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Abstract. Generative Topographic Mapping (GTM) is a non-linear la-
tent variable model that provides simultaneous visualization and clus-
tering of high-dimensional data. It was originally formulated as a con-
strained mixture of distributions, for which the adaptive parameters
were determined by Maximum Likelihood (ML), using the Expectation-
Maximization (EM) algorithm. In this paper, we define an alternative
variational formulation of GTM that provides a full Bayesian treatment
to a Gaussian Process (GP)-based variation of GTM. The performance
of the proposed Variational GTM is assessed in several experiments with
artificial datasets. These experiments highlight the capability of Varia-
tional GTM to avoid data overfitting through active regularization.

1 Introduction

Manifold learning models attempt to describe multivariate data in terms of low
dimensional representations, often with the goal of allowing the intuitive visual-
ization of high-dimensional data. Generative Topographic Mapping (GTM) [1]
is one such model, whose probabilistic setting and functional similarity make it
a principled alternative to Self-Organizing Maps (SOM)[2]. In its basic formu-
lation, the GTM is trained within the ML framework using EM, permitting the
occurrence of data overfitting unless regularization is included, a major draw-
back when modelling noisy data. Its probabilistic definition, though, allows the
formulation of principled extensions, such as those providing active model regu-
larization to avoid overfitting [3,4].

The regularization methods in [3,4] were based on Bayesian evidence ap-
proaches. Alternatively, we could reformulate GTM within a fully Bayesian ap-
proach and endow the model with regularization capabilities based on variational
techniques [5,6]. In this paper, we define a novel Variational GTM model based
on the GTM with GP prior outlined in [3], to which a Bayesian estimation of its
parameters is added.

Several preliminary experiments with noisy artificial data were designed to
show how Variational GTM limits the negative effect of data overfitting, improv-
ing on the performance of the standard regularized GTM [3] and the standard
GTM with GP prior, while retaining the data visualization capabilities of the
model.



The remaining of the paper is organized as follows: First, in section 2, an
introduction to the original GTM, the GTM with GP prior and a Bayesian ap-
proach for the GTM, are provided. This is followed, in section 3, by the descrip-
tion of the proposed Variational GTM. Several experiments for the assessment
of the performance of the proposed model are described, and their results pre-
sented and discussed, in section 4. The paper wraps up with a brief conclusion
section.

2 Generative Topographic Mapping

2.1 The Original GTM

The neural network-inspired GTM is a nonlinear latent variable model of the
manifold learning family, with sound foundations in probability theory. It per-
forms simultaneous clustering and visualization of the observed data through
a nonlinear and topology-preserving mapping from a visualization latent space
in N (with L being usually 1 or 2 for visualization purposes) onto a manifold
embedded in the R” space, where the observed data reside. The mapping that
generates the manifold is carried out through a regression function given by:

y=Wo(u) (1)

where y € P, u € R, W is the matrix that generates the mapping, and ® is
a matrix with the images of S basis functions ¢ (defined as radially symmetric
Gaussians in the original formulation of the model). To achieve computational
tractability, the prior distribution of u in latent space is constrained to form a
uniform discrete grid of K centres, analogous to the layout of the SOM units, in
the form:
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This way defined, the GTM can also be understood as a constrained mixture
of Gaussians. A density model in data space is therefore generated for each
component k of the mixture, which, assuming that the observed data set X is
constituted by N independent, identically distributed (i.i.d.) data points X,
leads to the definition of a complete likelihood in the form:
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where y, = W® (uy). From Eq. 3, the adaptive parameters of the model, which
are W and the common inverse variance of the Gaussian components, 3, can be
optimized by ML using the EM algorithm. Details can be found in [1].



2.2 Gaussian Process Formulation of GTM

The original formulation of GTM described in the previous section has a hard
constraint imposed on the mapping from the latent space to the data space
due to the finite number of basis functions used. An alternative approach is
introduced in [3], where the regression function using basis functions is replaced
by a smooth mapping carried out by a GP prior. This way, the likelihood takes
the form:

P(XIZY. ) = (%)ND/ﬂfj {oo (“Zho-w)} " @

where: Z = {2y, } are binary membership variables complying with the restric-
tion Zszl zkn = 1 and yi = (Y1, - - -, ykD)T are the column vectors of a matrix
Y and the centroids of spherical Gaussian generators. Note that the spirit of
yi in this approach is similar to the regression version of GTM (Eq. 1) but
with a different formulation: A GP formulation is assumed introducing a prior
multivariate Gaussian distribution over Y defined as:
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where y(4) is each one of the row vectors of the matrix Y and C is a matrix
where each of its elements is a covariance function that can be defined as
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), h,j=1...K (6)
and where parameter v is usually set to 1. The a parameter controls the flexibility
of the mapping from the latent space to the data space. An extended review of
covariance functions can be found in [7]. An alternative GP formulation was
introduced in [8], but this approach had the disadvantage of not preserving
the topographic ordering in latent space, being therefore inappropiate for data
visualization purposes.

