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Abstract. We present a face verification system using Parallel Gabor Principal 
Component Analysis (PGPCA) and fusion of Support Vector Machines (SVM) 
scores. The algorithm has been tested on two databases: XM2VTS (frontal 
images with frontal or lateral illumination) and FRAV2D (frontal images with 
diffuse or zenithal illumination, varying poses and occlusions). Our method 
outperforms others when fewer PCA coefficients are kept. It also has the lowest 
equal error rate (EER) in experiments using frontal images with occlusions. We 
have also studied the influence of wavelet frequency and orientation on the 
EER in a one-Gabor PCA. The high frequency wavelets are able to extract more 
discriminant information compared to the low frequency wavelets. Moreover, 
as a general rule, oblique wavelets produce a lower EER compared to horizontal 
or vertical wavelets. Results also suggest that the optimal wavelet orientation 
coincides with the illumination gradient. 
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1   Introduction 

Automated face recognition systems are developing rapidly, due to increasing 
computational capabilities, both in speed and storage, and its ease for use compared to 
other biometrics where the user collaboration is mandatory [1, 2]. There are a large 
variety of methods available in the literature for face recognition, such as Principal 
Component Analysis (PCA) [3] or Linear Discriminant Analysis (LDA) [4]. Some 
methods make use of Gabor wavelets [5] due to their similarities in behaviour to the 
human cells in the visual cortex. Following the standard definition given by [6] and 
[7], a Gabor wavelet is a 2D filter defined as a complex wave with a Gaussian 
envelope (Figure 1). It can be parameterized by a frequency ν (0≤ν≤4) and an 
orientation µ (0≤µ≤7): 
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where rr = (x, y) and σ = 2π. The wave vector, which determines the direction of 

the propagation of the wave, is defined as ( )µµνµν ϕϕ sin,coskk =
r

 with 

kν = 2(−(ν + 2) / 2)π and ϕµ = µπ/8 radians (with respect to the horizontal axis). µνk
r

 is 
perpendicular to the direction of the wavelet, considered as the wavefronts.  

 

    
Fig. 1.  Left: Bank of 40 Gabor filters, ordered by frequency (ν) and orientation (µ). Right: 
Response of Gabor filters in the Fourier space (only drawn half space). 

The usual strategy for Gabor-based methods consists in convolving the images 
with the set of 40 filters and then working with the absolute value of the results [8]. 
As the dimensionality grows by a factor of 40 with these methods, many researchers 
have tackled this problem by combining Gabor wavelets with a dimension reduction 
algorithm, such as PCA. Analytic methods consider the Gabor responses computed 
only over a set of fiducial points, such as eyes, nose and mouth [9]. We shall call 
these methods “Feature-based Gabor PCA” (FGPCA). Holistic methods take into 
account the Gabor responses from the whole face image. Due to the huge 
dimensionality of Gabor features, a downsampling process is usually performed to 
reduce the dimension by a certain factor (usually 16 or 64) [10, 11, 12, 13]. We shall 
call these methods “Downsampled Gabor PCA” (DGPCA).  

The algorithm proposed here is holistic, but it uses no downsampling process, as 
all the wavelet convolutions are performed in parallel, i.e., in a multi-channel 
approach. A final fusion of the results will allow us to evaluate the performance of 
our method and compare it with others mentioned above.  

We also want to explore which of the 40 Gabor wavelets is able to extract the 
most discriminant features for a face verification problem. Some experiments have 
been done to study the influence of spatial frequency and orientation of face features 
[1, 14, 15, 16]. These works suggest that low frequency information can help us 
distinguish a face from a “non-face”, but it is the high frequency information which is 
needed to tell whether two faces are different. The importance of facial bilateral 
symmetry as a key element to identify a “beauty face” [17, 18] and its influence in the 
ability to recognize a face [19, 20] has been also considered in the past. 



