
Adapting Machine Learning Technique for Periodicity
Detection in Nucleosomal Locations in Sequences

Faraz Rasheed1, Mohammed Alshalalfa1, Reda Alhajj1,2

1Computer Science Dept, University of Calgary, Calgary, Alberta, Canada

2Department of Computer Science, Global University, Beirut, Lebanon

Abstract. DNA sequence is an important determinant of the positioning,
stability, and activity of nucleosome, yet the molecular basis of these remains
elusive. Positioned nucleosomes are believed to play an important role in
transcriptional regulation and for the organization of chromatin in cell nuclei.
After completing the genome project of many organisms, sequence mining
received considerable and increasing attention. Many works devoted a lot of
effort to detect the periodicity in DNA sequences, namely, the DNA segments
that wrap the Histone protein. In this paper, we describe and apply a dynamic
periodicity detection algorithm to discover periodicity in DNA sequences. Our
algorithm is based on suffix tree as the underlying data structure. The proposed
approach considers the periodicity of alternative substrings, in addition to
considering dynamic window to detect the periodicity of certain instances of
substrings. We demonstrate the applicability and effectiveness of the proposed
approach by reporting test results on three data sets.

1 Introduction

Eukaryotic DNA is complex with basic histone proteins forming nucleosome and
higher order chromatin. The ability of the histone octamer to wrap differing DNA
sequences into nucleosomes is highly dependent on the specific DNA sequence.
Those sequence fragments that wrap Histone proteins got a lot of attention because it
is of great importance to determine the positioning of nucleosome which affects gene
regulation positively and negatively.

In this work we consider DNA sequence as a time series data. Time series is a
sequence of data values collected usually at a uniform time interval. Real-life
applications have several examples like number of transactions per hour in a
superstore, hourly weather data for particular location, etc. We detect the periodicity
of certain sequences (dinucleotides) within a given DNA sequence. Periodicity
mining in time series data and in DNA sequence in particular is a hot area of research.
Our approach employs suffix trees as the basic data structure; we map the DNA
sequence into suffix tree based representation, which is then used to find the
periodicity in the DNA sequence.

Given the sequence of many DNA segments, the problem is to find the periodicity
of certain sequences along the whole DNA sequences. Periodicity detection in
biological data is different in many ways from the traditional time series data. First,

there is the concept of alternatives where a group of strings can replace each other.
The task is to find the periodicity of a group by considering alternative strings. For
instance, in our experiments the strings TA, TT and AA are parts of an alternative
group, and the presence of any of these is counted as valid repetition. Hence, the
sequence TTACGAATGGTAGT has the periodicity for alternative string group (AA,
TT, TA) with period = 5 starting at position 0 and periodic strength = 1 (or 100%).

Secondly, we introduce the concept of a window for detecting periodic
occurrences. In traditional time series data, we expect to find the periodic string (or
symbol) at positions stPos, stPos+p, stPos+2p, and so on, where stPos is the starting
position of the periodic pattern while p is period value. For example, in the sequence
abdadbacc, ‘a’ is periodic with period p = 3 starting from stPos = 0 with periodic
strength of 100%. Hence, we expect to find ‘a’ to appear at index positions 0, 3, 6, …,
which are stPos, stPos+p, stPos+2p, …. Unfortunately, DNA sequences generally do
not repeat that strictly. For example, in the chicken nucleosomal sequence that we
used in our experiments, the alternative string group (AA, TT, TA) is expected to be
repeated with the periodicity of 10, but it is not guaranteed that the alternative string
group would repeat after every 10 index positions; rather the alternative string group
may appear ±2 positions away from the expected periodic difference of 10. This
means that if the first appearance of the alternative group (say TT) is found at position
6 and the expected period is 10, then the second appearance of the alternative group
(say TA) may be found from position 14 to position 18 (16±2), if the relaxed
occurrence range (or window) is taken as 2. Formally, the appearance of the
occurrence string is considered as valid if it is found at index position stPos, stPos + p
± RR, stPos + 2p ± RR, stPos ± 3p + RR, …, where RR is the relaxed range window
under which the occurrence would be considered valid.

Thirdly, when applying periodicity detection algorithm on DNA sequence, we are
only interested in the periodicity of a specific string (alternative string group) and not
in the periodicity detection of all substrings and symbols. Further, we are only
interested in a specific period range and not in all the periods.