Note that Eqgs. 3 and 4 are equivalent if a prior multinomial distribution over
Z in the form P (Z) = Hﬁ[:l H?:l (£)"" = 2+ is assumed.

Eq. 4 leads to the definition of a log-likelihood and parameters Y and (
of this model can be optimized using the EM algorithm, in a similar way to
the parameters W and [ in the regression formulation. Some basic details are
provided in [3].

2.3 Bayesian GTM

The specification of a full Bayesian model of GTM can be completed by defining
priors over the parameters Z and 3. Since zy, are defined as binary values, a
multinomial distribution can be chosen for Z:
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where pg, is the parameter of the distribution.
As in [9], a Gamma distribution! is chosen to be the prior over 3:

P(B) =TI(Blds,sp) (8)
where dg and sg are the parameters of the distribution. Therefore, the joint
probability P (X,Z,Y, ) is given by:

P(X,Z,Y,p) = P(X|Z,Y,B) P(Z)P(Y) P (B) (9)
This expression can be maximized through evidence methods using the Laplace

approximation [10] or, alternatively, using Markov Chain Monte Carlo [11] or
variational [5,6] methods.

3 Variational GTM

3.1 Motivation of the Use of Variational Inference

A basic problem in statistical machine learning is the computation of the marginal
likelihood P (X) = [P (X,0)dO, where © = {6;} is the set of parameters
defining the model. Depending of the complexity of the model, the analytical
computation of this integral could be intractable. Variational inference allows
approximating the marginal likelihood through Jensen’s inequality as follows:

lnP(X)_ln/P(X,@)d@_ln/Q(Q)%dQ
P(X,0)
z/Q(e)mT(@) do = F (Q) (10)

The function F (Q) is a lower bound function such that its convergence guar-
antees the convergence of the marginal likelihood. The goal in variational meth-
ods is choosing a suitable form for the density @ (©) in such a way that F (Q)
can be readily evaluated and yet which is sufficiently flexible that the bound is
reasonably tight. A reasonable approximation for @ (©) is based on the assump-
tion that it factorizes over each one of the parameters as Q (©) = [[, Q: (6;).
That assumed, F'(Q) can be maximized leading the optimal distributions:

_ exp(InP(X,0)),
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where (. ),_; denotes an expectation with respect to the distributions Qx (6x)
for all k # 1.
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! The Gamma distribution is defined as follows: I" (v|d,, s,) = ECH)



3.2 A Bayesian Approach of GTM Based on Variational Inference

In order to apply the variational principles to the Bayesian GTM within the
framework described in the previous section, a @ distribution of the form:

Q(Z,Y,0) =Q(Z2)Q(Y)Q (M) (12)

is assumed, where natural choices of Q (Z), Q (Y) and Q (8) are similar dis-
tributions to the priors P (Z), P(Y) and P (§), respectively. Thus, @ (Z) =

[T 5 QY) = T2 (v i@, ), and Q5) = I (8lds,5).
Using these expressions in Eq. 11, the following formulation for the variational
parameters E m@® pr, dﬁ and 35 can be obtained:
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where z,, corresponds to each row vector of Z and G, is a diagonal matrix of size
K x K with elements (z,). The moments in the previous equations are defined
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Finally, and according to Eq. 10, the lower bound function F (Q) is derived
from:

- P(XZY.0)P(Z)P(Y)P(3)
—/Q(Z)Q(Y)Q(B)l O O dZYds (19

Integrating out, we obtain:

F(Q) = (nP(X|Z,Y,5)) + (In P (Z)) + (In P (Y)) + (In P (5))
—(nQ(Z)) = (nQ(Y)) = (InQ () (19)

where the moments are expressed as:
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and
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In the previous expressions, I'(-) are Gamma functions, and ¢ () is the
Digamma function. Details of these calculations can be found in [12].

4 Experiments

4.1 Experimental Design

The main aim of the set of experiments presented and discussed in this section
is the preliminary assessment of the robustness of the proposed model in the
presence of noise. Moreover, the performance of Variational GTM is compared
with that of the standard GTM (with a GP formulation).

The models used in all the experiments were initialized in the same way to al-
low straightforward comparison. The matrix centroids of the Gaussian generators
Y and the inverse of the variance 8 were set through PCA-based initialization
|1] and the parameters {py,} are fixed and were initialized using the posterior
selection probability of the latent node k given data point x,, defined using
Bayes’ theorem as:
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where y7 is the initial value obtained previously for each centroid k. The param-
eter sg was set to dg/ and dg was initialized to a small value close to 0. For
each set of experiments, several values of K and « were used.