The remainder of this paper is organized as follows. In Section 2, we describe the 
face databases used. In Section 3 we explain our algorithm, the Parallel Gabor PCA. 
The design of our experiments can be found in Section 4. The results and a discussion 
are in Section 5. Finally, the conclusions are to be found in Section 6. 

 

 

 
Fig. 2. Sample images from XM2VTS Database (above) and FRAV2D Database (below). 

2 Face databases 

2.1 XM2VTS Database 

XM2VTS is a multi-modal face database (Figure 2, top) [21] from the University of 
Surrey, UK, which comprises 2D pictures (frontal and profile views), as well as 3D 
meshes for 295 people. For our experiments we selected 100 people randomly, each 
having four frontal pictures taken in three different sessions. The first and the second 
sessions had frontal diffuse illumination, while in the third one the lighting was lateral 
(in two images the light came from the left and in the others, it came from the right). 
We use the set of four images from the first session of every person in the gallery 
database to train our classifiers. The remaining images from the other sessions are 
used in the tests to verify the accuracy of our algorithm. A manual process is used to 
normalize the face images. The images are cropped to 128×128 and converted into 
grey scale, with the eyes occupying the same locations in all the pictures. Finally a 
histogram equalization is performed on the images to deal with changes of 
illumination.   

2.2 FRAV2D Database 

We have also used the public domain FRAV2D Database (Figure 2, bottom) [22], 
which is freely available to the scientific community for research purposes. It 
comprises 109 people, each with 32 images. It includes frontal images with diffuse 
and zenithal illumination, 15º and 30º head orientations, and images with occlusions. 
As with XM2VTS Database, the images are normalized to 128×128 manually and 
histogram equalization is applied on them. 



3 Our algorithm 

We have developed the so-called Parallel Gabor methods (Figure 3) [23, 24]. The 
core of the algorithms is a PCA-based dimension reduction process. However, unlike 
a standard PCA, a set of Gabor wavelet convolutions are applied to the gallery 
database, in order to extract information of frequency and orientation in the images. 
Following [7], a set of 40 wavelets (8 orientations and 5 frequencies) are used, so that 
the overall dimensionality of the problem increases by a factor of 40. Unlike other 
methods that try to tackle this huge dimensionality by downsampling the feature 
vectors, the Parallel Gabor methods do not perform any downsampling process at all, 
but they consider the images convolved with the same wavelet in parallel and 
independently. After the Gabor-based PCA, a set of person-specific SVM classifiers 
[25] are trained with the PCA projection coefficients. In this scenario, the images of 
one person are considered as genuine cases and the remaining ones are impostors. As 
we work with the Gabor convolutions in parallel, there are 40 different SVMs per 
person, each corresponding to a wavelet frequency and orientation.  

The same steps are applied for the images in the test database. In this case, the 
PCA projection matrix learnt in the previous step is applied to these images in order 
to compute the PCA coefficients. These will be fed into the SVM classifiers in order 
to obtain a set of 40 scores, each one for every wavelet frequency and orientation, 
which are averaged so as to produce a final score [24]. With the fused scores, an 
overall equal-error rate (EER), for which the false acceptance rate equals the false 
rejection rate, is computed in order to characterize the goodness of the method. 

In this paper, we compare our algorithm with others such as a standard PCA, a 
FGPCA (with 14 features, 8 for the occluded images and the 30º-turned images) and a 
DGPCA with a downsample factor of 16. An alternative one-Gabor PCA method that 
performs no data fusion has been implemented, in order to find out the influence of 
the wavelet frequency and orientation on the final EER. 

 

 
Fig. 3. Outline of our algorithm (PGPCA). Black arrows indicate the SVM training stage and 
grey arrows show the SVM test phase. 