While achieving the third requirement might be possible with some of the
periodicity detection algorithms with few adjustments, most of them, especially the
ones which work on the shift & compare principle, e.g., [1, 2], cannot meet the first
two requirements. Our algorithm is flexible enough to fulfill these requirements as it
uses suffix tree and keeps the occurrence vector for each repeating sub-sequence.

Suffix tree based data structure allows us to quickly find all the occurrences of all
repeating sub-sequences (sub-strings) in linear time. Since we have the separate
occurrence vector for each sub-sequence, we may combine the occurrences of each
string in the alternative string group into one vector. As our algorithm calculates the
periodicity using the occurrence vector of a sub-string, we can run the algorithm for
periodicity calculation on the combined occurrence vector of alternative string group.
Since we validate the repetition by taking the mod of occurrence position with starting
position (as can be seen in the algorithm presented in Figure 3), we can also
accommodate the relaxed range occurrence concept by simply checking if a particular
occurrence falls in the relaxed range window of the expected periodic position.

The rest of the paper is organized as follows. Related work is presented in Section
2. Section 3 contains the description of the approach. Results and discussion is
presented in Section 4. Section 5 is conclusions.

2 Related Work

Periodicity detection both in time series databases, e.g., [2] and in DNA sequences,
e.g., [18] is getting more active and more significant. As finding periodicity in time
series databases in concerned, Indyk et al [1] presented their periodic trends algorithm
which can find the segment periodicity only, i.e., to detect if the entire time series can
be achieved by the repetition of a sequence of symbols. Elfeky et al [2] presented two
algorithms to find symbol and segment periodicities in the time series, but their
algorithm favors shorter periods. On the other hand, our algorithm is capable of
detecting symbol, segment, and sequence periodicity. The algorithm does not favor
any period size. Unlike the work of Elfeky, we do not need two separate algorithms to
find the symbole and segment periodicities. Our single algorithm can detect
segments, symbol and sequence periodicities by just a single pass over the data once
the series is represented in suffix tree.

To the best of our knowledge, no existing algorithm of periodicity detection can
fulfill all the three requirements outlined in the previous section. We elaborate on this
by comparing our algorithm with the three well-known algorithms, namely, Indyk [1],
Elfeky [2,14], and Ma [15] for the adaptablity to work with biological data.

For the first requirement, the concept of alternatives where a group of strings can
replace each other, Indyk [1] and Elfeky [14] can not be applied as they find the
segment periodicity of entire time series and not the for a single or a sequence of
alphabets. Elfeky [2] and Ma [15] can find the symbol periodicity, which is the
periodicity of a single symbol, but can not find the periodicity of a sequence of
symbols. So, if we wish to use this algorithm to find the periodicity of ‘TA’, we need
to calculate the periodicity of ‘T’ and ‘A’ separately, and then combine the periodicity
results using Han’s approach [16]; still it won’t give the exact periodic strength of
‘TA’, rather it would give the (min-max) range for the periodic strength. If we wish to
implement the alternative strings concept in [2], we need to replace all occurrences of
each string in alternative strings group by a single string and then we can run the
algorithm to find the periodicity of that string. Clearly, there is disadvantage in this
approach as we have to make a copy of the entire time series for each alternative
string group.

For the second requirement, the concept of time tolerance (or relaxed range)
window for periodic occurrences, it is used to accommodate various types of noise
(insertion, deletion, replacement or a mixture of these) in the data. Since Indyk [1]
does not calculate the symbol (or sequence) periodicity, it can not be used in this
situation. Elfeky [2] algorithm can not accommodate the time tolerance window
concept as it shifts the entire time series for each candidate period. Recently, Elfeky et
al presented a different algorithm called ‘WARP’ [14] to deal with this problem. But
their new algorithm can only find segment periodicity (periodicity for the entire time
series) and not symbol periodicity. Even if we somehow generate the DTW matrix for
each alternative string, it would worsen the complexity of the algorithm (which is
already O(n2) compared to their convolution algorithm’s [2] complexity O(n log n)).
The algorithm of Ma et al [15] can find the symbol periodicity with time tolerance
window, but can not find the sequence periodicity and would have to combine the
individual periodicity results for symbols to generate the approximate periodicity of
the sequence where the periodic strength is given in (min-max) range. Since we run

the algorithm on the occurrence of the entire string (like ‘TA’ or ‘AA’), we provide
the exact periodic strength for the strength and not in some min-max range.