4.2 Robustness of the Variational GTM in the Presence of Noise

The goal of this first set of experiments was assessing and comparing the ro-
bustness of both the standard GTM using GP and the proposed Variational
GTM models in the presence of increasing levels of noise, as well as compar-
ing it to the robustness of the standard regularized GTM with single regu-
larization term [3] trained by EM (GTM-SRT). The artificial data sets used
to this end consisted of 700 points sampled from a circumference to which
different levels of random Gaussian noise were added (standard deviations of
{0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35}). For each noise level, 10 data sets were
randomly generated and used to train every model. All training runs used the
following settings: K = 36 for all models, a = 0.1 for the GTM-GP and the
Variational GTM and dg = 0.01 for the Variational GTM. Furthermore, the
number of basis functions for GTM-SRT was set to 25. Different values of K
and «a were considered with similar results.

Two measures were employed to gauge the regularization capabilities of the
models: The mean square error between the centroids {yx} and the underlying
circumference without noise, and the standard deviation of the square error.
The results for these measures, displayed in Fig. 1, indicate that, as the levels
of noise increase, the mean and standard deviation square errors grow to be
much higher for the standard GTM using GP than for the proposed Variational
GTM, although in the case of the mean error this difference cannot be clearly
appreciated for very low levels of noise. Furthermore, Variational GTM is shown
to outperform GTM-SRT at all noise levels, while being far less sensitive to the
increase of such levels.

These results are a preliminary but clear indication that the proposed Varia-
tional GTM provides better regularization performance than both the standard
GTM using GP and GTM-SRT. This is neatly illustrated in Fig. 2, for the first
two models, where two samples of the artificial data sets used in this experiments
and their corresponding results (represented by the connected centroids) are dis-
played. Although at low noise levels, both models perform similarly, at higher
levels the standard GTM using GP fits the noise to a great extent, whereas
Variational GTM is much less affected by it and is capable of reproducing the
underlying data generator far more faithfully. This should lead to a model with
better generalization capabilities.



- - - GTM-SRT--'- GTM-GP—— VGTM| - - - GTM-SRT:-:-: GTM-GP—— VGTM

0.1 0.4

: ]
' 0.08 5
> ; 2 0.3
S ’ w .
=] K4 3 -
Z0.06 ’I, L & ’,«I”,'
S S 2 o2r <7 F
o) e ’ R £
= 0.04 9 ,} ) =
[} oL o -I--- P
2 P gl F
5 0.02 e 3: 0.1+ L
- R P I--g,e7r e

0 W 0

0 0.1 0.2 0.3 0 0.1 0.2 0.3

noise noise

Fig. 1. Plots of the average mean square error between the centroids {yx} and the
theorical circumference whithout noise (left plot) and the average standard deviation
of the square error (right plot) for GTM-SRT (dashed line), for the standard GTM
using GP (dashed-dotted) and the proposed Variational GTM (solid). The vertical
bars indicate the standard deviation of these averages.

4.3 Data Visualization Using Variational GTM

A second set of experiments was carried out with the aim of verifying the topo-
graphic preservation capabilities of the proposed Variational GTM and conse-
quently, its data visualization capabilities on a low-dimensional discrete latent
space. For that, an artificial data set consisting of 12 hetereogenously separated
clusters was generated by means of an equivalent number of radial Gaussian dis-
tributions. The following settings were used to train the model: K = 64, o = 0.1
and dg = 0.01. The resulting data visualization is accomplished through the
membership map generated by means of the mode projection [1] of the data into

the latent space, given by u®°® = argmax (pg» ), where the variational parameter
k

Prn was used.

The data set and its corresponding membership map are displayed in Fig.
3, where several interesting data points, some of these placed well within the
clusters and others in the edge between two clusters, are singled out for illustra-
tion. It is clear that their representation in latent space faithfully preserves the
existing topographic ordering and neighbouring relations in data space.

5 Conclusions

Details of a variational formulation of GTM have been provided in this paper.
Through several experiments, Variational GTM has been shown to endow the
model with effective regularization properties, enabling it to avoid, at least par-
tially, fitting the noise and, therefore, enhancing its generalization capabilities.
This regularization has been shown to be more effective than that provided by
the standard GTM with GP formulation and the standard regularized GTM.
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Fig. 2. Left column: two of the artificial data sets generated from a circumference
(dashed line) to which noise of levels 0.1 (top row) and 0.25 (bottom row) was added.
Middle column: including results after training using standard GTM with GP prior.
Right column: including results after training using the proposed Variational GTM.
The resulting manifold embedded in the data space is represented by the connected
centroids {yx} (filled squares) in the centres of circles of radius 24/8-') (common
standard deviation).

The experiments reported in this brief paper are necessarily limited by space
availability and therefore preliminary. A much more detailed experimental de-
sign, including more datasets spanning a wider range of characteristics, as well
an explicit testing of its generalization capabilities, would be required to com-
plete the assessment of the model. The current study should be understood as
a first step towards that end.

A variational treatment of parameter « is difficult and, therefore, it was
fixed a priori in the reported experiments. However, an interesting approach to
its calculation in the context of variational GP classifiers, using lower and upper
bound funtions, was presented in [13] and could be considered in future work
with the proposed Variational GTM.
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