for the two LDA classifiers because 
selection of one LDA’s output will reject the other LDA’s output during the refractory 
period. A simple principle of ‘first come first serve’ is used here for the class 
selection. The idea of using dwell and refractory period for asynchronous event 
detection was first introduced in [4] for offline event-by-event analysis of simulated 
asynchronous BCI, and then used in [19] for binary detection of beta oscillation. Here 
we use dwell and refractory period for online detection of imagery movements in real 
asynchronous BCI systems. 
 

     
 
Fig. 2. An online asynchronous event detection system. 
 

It is important that the thresholds and dwell lengths are chosen for each class and 
each subject separately in order to optimise the performance of the whole system. 
This can be achieved by trial-and-error method or offline Receiver Operating 
Characteristic (ROC) optimisation. It is because EEG signals are non-stationary that it 
is also important to adapt these parameters by online training or adaptation. In the 
following sections an online training method is described, which adapts the threshold 
and dwell length values when false positive command is detected.  

2.4   A Robot Simulator and its Specifically Designed Environment 

During online training, in order to detect whether there is false positive command 
generated by the BCI system, information about the user’s control intention and 
timing is needed. For this purpose, a robot simulator that runs in a specifically 
designed environment, as shown in Fig. 3, is proposed and implemented for online 
asynchronous BCI experiments.  

The environment is filled with hexagon grid, and robot movements are railed to the 
grid line. The robot simulator executes 2 commands: “turn left then move forward to 
the next node” or “turn right then move forward to the next node”, thus the event 
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detection system operates in 2 class mode. The task of the BCI control is to drive the 
simulated robot to a given target position. There is no obstacle in the environment, but 
the user is supposed to drive towards the target all the time. An explicit instruction is 
given to subjects: At each node the user should always turn the robot to the direction 
that the target is located. In the scenario given in Fig. 3, according to the above 
instruction, the ideal sequence of commands to control the robot from “start” to the 1st 
target should be: left, right, left, right, left, right, left, right, right, left, left, right and 
right. It is unnecessary for subjects to plan the whole sequence in advance, as long as 
the subjects follow the instruction at each node. The simulator executes every 
detected command, including false positive ones, but the result of a false positive 
event will not affect future events in evaluation. This is because the correctness of 
each event is evaluated locally. 
 

 
 
Fig. 3. (left): Hexagon grid, where the circle with a heading indicator represents the robot and 
the squares are targets. (right): Illustration of a “turn right then move forward to the next node” 
command executed. 
 

By assuming a subject will follow the instruction, it is possible to predict what 
command the subject tries to send or what motor imagery movement the subject tries 
to perform at each node. This prediction can be used to check whether the 
event/command detected by the BCI is true positive or false positive. This is 
particularly useful for online training and performance evaluation of asynchronous 
BCI systems. 

The key part of the user’s intent prediction is the calculation of the target direction 
at each node. Since the robot position and target position are known. The current 
direction of the robot, CD, and the target direction, TD, with respect to the centre of 
the robot can be calculated by: 

atan 2( 2 1, 2 1) .

atan 2( 1, 1) .

CD X X Y Y

TD TX X TY Y

= − −

= − −
 (1) 

 
where (X1,Y1) is the centre of the robot, (X2,Y2) is the robot heading point, and 
(TX,TY) is the target location. Prediction can be obtained by comparing the values of 



CD and TD. However, because the output of atan2 lies in the closed interval [ ,π π− ], 
simple comparison is only valid when both CD and TD are >0 or <0. To avoid this 
limitation, CD and TD are rotated together to the point where CD is aligned to the 
axis of /π π− , as shown in Fig. 4.   
 

 
 
Fig. 4. Rotation of CD and TD for making a prediction.  
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After rotation the target direction is updated as follows: 
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Finally, the prediction of command that the user is supposed to produce at each node 
can be obtained based on the target direction as follows: 
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2.5   Online Training 

To further make use of the advantage of the robot simulator and its running 
environment in online asynchronous BCI experiments, an adaptation scheme was 
implemented for online training in attempt to find the optimal parameter settings to 



deal with the non-stationarity of EEG signals. The general idea behind the adaptation 
scheme is: “If it works, do not change it”, but adaptation is required when false 
positive is detected. We choose to adapt the dwell and threshold parameters, because 
they both affect the asynchronous BCI performance greatly.  

During the online training period, if the detected event does not match the 
prediction, the following adaptation will be conducted: 
 

• Higher threshold and dwell are set for the triggered (false) class to prevent 
next false detection. 

• On the other hand, lower threshold and dwell are set for the predicted (but 
not triggered) class. 

• If the system cannot detect a command for a certain period, called maximum 
no control allowance, lower threshold and dwell are set for the predicted 
class. 

 
The adaptation will be controlled by learning rates. Another important issue is when 
to start or stop the training. Without a stopping rule, the adaptation could potentially 
destroy a well tuned BCI system when a minor false positive event is detected. The 
start and stop rules are as follows: 
 

• Training starts at the beginning of the online training period. 
• Training ends when the number of consecutive true positive detections is 

over a preset value called #CTP. 
• Training re-stared when the number of consecutive false positive detections 

is over a preset value called #CFP. 
 