The third requirement, i.e., calculating the periodicity for a specific set of
alternative strings, can be done by Elfeky’s [2] and Ma’s [15] algorithms, but we have
to combine the results of the periodicity of individual symbols and join them by
considering their starting positions in the time series; this would give us the periodic
strength in (min-max) range. Hence, we may conclude that our algorithm is more
flexible than any other periodicity detection approach to be applied to the biological
data. The algorithm can be easily modified to work with the DNA sequences in
addition to working for the regular time series data.

The periodicity detection in DNA sequence is of great significant in order to detect
the nucleosome positioning. Many works have shown that there is dinucleotides
periodicity in nucleosome–positioning sequences. Bina [3] demonstrated that there is
periodic signal for AA/TT (10.26 bp) and GG/CC(10.bp) and AA dominates the
occurrence of AA/TT. These results were obtained from the analysis of nucleosome
sequences derived from simian virus 40 chromatin. Bina used statistical approach,
which was based on the alignment of the DNA fragments with respect to their
midpoints. Satchwell et al [4] detected a periodicity of 10bp in chicken nucleosome .
They used fourier transformation to analyse the sequences. In another work, Herzel et
al [5] reported that correlation functions of complete genomes revealed pronounced
oscillations with period in the range of 10-11bp. Thastrom et al [6] discover
periodicity in DNA sequences using ClUSTAL W for multiple sequence alignment.
Segal et al [7] used probabilistic nucleosome-DNA model within statistical
framework to compute the nucleosome organization intrinsic to the genomic DNA
sequence. Interestingly, dinucleotide periodicity is detected in prokaryotes sequences,
although they do not have nucleosomes [8]. Hosid [9] showed that sequence
periodicity close to 11 is detected in E.coli . Only AA/TT dinucleotides contributed
to overall dunucleotide periodicity in intergenic regions.

3 Periodicity Detection

Motivated by the above analysis, we developed a novel approach for periodicity
detection by integrating suffix trees in the process. The proposed approach involves
several phases as described next.

Fig. 1. The suffix tree for the string
abcabbabb$.

2

3

3

ab
(0,3,6)

b
(3, 6)

abb$

b
(1,4,5,7,8)

0

cabbabb$
b

(4,7)

2

abb$

5

cabbabb$

4

abb$
1

cabbabb

2

$

6

$

8

$

7

12

3

3

ab
(0,3,6)

b
(3, 6)

abb$

b
(1,4,5,7,8)

0

cabbabb$
b

(4,7)

2

abb$

5

cabbabb$

4

abb$
1

cabbabb

2

$

6

$

8

$

7

1

Fig. 2. The suffix tree for the string
abcabbabb$ with substring occurrences.

First Phase: Suffix Tree Based Representation: Suffix tree is a famous data
structure [10] that has been proved to be very useful in string processing, e.g., [10,
11]. It can be efficiently used to find a substring in the original string, find the
frequent substring; it can also be used to solve other substring matching problems.
Each of the branches of the suffix tree represents a suffix of the original string. Hence,
a suffix tree for a string of length ‘n’ has ‘n’ branches, and thus ‘n’ leaf nodes. For
example, Figure 1 shows the suffix tree for the string ‘abc abb abb$’ where $ denotes
the terminating symbol.

Each leaf node in the tree has an integer value showing the starting position of the
substring achieved through the path from root to that leaf in the original string. Since
there are exactly ‘n’ suffixes for a string, each starting at one of the index positions,
there are ‘n’ leaf nodes in the tree. Each internal node (nodes that are neither leaf nor
the root) has the integer value representing the length of the substring so far achieved
while traversing from the root to the node. A suffix tree can have a maximum of 2n
nodes, but mostly having periodicity and repetition in the time series, there are less
than ‘2n’ nodes in the suffix tree for these series.

