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t. Generative Topographi
 Mapping (GTM) is a non-linear la-tent variable model that provides simultaneous visualization and 
lus-tering of high-dimensional data. It was originally formulated as a 
on-strained mixture of distributions, for whi
h the adaptive parameterswere determined by Maximum Likelihood (ML), using the Expe
tation-Maximization (EM) algorithm. In this paper, we de�ne an alternativevariational formulation of GTM that provides a full Bayesian treatmentto a Gaussian Pro
ess (GP)-based variation of GTM. The performan
eof the proposed Variational GTM is assessed in several experiments witharti�
ial datasets. These experiments highlight the 
apability of Varia-tional GTM to avoid data over�tting through a
tive regularization.1 Introdu
tionManifold learning models attempt to des
ribe multivariate data in terms of lowdimensional representations, often with the goal of allowing the intuitive visual-ization of high-dimensional data. Generative Topographi
 Mapping (GTM) [1℄is one su
h model, whose probabilisti
 setting and fun
tional similarity make ita prin
ipled alternative to Self-Organizing Maps (SOM)[2℄. In its basi
 formu-lation, the GTM is trained within the ML framework using EM, permitting theo

urren
e of data over�tting unless regularization is in
luded, a major draw-ba
k when modelling noisy data. Its probabilisti
 de�nition, though, allows theformulation of prin
ipled extensions, su
h as those providing a
tive model regu-larization to avoid over�tting [3,4℄.The regularization methods in [3,4℄ were based on Bayesian eviden
e ap-proa
hes. Alternatively, we 
ould reformulate GTM within a fully Bayesian ap-proa
h and endow the model with regularization 
apabilities based on variationalte
hniques [5,6℄. In this paper, we de�ne a novel Variational GTM model basedon the GTM with GP prior outlined in [3℄, to whi
h a Bayesian estimation of itsparameters is added.Several preliminary experiments with noisy arti�
ial data were designed toshow how Variational GTM limits the negative e�e
t of data over�tting, improv-ing on the performan
e of the standard regularized GTM [3℄ and the standardGTM with GP prior, while retaining the data visualization 
apabilities of themodel.



The remaining of the paper is organized as follows: First, in se
tion 2, anintrodu
tion to the original GTM, the GTM with GP prior and a Bayesian ap-proa
h for the GTM, are provided. This is followed, in se
tion 3, by the des
rip-tion of the proposed Variational GTM. Several experiments for the assessmentof the performan
e of the proposed model are des
ribed, and their results pre-sented and dis
ussed, in se
tion 4. The paper wraps up with a brief 
on
lusionse
tion.2 Generative Topographi
 Mapping2.1 The Original GTMThe neural network-inspired GTM is a nonlinear latent variable model of themanifold learning family, with sound foundations in probability theory. It per-forms simultaneous 
lustering and visualization of the observed data througha nonlinear and topology-preserving mapping from a visualization latent spa
ein ℜL(with L being usually 1 or 2 for visualization purposes) onto a manifoldembedded in the ℜD spa
e, where the observed data reside. The mapping thatgenerates the manifold is 
arried out through a regression fun
tion given by:
y = WΦ (u) (1)where y ∈ ℜD, u ∈ ℜL, W is the matrix that generates the mapping, and Φ isa matrix with the images of S basis fun
tions φs (de�ned as radially symmetri
Gaussians in the original formulation of the model). To a
hieve 
omputationaltra
tability, the prior distribution of u in latent spa
e is 
onstrained to form auniform dis
rete grid of K 
entres, analogous to the layout of the SOM units, inthe form:

p (u) =
1

K

K
∑

k=1

δ (u − uk) (2)This way de�ned, the GTM 
an also be understood as a 
onstrained mixtureof Gaussians. A density model in data spa
e is therefore generated for ea
h
omponent k of the mixture, whi
h, assuming that the observed data set X is
onstituted by N independent, identi
ally distributed (i.i.d.) data points xn,leads to the de�nition of a 
omplete likelihood in the form:
P (X|W, β) =

(

β

2π

)ND/2 N
∏

n=1

{

1

K

K
∑

k=1

exp

(

−
β

2
‖xn − yk‖

2

)

} (3)where yk = WΦ (uk). From Eq. 3, the adaptive parameters of the model, whi
hare W and the 
ommon inverse varian
e of the Gaussian 
omponents, β, 
an beoptimized by ML using the EM algorithm. Details 
an be found in [1℄.