How to choose the learning parameters will be explained in the next section in 
connection with experimental results. 

3   Results 

The system was tested online with 2 male subjects. Subject 1 had a little BCI 
experience before, and subject 2 was experienced in synchronous BCI experiment. 
Several runs of online asynchronous BCI experiments were carried out for each 
subject. In each run, subjects were asked to drive the robot simulator to reach 3 targets. 
The robot starting point and target positions were fixed and unchanged between runs 
in order to compare performances in a fair manner. The scenarios used in the 
experiments are shown in Fig. 3. However, the subjects saw only one target at a time. 
The current target disappeared as soon as the robot reached it, and the next target 
appeared at the mean time. The numbers of true positive (TP), false positive (FP), and 
events triggered were recorded. The performance is evaluated by accuracy defined as 
(TP/(TP+FP)) and the total number of events (TP+FP) happened in comparison with 
the minimum number of events needed (ME). The difference between the total 
number of events and the minimum number of events indicates the deviation of the 
real path from the optimal path. 



3.1   Performance of the Asynchronous BCI without Online Training 

The system was first tested without online training. Each subject performed 2 runs. 
Prior to the formal experiments, subjects took some trial runs with the present of the 
experiment conductor, so that the subjects understood the paradigm and requirement, 
and a suitable parameter setting could be found. For subject 1 (S1), 11-14 Hz and 15-
30 Hz bandpass features were extracted from each channel, initial thresholds for the 
two LDA classifiers were set to 2.0, and initial dwell lengths were set to 1.6 seconds. 
For subject 2 (S2), frequency bands were chosen as 11-14 Hz and 15-25 Hz, initial 
thresholds were set to 1.0 for left imagery and 2.0 for right imagery, and initial dwell 
lengths were set to 1.4 and 1.6 seconds for left imagery and right imagery respectively. 
The results are shown in Tab.1 (Top). 

Table 1. (Top) Performance without online training. (Bottom) Performance with online training. 
TP: Number of true positive event. FP: Number of false positive events. ME: Minimum number 
of events required to reach the target. ACC: Accuracy TP/(TP+FP). #A: Number of adaptations 
during online training. E/Min: Number of events per minute. 

 

3.2   Performance of the Asynchronous BCI with Online Training  

The above experiment was repeated, except that the first part of the experiment (from 
start to the 1st target) was used for online training. During online training, the system 
adapts the thresholds and dwell lengths based on the method described in Section 2. 
The initial parameter settings were the same as used in 3.1. The learning rates for 
threshold and dwell adaptation were set to 0.25 and 0.14 seconds respectively for both 
subjects. Maximum no control allowance was set to 20 seconds. #CTP and #CFP 
were set to 5 and 3. 
    The results are given in Tab.1 (Bottom), which show that Subject 1 produced 
significantly better performance after online training. For instance, the averaged 
accuracy of the 3rd part of the experiment (from the 2nd target to the 3rd target) is 
significant improved, increased from 66.67% to 81.67%, and the number of events 
detected (TP+FP) is greatly reduced (close to optimal). The 2nd part of the experiment 



also shown improvement with averaged accuracy increased from 70.82% to 75.30% 
with a slightly higher number of events detected. However, first part of the 
experiment (start to 1st target) cannot be compared, because target position was 
known to the BCI system during online training. 
    The result from Subject 2 has also shown some improvement after online training, 
but not as significant as Subject 1. The reason could be that Subject 2 was very 
experienced in imagery arm movements, and did not make many mistakes during 
online training. Hence, the number of adaptations (#A) was small. Nevertheless, the 
averaged accuracy of the 3rd part of the experiment (from the 2nd target to the 3rd 
target) was increased from 75% to 83.98%.  
     For readers who are interested in more detailed results, some playback videos of 
the above online asynchronous BCI experiments are available from 
http://cswww.essex.ac.uk/staff/jqgan/IDEAL2007_VIDEOS/. 

4   Conclusion 

This paper has presented an asynchronous BCI system with online training for control 
of a simulated robot. Taking up the challenge in online training of asynchronous BCI 
systems, this paper has proposed a novel method for providing information about 
class labels (user’s control intention and timing), which is essential for training and 
adapting asynchronous BCIs so as to improve the performance. This paper has also 
developed a method for online adaptation of the thresholds and dwell lengths of the 
classifiers in asynchronous BCI systems. Initial experimental results have shown the 
effectiveness of the proposed methods. More experiments will be conducted to further 
justify the methods. The current work is limited to 2 classes. The proposed 
experimental paradigm can be easily extended to multiple classes. Further research 
will be focused on online asynchronous BCI adaptation, including adaptation of all 
the parameters of the LDA classifiers and unsupervised adaptation during online 
testing when event labels are unavailable.  
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