
Variational GTMIván Olier and Alfredo VellidoDepartment of Computing Languages and Systems (LSI)Tehnial University of Catalonia (UPC)C/. Jordi Girona 1-3, Edi�i Omega, Despatx S10608034 - Barelona, Spain{iaolier,avellido}�lsi.up.eduAbstrat. Generative Topographi Mapping (GTM) is a non-linear la-tent variable model that provides simultaneous visualization and lus-tering of high-dimensional data. It was originally formulated as a on-strained mixture of distributions, for whih the adaptive parameterswere determined by Maximum Likelihood (ML), using the Expetation-Maximization (EM) algorithm. In this paper, we de�ne an alternativevariational formulation of GTM that provides a full Bayesian treatmentto a Gaussian Proess (GP)-based variation of GTM. The performaneof the proposed Variational GTM is assessed in several experiments witharti�ial datasets. These experiments highlight the apability of Varia-tional GTM to avoid data over�tting through ative regularization.1 IntrodutionManifold learning models attempt to desribe multivariate data in terms of lowdimensional representations, often with the goal of allowing the intuitive visual-ization of high-dimensional data. Generative Topographi Mapping (GTM) [1℄is one suh model, whose probabilisti setting and funtional similarity make ita prinipled alternative to Self-Organizing Maps (SOM)[2℄. In its basi formu-lation, the GTM is trained within the ML framework using EM, permitting theourrene of data over�tting unless regularization is inluded, a major draw-bak when modelling noisy data. Its probabilisti de�nition, though, allows theformulation of prinipled extensions, suh as those providing ative model regu-larization to avoid over�tting [3,4℄.The regularization methods in [3,4℄ were based on Bayesian evidene ap-proahes. Alternatively, we ould reformulate GTM within a fully Bayesian ap-proah and endow the model with regularization apabilities based on variationaltehniques [5,6℄. In this paper, we de�ne a novel Variational GTM model basedon the GTM with GP prior outlined in [3℄, to whih a Bayesian estimation of itsparameters is added.Several preliminary experiments with noisy arti�ial data were designed toshow how Variational GTM limits the negative e�et of data over�tting, improv-ing on the performane of the standard regularized GTM [3℄ and the standardGTM with GP prior, while retaining the data visualization apabilities of themodel.



The remaining of the paper is organized as follows: First, in setion 2, anintrodution to the original GTM, the GTM with GP prior and a Bayesian ap-proah for the GTM, are provided. This is followed, in setion 3, by the desrip-tion of the proposed Variational GTM. Several experiments for the assessmentof the performane of the proposed model are desribed, and their results pre-sented and disussed, in setion 4. The paper wraps up with a brief onlusionsetion.2 Generative Topographi Mapping2.1 The Original GTMThe neural network-inspired GTM is a nonlinear latent variable model of themanifold learning family, with sound foundations in probability theory. It per-forms simultaneous lustering and visualization of the observed data througha nonlinear and topology-preserving mapping from a visualization latent spaein ℜL(with L being usually 1 or 2 for visualization purposes) onto a manifoldembedded in the ℜD spae, where the observed data reside. The mapping thatgenerates the manifold is arried out through a regression funtion given by:
y = WΦ (u) (1)where y ∈ ℜD, u ∈ ℜL, W is the matrix that generates the mapping, and Φ isa matrix with the images of S basis funtions φs (de�ned as radially symmetriGaussians in the original formulation of the model). To ahieve omputationaltratability, the prior distribution of u in latent spae is onstrained to form auniform disrete grid of K entres, analogous to the layout of the SOM units, inthe form:
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2.2 Gaussian Proess Formulation of GTMThe original formulation of GTM desribed in the previous setion has a hardonstraint imposed on the mapping from the latent spae to the data spaedue to the �nite number of basis funtions used. An alternative approah isintrodued in [3℄, where the regression funtion using basis funtions is replaedby a smooth mapping arried out by a GP prior. This way, the likelihood takesthe form:
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T are the olumn vetors of a matrix
Y and the entroids of spherial Gaussian generators. Note that the spirit of
yk in this approah is similar to the regression version of GTM (Eq. 1) butwith a di�erent formulation: A GP formulation is assumed introduing a priormultivariate Gaussian distribution over Y de�ned as:
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) (5)where y(d) is eah one of the row vetors of the matrix Y and C is a matrixwhere eah of its elements is a ovariane funtion that an be de�ned as
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, i, j = 1 . . .K (6)and where parameter ν is usually set to 1. The α parameter ontrols the �exibilityof the mapping from the latent spae to the data spae. An extended review ofovariane funtions an be found in [7℄. An alternative GP formulation wasintrodued in [8℄, but this approah had the disadvantage of not preservingthe topographi ordering in latent spae, being therefore inappropiate for datavisualization purposes.Note that Eqs. 3 and 4 are equivalent if a prior multinomial distribution over
Z in the form P (Z) =
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KN is assumed.Eq. 4 leads to the de�nition of a log-likelihood and parameters Y and βof this model an be optimized using the EM algorithm, in a similar way tothe parameters W and β in the regression formulation. Some basi details areprovided in [3℄.2.3 Bayesian GTMThe spei�ation of a full Bayesian model of GTM an be ompleted by de�ningpriors over the parameters Z and β. Sine zkn are de�ned as binary values, amultinomial distribution an be hosen for Z:
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kn (7)where pkn is the parameter of the distribution.As in [9℄, a Gamma distribution1 is hosen to be the prior over β:
P (β) = Γ (β|dβ , sβ) (8)where dβ and sβ are the parameters of the distribution. Therefore, the jointprobability P (X,Z,Y, β) is given by:

P (X,Z,Y, β) = P (X|Z,Y, β)P (Z)P (Y)P (β) (9)This expression an be maximized through evidene methods using the Laplaeapproximation [10℄ or, alternatively, using Markov Chain Monte Carlo [11℄ orvariational [5,6℄ methods.3 Variational GTM3.1 Motivation of the Use of Variational InfereneA basi problem in statistial mahine learning is the omputation of the marginallikelihood P (X) =
∫

P (X, Θ) dΘ, where Θ = {θi} is the set of parametersde�ning the model. Depending of the omplexity of the model, the analytialomputation of this integral ould be intratable. Variational inferene allowsapproximating the marginal likelihood through Jensen's inequality as follows:
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3.2 A Bayesian Approah of GTM Based on Variational InfereneIn order to apply the variational priniples to the Bayesian GTM within theframework desribed in the previous setion, a Q distribution of the form:
Q (Z,Y, β) = Q (Z)Q (Y)Q (β) (12)is assumed, where natural hoies of Q (Z), Q (Y) and Q (β) are similar dis-tributions to the priors P (Z), P (Y) and P (β), respetively. Thus, Q (Z) =
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).Using these expressions in Eq. 11, the following formulation for the variationalparameters Σ̃, m̃(d), p̃kn, d̃β and s̃β an be obtained:
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)] (28)In the previous expressions, Γ (·) are Gamma funtions, and ψ (·) is theDigamma funtion. Details of these alulations an be found in [12℄.4 Experiments4.1 Experimental DesignThe main aim of the set of experiments presented and disussed in this setionis the preliminary assessment of the robustness of the proposed model in thepresene of noise. Moreover, the performane of Variational GTM is omparedwith that of the standard GTM (with a GP formulation).The models used in all the experiments were initialized in the same way to al-low straightforward omparison. The matrix entroids of the Gaussian generators