2.2 Gaussian Pro
ess Formulation of GTMThe original formulation of GTM des
ribed in the previous se
tion has a hard
onstraint imposed on the mapping from the latent spa
e to the data spa
edue to the �nite number of basis fun
tions used. An alternative approa
h isintrodu
ed in [3℄, where the regression fun
tion using basis fun
tions is repla
edby a smooth mapping 
arried out by a GP prior. This way, the likelihood takesthe form:
P (X|Z,Y, β) =

(

β

2π

)ND/2 N
∏

n=1

K
∏

k=1

{

exp

(

−
β

2
‖xn − yk‖

2

)}zkn (4)where: Z = {zkn} are binary membership variables 
omplying with the restri
-tion∑K
k=1 zkn = 1 and yk = (yk1, . . . , ykD)

T are the 
olumn ve
tors of a matrix
Y and the 
entroids of spheri
al Gaussian generators. Note that the spirit of
yk in this approa
h is similar to the regression version of GTM (Eq. 1) butwith a di�erent formulation: A GP formulation is assumed introdu
ing a priormultivariate Gaussian distribution over Y de�ned as:

P (Y) = (2π)
−KD/2 |C|−D/2

D
∏

d=1

exp

(

−
1

2
yT

(d)C
−1y(d)

) (5)where y(d) is ea
h one of the row ve
tors of the matrix Y and C is a matrixwhere ea
h of its elements is a 
ovarian
e fun
tion that 
an be de�ned as
C (i, j) = C (ui,uj) = ν exp

(

−
‖ui − uj‖

2

2α2

)

, i, j = 1 . . .K (6)and where parameter ν is usually set to 1. The α parameter 
ontrols the �exibilityof the mapping from the latent spa
e to the data spa
e. An extended review of
ovarian
e fun
tions 
an be found in [7℄. An alternative GP formulation wasintrodu
ed in [8℄, but this approa
h had the disadvantage of not preservingthe topographi
 ordering in latent spa
e, being therefore inappropiate for datavisualization purposes.Note that Eqs. 3 and 4 are equivalent if a prior multinomial distribution over
Z in the form P (Z) =

∏N
n=1

∏K
k=1

(

1
K

)zkn = 1
KN is assumed.Eq. 4 leads to the de�nition of a log-likelihood and parameters Y and βof this model 
an be optimized using the EM algorithm, in a similar way tothe parameters W and β in the regression formulation. Some basi
 details areprovided in [3℄.2.3 Bayesian GTMThe spe
i�
ation of a full Bayesian model of GTM 
an be 
ompleted by de�ningpriors over the parameters Z and β. Sin
e zkn are de�ned as binary values, amultinomial distribution 
an be 
hosen for Z:



P (Z) =
N
∏

n=1

K
∏

k=1

pzkn

kn (7)where pkn is the parameter of the distribution.As in [9℄, a Gamma distribution1 is 
hosen to be the prior over β:
P (β) = Γ (β|dβ , sβ) (8)where dβ and sβ are the parameters of the distribution. Therefore, the jointprobability P (X,Z,Y, β) is given by:

P (X,Z,Y, β) = P (X|Z,Y, β)P (Z)P (Y)P (β) (9)This expression 
an be maximized through eviden
e methods using the Lapla
eapproximation [10℄ or, alternatively, using Markov Chain Monte Carlo [11℄ orvariational [5,6℄ methods.3 Variational GTM3.1 Motivation of the Use of Variational Inferen
eA basi
 problem in statisti
al ma
hine learning is the 
omputation of the marginallikelihood P (X) =
∫

P (X, Θ) dΘ, where Θ = {θi} is the set of parametersde�ning the model. Depending of the 
omplexity of the model, the analyti
al
omputation of this integral 
ould be intra
table. Variational inferen
e allowsapproximating the marginal likelihood through Jensen's inequality as follows:
lnP (X) = ln

∫

P (X, Θ) dΘ = ln

∫

Q (Θ)
P (X, Θ)

Q (Θ)
dΘ

≥

∫

Q (Θ) ln
P (X, Θ)

Q (Θ)
dΘ = F (Q) (10)The fun
tion F (Q) is a lower bound fun
tion su
h that its 
onvergen
e guar-antees the 
onvergen
e of the marginal likelihood. The goal in variational meth-ods is 
hoosing a suitable form for the density Q (Θ) in su
h a way that F (Q)
an be readily evaluated and yet whi
h is su�
iently �exible that the bound isreasonably tight. A reasonable approximation for Q (Θ) is based on the assump-tion that it fa
torizes over ea
h one of the parameters as Q (Θ) =

∏

i Qi (θi).That assumed, F (Q) 
an be maximized leading the optimal distributions:
Qi (θi) =

exp 〈lnP (X, Θ)〉k 6=i
∫

exp 〈lnP (X, Θ)〉k 6=i dθi
(11)where 〈 . 〉k 6=i denotes an expe
tation with respe
t to the distributions Qk (θk)for all k 6= i.1 The Gamma distribution is de�ned as follows: Γ (ν|dν , sν) =

s
dν
ν ν

dν−1 exp−sνν

Γ (dν)



3.2 A Bayesian Approa
h of GTM Based on Variational Inferen
eIn order to apply the variational prin
iples to the Bayesian GTM within theframework des
ribed in the previous se
tion, a Q distribution of the form:
Q (Z,Y, β) = Q (Z)Q (Y)Q (β) (12)is assumed, where natural 
hoi
es of Q (Z), Q (Y) and Q (β) are similar dis-tributions to the priors P (Z), P (Y) and P (β), respe
tively. Thus, Q (Z) =

∏N
n=1

∏K
k=1 p̃

zkn

kn , Q (Y) =
∏D

d=1 N
(

y(d)|m̃
(d), Σ̃

), and Q (β) = Γ
(

β|d̃β , s̃β

).Using these expressions in Eq. 11, the following formulation for the variationalparameters Σ̃, m̃(d), p̃kn, d̃β and s̃β 
an be obtained:
Σ̃ =

(

〈β〉
N
∑

n=1

Gn + C−1

)−1 (13)
m̃(d) = 〈β〉 Σ̃

N
∑

n=1

xnd 〈zn〉 (14)
p̃kn =

exp
{

− 〈β〉
2

〈

‖xn − yk‖
2
〉}

∑K
k′=1 exp

{

− 〈β〉
2

〈

‖xn − yk′‖2
〉} (15)

d̃β = dβ +
ND

2
(16)

s̃β = sβ +
1

2

N
∑

n=1

K
∑

k=1

〈zkn〉
〈

‖xn − yk‖
2
〉 (17)where zn 
orresponds to ea
h row ve
tor of Z and Gn is a diagonal matrix of size

K ×K with elements 〈zn〉. The moments in the previous equations are de�nedas: 〈zkn〉 = p̃kn, 〈β〉 =
d̃β

s̃β
, and 〈‖xn − yk‖

2
〉

= DΣ̃kk +
∑D

d=1

(

xnd − m̃(kd)
)2.Finally, and a

ording to Eq. 10, the lower bound fun
tion F (Q) is derivedfrom:

F (Q) =

∫

Q (Z)Q (Y)Q (β) ln
P (X|Z,Y, β)P (Z)P (Y)P (β)

Q (Z)Q (Y)Q (β)
dZdYdβ (18)Integrating out, we obtain:

F (Q) = 〈lnP (X|Z,Y, β)〉 + 〈lnP (Z)〉 + 〈lnP (Y)〉 + 〈lnP (β)〉

− 〈lnQ (Z)〉 − 〈lnQ (Y)〉 − 〈lnQ (β)〉 (19)where the moments are expressed as:



〈lnP (X|Z,Y, β)〉 =
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〈lnP (Z)〉 =
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〈lnP (β)〉 = dβ ln sβ − lnΓ (dβ) + (dβ − 1) 〈lnβ〉 − sβ 〈β〉 (23)
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〈lnQ (β)〉 = d̃β ln s̃β − lnΓ
(

d̃β

)

+
(

d̃β − 1
)

〈lnβ〉 − s̃β 〈β〉 (26)and
〈lnβ〉 = ψ

(
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)

− ln s̃β (27)
〈

yT
(d)C

−1y(d)

〉

= tr [C−1

(

Σ̃ + m̃(d)
(

m̃(d)
)T
)] (28)In the previous expressions, Γ (·) are Gamma fun
tions, and ψ (·) is theDigamma fun
tion. Details of these 
al
ulations 
an be found in [12℄.4 Experiments4.1 Experimental DesignThe main aim of the set of experiments presented and dis
ussed in this se
tionis the preliminary assessment of the robustness of the proposed model in thepresen
e of noise. Moreover, the performan
e of Variational GTM is 
omparedwith that of the standard GTM (with a GP formulation).The models used in all the experiments were initialized in the same way to al-low straightforward 
omparison. The matrix 
entroids of the Gaussian generators

Y and the inverse of the varian
e β were set through PCA-based initialization[1℄ and the parameters {pkn} are �xed and were initialized using the posteriorsele
tion probability of the latent node k given data point xn, de�ned usingBayes' theorem as:



pkn =
exp

(

−β
2 ‖xn − y∗

k‖
2
)