We use the famous Ukonen algorithm [17] to construct the suffix tree for a given
time series, which runs in linear time. The algorithm gives us the collection of
‘edges’, each having the starting node number, end node number, the first character
index and the last character index and the value. For example, the edge from the root
with label ‘ab’ in Figure 1 is represented as: starting node number: 0, end node
number: 1, first character index: 0, last character index 1, and the value: 2. Thus, this
edge can be represented in five-tuple (0, 1, 0, 1, 2). The subsequent edge labeling b is
represented as (1, 4, 2, 2, 3), and the edge labeling cabbabb$ is represented as (1, 5, 2,
9, 0).
Second Phase: Periodicity Detection: Once we have the decorated suffix tree, we
invoke the periodicity detection algorithm given in Figure 3. The performed process
traverses the tree in bottom up fashion. During the traversal, each leaf node passes its
value to the parent. The internal nodes after receiving the values from all of their
children collect these in the collection called the occurrence vector. An occurrence
vector is represented in our algorithm as ‘occur_vect’. The tree in Figure 1 after
performing this step is presented in Figure 2, where each internal node has its own
occurrence vector. In fact, this vector shows the index positions in the original time
series where this sequence appear. Since there are a maximum of 2n nodes in the
suffix tree of a string of length ‘n’ and there are ‘n’ leaf nodes in the suffix trees, the
tree should have significantly less than ‘n’ such vectors.

The second step is to calculate another vector for each of these occurrence vectors,
which we call the difference vector (or ‘diff_vect’ in our algorithm). Let V be the
occurrence vector of length m; V = v0, v1, …, vm-1

The difference vector ‘D’ would always have the length m-1 and would be
D = v1-v0, v2-v1,…, vm-1-vm-2

Table 1. Occurrence and difference vectors for the sequence ‘ab’.
Index 0 1 2 3 4 5 6 7 8 9
occur_vect 0 3 12 16 21 24 27 38 45 48
diff_vect 3 9 4 5 3 3 11 7 3

This is calculated by simply taking the difference of the consecutive values, and
thus called the difference vector. The difference vectors contain the candidate periods.
Each of these periods (with some exceptions mentioned in the sequel) is checked and
the corresponding periodic strength is calculated.

Let vj and sj represent the jth entry in the difference and occurrence vectors,
respectively, and ‘i’ be a positive integer. Then, we increment count(p, st) by 1 if and
only if sk = sj + ivj, where i×vj ≤ max(occur_vect). The count(p, st) represents the
frequency of the occurrence of a sequence starting from ‘st’ with a period value ‘p’.

If the length of the time series is n, then the periodicity strength ‘τ’ is calculated as:

The periodicity strength is the ratio between the frequency of a sequence’s

occurrences and the maximum possible number of occurrences for that sequence. For
example, for the sequence abcabbabc$, τ(3, 2, ‘c’) is 2/3, as there are 2 occurrences of
‘c’, while the maximum possible occurrences are 3.
Adjustments to make the algorithm work with DNA Sequences: The already
described algorithm [13] is not ready to deal with the DNA sequence data because of
the special properties of the DNA sequences discussed earlier in Section 1. But the
algorithm is flexible enough to work with such data with some minor changes. We are
not looking for one sequence (or substring say TT) to be repeated at certain positions;
however, we look for the occurrence of any of the alternative strings (AA/TT/TA).
This is achieved by keeping a separate collection for alternative string occurrences
and by applying the periodicity detection algorithm only on this combined collection.

Secondly, we adapted the window range of the periodic appearance of the string
when analyzing the occurrence vector (as can be seen in line 2.9.1 of the
CalculatePeriod algorithm in Figure 3). Hence, if the detected period is 10 then we
also count the occurrence at a position which is in the range of 8-12bp from the
occurrence of the pervious sequence (AA/TT/TA). Another problem is that not every
occurrence of AA/TT/TA is to be periodic. Some of these instances is just randomly
embedded in between two periodic instances. Our algorithm is able to deal with such
problems. We deal with noise problem as follows, we measure the distance between
the occurrence of any of AA/TT/TA instances and the following instance, if it is less
than 8, then we ignore the second instance temporarily and check the distance with
the instance which follows till we reach an instance in the range of 8-12 (as can be
seen in line 2.3 of the CalculatePeriod algorithm in Figure 3).

The algorithm also does not consider periods greater than a certain value. It
calculates the periodicity starting from each and every instance of the altenative
string. This way, we do not miss any instance to be considered in the periodicity.
Since we are looking for periodicity over the complete fragment, we ignore the period
starting after a specific index position. The algorithm can also detect the periodicity
strength, which allows us to include only the stonger periods (say those having
periodic strength over 0.6).