Y and the inverse of the variane β were set through PCA-based initialization[1℄ and the parameters {pkn} are �xed and were initialized using the posteriorseletion probability of the latent node k given data point xn, de�ned usingBayes' theorem as:
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k is the initial value obtained previously for eah entroid k. The param-eter sβ was set to dβ/β and dβ was initialized to a small value lose to 0. Foreah set of experiments, several values of K and α were used.4.2 Robustness of the Variational GTM in the Presene of NoiseThe goal of this �rst set of experiments was assessing and omparing the ro-bustness of both the standard GTM using GP and the proposed VariationalGTM models in the presene of inreasing levels of noise, as well as ompar-ing it to the robustness of the standard regularized GTM with single regu-larization term [3℄ trained by EM (GTM-SRT). The arti�ial data sets usedto this end onsisted of 700 points sampled from a irumferene to whihdi�erent levels of random Gaussian noise were added (standard deviations of
{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}). For eah noise level, 10 data sets wererandomly generated and used to train every model. All training runs used thefollowing settings: K = 36 for all models, α = 0.1 for the GTM-GP and theVariational GTM and dβ = 0.01 for the Variational GTM. Furthermore, thenumber of basis funtions for GTM-SRT was set to 25. Di�erent values of Kand α were onsidered with similar results.Two measures were employed to gauge the regularization apabilities of themodels: The mean square error between the entroids {yk} and the underlyingirumferene without noise, and the standard deviation of the square error.The results for these measures, displayed in Fig. 1, indiate that, as the levelsof noise inrease, the mean and standard deviation square errors grow to bemuh higher for the standard GTM using GP than for the proposed VariationalGTM, although in the ase of the mean error this di�erene annot be learlyappreiated for very low levels of noise. Furthermore, Variational GTM is shownto outperform GTM-SRT at all noise levels, while being far less sensitive to theinrease of suh levels.These results are a preliminary but lear indiation that the proposed Varia-tional GTM provides better regularization performane than both the standardGTM using GP and GTM-SRT. This is neatly illustrated in Fig. 2, for the �rsttwo models, where two samples of the arti�ial data sets used in this experimentsand their orresponding results (represented by the onneted entroids) are dis-played. Although at low noise levels, both models perform similarly, at higherlevels the standard GTM using GP �ts the noise to a great extent, whereasVariational GTM is muh less a�eted by it and is apable of reproduing theunderlying data generator far more faithfully. This should lead to a model withbetter generalization apabilities.
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Fig. 1. Plots of the average mean square error between the entroids {yk} and thetheorial irumferene whithout noise (left plot) and the average standard deviationof the square error (right plot) for GTM-SRT (dashed line), for the standard GTMusing GP (dashed-dotted) and the proposed Variational GTM (solid). The vertialbars indiate the standard deviation of these averages.4.3 Data Visualization Using Variational GTMA seond set of experiments was arried out with the aim of verifying the topo-graphi preservation apabilities of the proposed Variational GTM and onse-quently, its data visualization apabilities on a low-dimensional disrete latentspae. For that, an arti�ial data set onsisting of 12 hetereogenously separatedlusters was generated by means of an equivalent number of radial Gaussian dis-tributions. The following settings were used to train the model: K = 64, α = 0.1and dβ = 0.01. The resulting data visualization is aomplished through themembership map generated by means of the mode projetion [1℄ of the data intothe latent spae, given by umode

n = argmax

k

(p̃kn), where the variational parameter
p̃kn was used.The data set and its orresponding membership map are displayed in Fig.3, where several interesting data points, some of these plaed well within thelusters and others in the edge between two lusters, are singled out for illustra-tion. It is lear that their representation in latent spae faithfully preserves theexisting topographi ordering and neighbouring relations in data spae.5 ConlusionsDetails of a variational formulation of GTM have been provided in this paper.Through several experiments, Variational GTM has been shown to endow themodel with e�etive regularization properties, enabling it to avoid, at least par-tially, �tting the noise and, therefore, enhaning its generalization apabilities.This regularization has been shown to be more e�etive than that provided bythe standard GTM with GP formulation and the standard regularized GTM.
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Fig. 2. Left olumn: two of the arti�ial data sets generated from a irumferene(dashed line) to whih noise of levels 0.1 (top row) and 0.25 (bottom row) was added.Middle olumn: inluding results after training using standard GTM with GP prior.Right olumn: inluding results after training using the proposed Variational GTM.The resulting manifold embedded in the data spae is represented by the onnetedentroids {yk} (�lled squares) in the entres of irles of radius 2
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β−1) (ommonstandard deviation).The experiments reported in this brief paper are neessarily limited by spaeavailability and therefore preliminary. A muh more detailed experimental de-sign, inluding more datasets spanning a wider range of harateristis, as wellan expliit testing of its generalization apabilities, would be required to om-plete the assessment of the model. The urrent study should be understood asa �rst step towards that end.A variational treatment of parameter α is di�ult and, therefore, it was�xed a priori in the reported experiments. However, an interesting approah toits alulation in the ontext of variational GP lassi�ers, using lower and upperbound funtions, was presented in [13℄ and ould be onsidered in future workwith the proposed Variational GTM.Referenes1. Bishop, C.M., Svensen, M., Williams, C.R.I.: GTM: The Generative TopographiMapping. Neural Comput. 10(1) (1998) 215�2342. Kohonen, T.: Self-Organizing Maps (3rd ed). Springer-Verlag, Berlin (2001)3. Bishop, C.M., Svensen, M., Williams, C.R.I.: Developments of the GenerativeTopographi Mapping. Neuroomputing 21(1�3) (1998) 203�224
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