∑K
k=1 exp

(

−β
2 ‖xn − y∗

k‖
2
) (29)where y∗

k is the initial value obtained previously for ea
h 
entroid k. The param-eter sβ was set to dβ/β and dβ was initialized to a small value 
lose to 0. Forea
h set of experiments, several values of K and α were used.4.2 Robustness of the Variational GTM in the Presen
e of NoiseThe goal of this �rst set of experiments was assessing and 
omparing the ro-bustness of both the standard GTM using GP and the proposed VariationalGTM models in the presen
e of in
reasing levels of noise, as well as 
ompar-ing it to the robustness of the standard regularized GTM with single regu-larization term [3℄ trained by EM (GTM-SRT). The arti�
ial data sets usedto this end 
onsisted of 700 points sampled from a 
ir
umferen
e to whi
hdi�erent levels of random Gaussian noise were added (standard deviations of
{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}). For ea
h noise level, 10 data sets wererandomly generated and used to train every model. All training runs used thefollowing settings: K = 36 for all models, α = 0.1 for the GTM-GP and theVariational GTM and dβ = 0.01 for the Variational GTM. Furthermore, thenumber of basis fun
tions for GTM-SRT was set to 25. Di�erent values of Kand α were 
onsidered with similar results.Two measures were employed to gauge the regularization 
apabilities of themodels: The mean square error between the 
entroids {yk} and the underlying
ir
umferen
e without noise, and the standard deviation of the square error.The results for these measures, displayed in Fig. 1, indi
ate that, as the levelsof noise in
rease, the mean and standard deviation square errors grow to bemu
h higher for the standard GTM using GP than for the proposed VariationalGTM, although in the 
ase of the mean error this di�eren
e 
annot be 
learlyappre
iated for very low levels of noise. Furthermore, Variational GTM is shownto outperform GTM-SRT at all noise levels, while being far less sensitive to thein
rease of su
h levels.These results are a preliminary but 
lear indi
ation that the proposed Varia-tional GTM provides better regularization performan
e than both the standardGTM using GP and GTM-SRT. This is neatly illustrated in Fig. 2, for the �rsttwo models, where two samples of the arti�
ial data sets used in this experimentsand their 
orresponding results (represented by the 
onne
ted 
entroids) are dis-played. Although at low noise levels, both models perform similarly, at higherlevels the standard GTM using GP �ts the noise to a great extent, whereasVariational GTM is mu
h less a�e
ted by it and is 
apable of reprodu
ing theunderlying data generator far more faithfully. This should lead to a model withbetter generalization 
apabilities.
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Fig. 1. Plots of the average mean square error between the 
entroids {yk} and thetheori
al 
ir
umferen
e whithout noise (left plot) and the average standard deviationof the square error (right plot) for GTM-SRT (dashed line), for the standard GTMusing GP (dashed-dotted) and the proposed Variational GTM (solid). The verti
albars indi
ate the standard deviation of these averages.4.3 Data Visualization Using Variational GTMA se
ond set of experiments was 
arried out with the aim of verifying the topo-graphi
 preservation 
apabilities of the proposed Variational GTM and 
onse-quently, its data visualization 
apabilities on a low-dimensional dis
rete latentspa
e. For that, an arti�
ial data set 
onsisting of 12 hetereogenously separated
lusters was generated by means of an equivalent number of radial Gaussian dis-tributions. The following settings were used to train the model: K = 64, α = 0.1and dβ = 0.01. The resulting data visualization is a

omplished through themembership map generated by means of the mode proje
tion [1℄ of the data intothe latent spa
e, given by umode

n = argmax

k

(p̃kn), where the variational parameter
p̃kn was used.The data set and its 
orresponding membership map are displayed in Fig.3, where several interesting data points, some of these pla
ed well within the
lusters and others in the edge between two 
lusters, are singled out for illustra-tion. It is 
lear that their representation in latent spa
e faithfully preserves theexisting topographi
 ordering and neighbouring relations in data spa
e.5 Con
lusionsDetails of a variational formulation of GTM have been provided in this paper.Through several experiments, Variational GTM has been shown to endow themodel with e�e
tive regularization properties, enabling it to avoid, at least par-tially, �tting the noise and, therefore, enhan
ing its generalization 
apabilities.This regularization has been shown to be more e�e
tive than that provided bythe standard GTM with GP formulation and the standard regularized GTM.
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Fig. 2. Left 
olumn: two of the arti�
ial data sets generated from a 
ir
umferen
e(dashed line) to whi
h noise of levels 0.1 (top row) and 0.25 (bottom row) was added.Middle 
olumn: in
luding results after training using standard GTM with GP prior.Right 
olumn: in
luding results after training using the proposed Variational GTM.The resulting manifold embedded in the data spa
e is represented by the 
onne
ted
entroids {yk} (�lled squares) in the 
entres of 
ir
les of radius 2
p

β−1) (
ommonstandard deviation).The experiments reported in this brief paper are ne
essarily limited by spa
eavailability and therefore preliminary. A mu
h more detailed experimental de-sign, in
luding more datasets spanning a wider range of 
hara
teristi
s, as wellan expli
it testing of its generalization 
apabilities, would be required to 
om-plete the assessment of the model. The 
urrent study should be understood asa �rst step towards that end.A variational treatment of parameter α is di�
ult and, therefore, it was�xed a priori in the reported experiments. However, an interesting approa
h toits 
al
ulation in the 
ontext of variational GP 
lassi�ers, using lower and upperbound funtions, was presented in [13℄ and 
ould be 
onsidered in future workwith the proposed Variational GTM.Referen
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