To demonstrate the functionality of the algorithm, let us consider a nucleosomal
DNA sequence of chicken as provided in [7]. This sequence contains 145 nucleotides
(or it is 145 characters long). The sequence along with the periods found by the

algorithm is presented in Figure 4. All the occurrences marked by either +, * or – are
added to the combined occurrence collection which is like

Figure 3. Algorithm for Periodicity Detection

1. Initialize rootOccurSt and rootOccurLength and stack ‘s’
2. With each children edge ‘e’ (having stn = 0) of the root edge
 2.1. Sort children edges
 2.2. e.pntVal = 0 // parent value
 2.3. e.pntOccurSt = rootOccurSt
 2.4. e.pnOccurLength = rootOccurLength
 2.5. push e to stack ‘s’
3. while (stack is not empty)
 3.1. e = s.pop()
 3.2. if edge is already marked
 3.2.1. ProcessEdge(e)
 3.2.2. if e.pntOccurSt is blank
 3.2.2.1. e.pntOccurSt = e.occurSt
 3.2.2.2. e.pntOccurLength = e.occurLength
 3.2.3. else Join&Sort(e.pntOccurSt, e.pntOccurLength,e.occurSt, e.occurLength)
 3.3. else if edge has not been marked yet
 3.3.1. if e leads to leaf e.val = N-(e.lci-e.fci) + 1 + e.pntVal
 3.3.1.1 occur.add(e.val)
 3.3.2. else e.val = e.lci - e.fci + 1 + e.pntVal
 3.3.2.1. find and sort all children edges of e
 3.3.2.2. With each child edge ‘ce’
 ce.pntVal = e.val
 ce.pntOccurSt = e.occurSt
 ce.pnOccurLength = e.occurLength
 s.push(ce)
 3.3.3. mark ‘e’
4. Initialize an Edge ebio and set ebio.occurSt = bioOccurList,
 ebio.occurLength = bioOccurList.length,
 ebio.value = length of any alternative string
5. CalculatePeriod(ebio)
ProcessEdge: Edge e
1. Initialize chkStr = T.subString(e.occurSt, e.val)
2. if(chkStr matches any of alternatives)
 2.1. Add all e.occurLength number of occurences starting from
 e.occurSt to bioOccurList
CalculatePeriod: Edge e
1. current = e.occurSt
2. for (i = 1; i < e.occurLength; i++)
 2.1. diffVal = current.next.val - current.val
 2.2. Initialize bioCurr = current.next
 2.3. while(diffValue < minPeriodValue AND bioCurr != null)
 2.3.1. diffValue = bioCurr.Value - current.value
 2.3.2. bioCurr = bioCurr.next
 2.4. if (diffVal < e.val OR diffVal > maxPeriodVal OR current.val > minStPos)
 2.4.1 current = current.next; continue from 2
 2.5. initialize p as candidate period
 2.6. p.val = diffVal, p.stPos = current.val, p.fci = p.stPos, p.len = e.val
 2.7. modRes = p.stPos mod p.val
 2.8. subCurrent = current, preSubCurValue = -5
 2.9. for (int j = i; j<=e.occurLength; j++)
 2.9.1. if(modRes >= ((subCurrent.value mod p.periodValue) - relaxedRange)
 AND modRes <= ((subCurrent.value mod p.periodValue) + relaxedRange))
 2.9.1.1. if((subCurrent.value - preSubCurValue) > 2*relaxedRange-1)
 2.9.1.1.1. p.freq++
 2.9.1.1.2. preSubCurValue = subCurrent.value
 2.9.2. subCurrent = subCurrent.next
 2.9. if ((T.Len - 1 - p.stPos) mod p.val >= e.val) y = 1 else y = 0
 2.10. p.th = p.freq / Floor((T.Len - 1 - p.stPos) / p.val + y)
 2.11. if (p.th >= minThreshold) add p to PeriodCollection
 2.12. current = current.next

Figure 4 The chicken sequence and corresponding periods

Occur_vect(TT/AA/TA) = (3, 4, 14, 16, 28, 33, 42, 46, 54,…, 139, 140).
Now the difference between any two occurrence is a candidate period. The first

period found by the algorithm is 10, starting at position 4. Its valid occurrences are
T(p, stPos) = T(10, 4) = 4, 14, 33, 42, 54, 72, 86, 92, 106, 114, 126
τ(10,4) = 11 / ⎣ ((144 – 4) / 10) ⎦ = 11/14 = 0.78

Note that positions 33 and 42 are considered as valid because they occur inside +2
window of the exact positions 34 and 44, respectively.