 



4 Design of Experiments 

Six experiments were carried out (Table 1), for which a set of 4 frontal images per 
person was used to train the SVM classifiers. In every experiment a test with a 
disjoint set of 4 images per person was completed in order to compute the overall 
EER of the system, which has to be done by considering the scores for all the person-
specific SVMs. Due to the configuration of the XM2VTS Database, only two tests 
could be performed, although six experiments are available for FRAV2D. As well 
there is a slight difference of meaning for test 6: While for FRAV2D the light 
direction changes from frontal diffuse to zenithal (which produces some shadows 
under the face features, such as the eyebrows, the nose and the mouth), for XM2VTS 
the illumination changes from frontal diffuse to lateral. This yields a dramatic effect 
on the images (half face is lit, while the other part is in shadow) and should be taken 
into account when comparing the results of this experiment for both databases.  

Table 1. Specification of our experiments. 

Experiment Images per person 
in gallery set 

Images per person 
in test set 

FRAV2D 
Database 

XM2VTS 
Database 

1 4 (neutral 
expression)   

2 4 (15º turn)   
3 4 (30º turn)   
4 4 (gestures)   
5 4 (occlusions)   
6 

4 (neutral 
expression) 

4 (illumination)   

5 Results and discussion 

5.1 Performance of Parallel Gabor PCA versus other methods 

In Figures 4 and 5 we present the EER with respect to the dimensionality, that is, the 
number of PCA coefficients kept after the dimension reduction, using different 
Gabor-based methods (FGPCA, DGPCA and PGPCA). A standard PCA has also been 
included as a reference.  

Figure 4 shows the results for the XM2VTS Database. When few eigenvalues (60 – 
70) are kept, PGPCA always obtains the lowest error compared to the other methods. 
This means that PGPCA succeeds even when an important dimension reduction is 
performed in the PCA stage. However, if we consider a higher dimensionality, 
DGPCA seems to obtain the lowest EER (1.0%), just slightly better than PGPCA 
(1.2%), in test 1 (Figure 4, left). In test 6 (Figure 4, right), DGPCA outperforms 
clearly the other methods with an EER 8.5% (PGPCA can only achieve 12.3%). 



  
Fig. 4. Evolution of the EER as a function of the dimensionality (number of coefficients kept in 
the dimension reduction) for XM2TVS Database. From left to right: tests 1 and 6. 

  

  

  
Fig. 5. Evolution of the EER as a function of the dimensionality for FRAV2D Database. From 
left to right, top to bottom: tests 1 to 6. 



In Figure 5 we present the results for the FRAV2D Database. In this case, PGPCA 
obtains the lowest EER for test 1 (0.00%), test 4 (4.88%) and test 5 (23.04%), beating 
DGPCA (0.01%, 4.89% and 24.17%, respectively). For test 6, both methods obtain 
similar results (DGPCA 0.17%, PGPCA 0.23%). However, tests 2 and 3 (turns) show 
that DGPCA outperforms easily the other methods, included PGPCA (13.76% vs. 
19.26% for a 15º head orientation, and 33.26% vs. 35.52% for a 30º head orientation). 
Therefore, for the FRAV2D Database, PGPCA methods achieves clearly the lowest 
error in three out of six experiments (tests 1, 4 and 5), although it obtains a slightly 
worse EER with respect to DGPCA in test 6. On the contrary, DGPCA outperforms 
PGPCA for tests 2 and 3. The other baseline methods, a standard PCA and FGPCA, 
always obtain the worst EERs for both databases in all experiments and have been 
included here only to help the comparison of results. 

5.2 Influence of Gabor wavelet frequency and orientation in a one-Gabor PCA 

We have carried out another experiment in order to investigate the discriminant 
capabilities of Gabor wavelets. In this case, all the images in the gallery database are 
convolved with a unique Gabor wavelet of a certain frequency ν and orientation µ. 
With no downsampling and after a PCA dimension reduction process, the feature 
vectors are used to train a set of person-specific SVMs, just like in the previous 
section. However, the main difference here is that no score fusion is performed. 
Therefore, we have obtained a set of 40 EERs, each one for every Gabor wavelet, 
repeated for the six experiments in Table 1. The goal of this section is to learn which 
wavelet, when considered alone, is able to extract the face features with the highest 
distinguishing properties. 