4 Experimental Evaluation

For the experimental evaluation of the algorithm, we have used chicken and yeast
data sets from [7]. These data sets contain 177 and 199 fragments of DNA,
respectively, each is a nucleosome positioning sequence of around 150bp. In order to
check the correctness of our algorithm, we used another dataset which contains
random sequences from different chromosomes of chicken. We are concerned about
the periodicity of AA/TT/TA in a dynamic window of 8 to 12 nucleotides.

The chicken and yeast data are known to have the periodicity of ~10 for
AA/TT/TA. After applying the algorithm to the 177 chicken sequences, we got all
possible periodicities for AA/TT/TA within each fragment. Then, we calculated the
average of the periodicities for each fragment and the average for the whole set of
fragments. For both chicken and yeast datasets, we were able to find the periodicity of
AA/TT/TA in about 90% of the sequences, and the average periodicity is ~9.4 for
chicken and ~9.3 for yeast. We also could apply the algorithm to the random dataset
and only about 10% of the sequences showed periodicity. We believe this small
percentage occurred by chance because some of the random sequences might be
selected with nucleosome–positioning sequences. The percentage of each of the
datasets showing the periodicity is depicted in Figure 5.

Many studies have shown that the periodicity of AA/TT in the eukaryotic is ~ 10.
This periodicity has a lot of biological meaning in addition to its meaning in time
series analysis. In a “relaxed” double-helical segment of DNA, the two strands twist

Line 113

Period StPos Threshold SymbolString SymbolInMap

10 4 0.78 TT *
12 16 0.82 TA +
Both Period 10&12 #
Occurence of TT/TA/AA that is not periodic --
Symbol: -** **++ ++ ** ## --
Sequence: TGCTTTGAGCACACAATAGAGGATCATGTTGAGTTCCTCATCAACCAATGC
Index: 012345678901234567890123456789012345678901234567890
Symbol: ## -- ** ++ ## **
Sequence: TCCAAGTCCGCCTCCATAGGGTTCTCCTTCAGCCATTCTCCTTCAGCTG
Index: 1234567890123456789012345678901234567890123456789
Symbol: ++ ** -++** -- ## ---
Sequence: AACTGGAAGTGTTAAACATAGTGCCATTCAGAGTCTCTGAAAGCT
Index: 012345678901234567890123456789012345678901234

around the helical axis once every 10.55bp of the sequence. If a DNA segment under
twist strain were to be closed into a circle by joining its two ends and then it is
allowed to move freely, the circular DNA would contort into new shape, such as a
simple figure-eight. Such a contortion is a supercoil. DNA supercoiling is important
for DNA packaging within all cells. Because the length of DNA can be thousands of
times that of a cell, packaging this genetic material into the cell or nucleus (in
eukaryotes) is a difficult feat. Supercoiling of DNA reduces the space and allows for a
lot more DNA to be packaged. Extra helical twists are positive and lead to positive
supercoiling, while subtractive twisting causes negative supercoiling. According to
Crick’s formula for helicalDNA trajectories, periods above 10.55bp generate
negatively supercoiled DNA, whereas lower periods induce positive supercoiling.
Therefore, sequence periodicities reflect the characteristic superhelical density of
genome DNA.

Our results confirm that periodicity of AA/TT/TA is around 10bp, which agrees
with all the previous results reported by statistical approaches [3, 4, 7]. Positive
supercoiling has shown to inhibit gene expression [12]. This result indicates that the
nucleosomal DNA is not an active region. Since the hot regions which are transcribed
continuously will be most of the time free from Histone proteins to let other proteins
like RNA polymerase to access the DNA code. However, when the DNA is positively
supercoiled, that means it will stay bounded to the histone proteins which means no
transcription process will take place. We think that the periodicity of housekeeping
genes for example will be greater than 10.55bp since it is active all the time.

We also argue that the periodicities detected in the chicken and yeast are not by
chance because the algorithm did not discover any periodicity in the tested random
dataset as expected. This means that our algorithm was able to deal with DNA
sequences to identify periodicities when they do exist.

Figure 5. Percentage of Periodic Fragment

5 Conclusions

DNA sequence analysis is getting more popular among biologists and statisticians.
Most of the approaches to analyze DNA sequence are based on statistical techniques.
In this work, we have applied an algorithm which is used in time series analysis to

Percentage of Periodic Fragement

0

50

100

150

200

250

Chicken data Yeast data Random data

N
um

be
r o

f f
ra

gm
en

ts

Periodic Non-periodic

detect periodicity in DNA sequence. We considered DNA sequence as time series
data, and the occurrence of each nucleotide is an event at certain time. This way, we
demonstrate that our approach is flexible enough to deal with DNA sequence which is
more challenging than time series data. Currently, we are extending the algorithm to
automatically work with both time series and DNA sequences. Also, we are planning
to apply the algorithm on whole genome sequences.

References

1. P. Indyk, N. Koudas, and S. Muthukrishan, “Identifying representative trends in massive
time series data sets using sketches”, Proc. of VLDB, 2000.

2. M.G. Elfeky, W.G. Aref, and A.K. Elmagramid, “Periodicity detection in time series
databsaes,” IEEE TKDE, Vol.17, No.7, pp.875-887, 2005.

3. M. Bina, “Periodicity of dinucleotide in Nucleosomes derived from simian virus 40
chromatin, Journal of Molecular Biology, 235, pp.198-208, 1994.

4. S.C. Sarchwell, et al, “Sequence periodicities in checkin nucleosome core DNA’’, Journal of
Molecular Biology, 191, pp.659-675, 1986.

5. H. Herzel, O. Weiss, and N. Trifonov, “10-11 bp periodicities in complete genomes reflect
protein structure and DNA folding”, Bioinformatics, vol.15, no.3, pp.187-193, 1999.

6. A. Thastrom, L.M. Bingham, and J. Widom, “Nucleosomal locations of dominant DNA
sequence motifs for histone-DNA interaction and nucleosome positioning,” Journal of
Molecular Biology, 338, pp.695-709, 2004.

7. E. Segal, et al, “Agenomic code for nucleosome positioning”, Nature, vol.442, no.17,
pp.772-778.

8. H. Herzel, O. Weiss, and E.N. Trifonov, “Periodicity in complete genome of archaea
suggests positive supercoiling”, Journal of Biomol Struct Dyn, 16, pp.341-345, 1998.

9. S. Hosid, et al, “Sequence periodicity of Escherichia coli is concentrated in intergenic
regions,” BMC Molecular Biology, vol.5, no.14, 2004.

10. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univ. Press, 1997.
11. R. Grossi and G. F. Italiano, “Suffix trees and their applications in string algorithms”, Proc.

of South American Workshop on String Processing, pp.57-76, 1993.
12. M.R. Gartenberg and J.C. Wang, “Positive supercoiling of DNA greatly diminishes mRNA

synthesis in yeast,” PNAS, vol.89, no.23, pp.11461-11465, 1992.
13. F. Rasheed, R. Alhajj, “Using suffix trees for the periodicity detection in time series

databases”, Technical Report, Dept of Computer Science, University of Calgary, May 2007.
14. M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid, "WARP: Time Warping for Periodicity

Detection," Proc. of IEEE ICDM, pp.138-145, 2005
15. S. Ma, J. L. Hellerstein, "Mining partially periodic event patterns with unknown periods,"

Proc. of IEEE ICDE, pp.205-214, 2001.
16. J. Han, Y. Yin, and G. Dong, "Efficient Mining of Partial Periodic Patterns in Time Series

Database," Proc. of IEEE ICDE, p.106, 1999.
17. E. Ukkonen. “Online Construction of Suffix Trees”, Algorithmica, 14(3):249-260, 1995.
18. M. Ahdesmäki, H. Lähdesmäki and O.,Yli-Harja, “Robust Fisher's test for periodicity

detection in noisy biological time series,” Proc. of IEEE International Workshop on
Genomic Signal Processing and Statistics, Tuusula, FINLAND, 2007.