Figure 6 plots the EER as a function of the wavelet frequency (ν) for all 
orientations (µ) for both databases. For simplicity only the results for test 1 are shown 
(the corresponding figures for the other experiments are similar). This figure shows 
that, as a general rule, the wavelets with a higher frequency (low ν) give a better EER 
than the wavelets with a lower frequency (high ν), for both databases and all the 
experiments. This can be easily understood, as the low frequency information allows 
distinguishing a face from a “non-face”, but it is not enough to separate two similar 
faces. It is the high frequency information which provides the necessary details to tell 
one face from the other.  

 

  
Fig. 6. Evolution of the EER as a function of the wavelet frequency (ν) for all orientations (µ) 
for XM2VTS (left) and FRAV2D (right) for test 1. 

 



  
Fig. 7. Evolution of the EER as a function of the wavelet orientation (µ) for all frequencies (ν) 
for XM2VTS Database (left: test 1, right: test 6).  

  

  

  
 

Fig. 8. Evolution of the EER as a function of the wavelet orientation (µ) for all frequencies (ν) 
for FRAV2D Database (left to right, top to bottom: test 1 to 6).  

 
Figures 7 and 8 show the influence of the wavelet orientation µ. Only the high 

frequency wavelets have been considered (0≤ν≤2), as we have seen they are more 
discriminant. For the XM2VTS Database, the wavelet with the lowest EER is 
achieved with orientation µ=2 for test 1. Despite the face features can be horizontal 
(eyebrows, eyes, nostrils, mouth) or vertical (nose), the most influential wavelet 
extracts information from the lower left to the upper right corner of the image. On the 
contrary, in test 6, the best wavelet is the one with µ=0, which clearly coincides with 
the illumination gradient direction. With respect to FRAV2D Database, except for test 
2 (with 15º head orientation), oblique wavelets (µ=2, 3, 5, 6) usually have more 
discriminant power compared to horizontal (µ=4) or vertical wavelets (µ=0). 



Another interesting conclusion is that the distribution of the EER as a function of µ 
is not symmetrical with respect to the central wavelet µ=4, despite the symmetry of a 
pair of wavelets with parameters µ and 8–µ. The exception is test 2 (images with 15º 
head orientation). Bearing in mind that the images in the database have been corrected 
from tilt, this can be understood as evidence that faces are not perfectly symmetrical. 
Our results seem to agree with those of [19, 20], which state that asymmetrical faces 
are easier to recognize than their symmetrical counterparts. Specifically, we have seen 
that some wavelet orientations produce a lower EER compared to the corresponding 
symmetrical ones, which means that in some cases the left half of the face carries 
more discriminant information that the right half, or vice versa. 

6 Conclusions 

We have presented the results of a thorough study of the so-called Parallel Gabor 
PCA algorithm for XM2VTS and FRAV2D Databases. Our algorithm outperforms 
other methods, such as PCA, FGPCA and DGPCA, when fewer PCA coefficients are 
kept. It has also obtained the best EER in three out of six experiments. When it ranked 
second, the final EER was only slightly worse compared to DGPCA. However, for 
images with significant head orientation, DGPCA is clearly the most effective.   

In a one-Gabor PCA scenario we have seen that the features extracted by the high 
frequency (0≤ν≤2) and oblique orientations (45º – 135º) wavelets are the most 
discriminant, as they have achieved the lowest EER. The different performance of 
wavelets and their mirrored equivalents shows that faces are not perfectly 
symmetrical and that those asymmetries carry more discriminant information. The 
experiments performed with the images with lateral lighting also show that the 
optimal wavelet is the one with a wave vector oriented in the illumination direction. 
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