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Abstract. In the past few years, various variants of the self-organising
map (SOM) have been proposed to extend its ability for modelling time-
series or temporal sequence. Most of them, however, have little con-
nection to, or are over-simplified, autoregressive (AR) models. In this
paper, a new extension termed, self-organising mixture autoregressive
(SOMAR) network is proposed to topologically cluster time-series seg-
ments into underlying generating AR models. It uses autocorrelation
values as the similarity measure between the model and the time-series
segments. Such networks can be used for modelling nonstationary time-
series. Experiments on predicting artificial time-series (Mackey-Glass)
and real-world data (foreign exchange rates) are presented and results
show that the proposed SOMAR network is a viable and superior to
other SOM-based approaches.

1 Introduction

Exchange rate forecasting has always been a challenging area of research that
has received a great deal of attention. Since the break up of the Bretton-Woods
system in 1973, the trend analysis in spot foreign exchange rates has been a
recurrent theme among statisticians and econometricians during the last two
decades.

A fundamental way is to use the economic theory to underline the struc-
tural relations between exchange rate and other variables and to use statistical
methods to identify the correlations between the past data and future moves.
Researchers have devoted a great deal of effort on these techniques in order to
beat the random walk model. However, these econometric and time-series tech-
niques cannot even outperforms the simplest random walk [1]. The reason is that
most of the econometric models are linear and used under specific or strict as-
sumptions. For instance, autoregressive maving average (ARMA) models assume
a linear relationship between the current value of the variables and previous val-
ues of the variable and error terms. The mean and variance of variables need to
be a constant overtime.

Due to the recent advances in computational intelligence and computer power,
nonparametric models have been used extensively in the last few years with var-
ious successes. Exchange rate forecasted by Artificial Neural Networks (ANNs)
provide strong evidence in term of out-of-sample forecasting achievements. Many



comparison studies show that ANNs significantly outperform linear ARMA model
and native random walk model [2–4]. The most widely used techniques so far are
the multilayer perceptron (MLP), radial basis function (RBF) networks and re-
current networks. As a regressive method, support vector machines (SVM) have
been proposed as a good alternative for MLP in time-series forecasting. SVMs
are established on the theory of the structural risk minimisation principle.

The main problem in modelling financial time-series is their non-stationarity.
That is the mean and variance of the time-series are changing over time, which
implies that the variables switch their dynamics in different regions. It is par-
ticularly true in exchange rates due to the amount of nonconstant ”information
flow”. Empirical studies [5] show that the distribution of daily returns1 is approx-
imately symmetric and leptokurtic (i.e., heavy tailed). One possible explanation
for the heavy tailed distribution is that samples are independently distributed as
a normal distribution whose mean and variance change over time. Many others
argued that observed returns come from a mixture of normal distributions [6,
7]. It is not convincing for a single model to capture the dynamics of the entire
time-series.

It is reasonable to assume that a time-series locally is a homogeneous model;
at least it is true for most cases. A potential solution can be found using the
”divide-and-conquer” principle, in which the entire model is divided into several
smaller ones [4]. The solutions are then combined to make the final solution. The
prediction is thus made only by the best fit local model.

Self-Organising Map (SOM) can be used to partition the input data to smaller
regions by associating input data with their unique best-matching units. The area
in the input space for which the reference vector is called Voronoi tesselation.
Voronoi tesselations partition the input space into disjoint sets. Models can be
created by locally fitting to the specific Voronoi tesselations. The topological
relationship of local models are maintained as the pre-determined lattice. There
are various successes on different applications. For example, Dablemont [8] ap-
plied SOM based local models with RBF network as regressor to predict the
returns of the DAX30 index. Liu and Xu [9] used SOM based local models to
perform PCA on the data from multi-modes. Cao [4] proposed a SVM experts
system, which is also based on SOM local models, to predict time-series.

For the SOM to be used for modelling time-series, the consective input points
have to be grouped into vectors to form temporal context by means of a win-
dow of a pre-fixed length. The information in between the vectors is however
lost. Recently, increasing interest arises in the SOM for time-series or sequence
processing. Typical methods include Temporal Kohonen Map (TKM) [10], the
recurrent SOM (RSOM) [11].

Lampinen and Oja proposed a method based on the SOM, where every unit
represents an AR model with its reference vector as the model parameters [12].
The experiments conduced have shown the model can learn to distinguish tex-
tures from images. The method in fact is a multiple AR model with the para-
meters of component models forming topological orders.

1 A simple logarithm difference transform



Here, we propose a similar multi-regressive model with a different winner
selection rule to reflect the characteristics of homogeneous time-series.

The rest of paper is organised as follows. In section 2, we describe the
proposed methodology. Section 3 will present the application of the proposed
methodology for prediction of exchange rate. Finally, conclusions will be sum-
marised in Section 4.

2 Methodology

The problem of predicting future value of a stochastic process is closely related
to the problem of estimating the unknown parameters of a regressive model. We
start from identifying parameters of artificial autoregressive(AR) models.

The target process is assumed to be generated by several independent sta-
tionary discrete autoregressive processes. It has many fields of applications, es-
pecially in econometrics and automatic control. A number of studies recent focus
on modeling such non-stationary process. The model is based on the assumption
that the underly process consists of several independent stationary AR processes,
referred to as local models. The model can be considered as a mixture of these
independent local models, or is regarded to be from one of these local models at
a time. Such a model can be expressed as,

F (xt|zt−1) =
K∑

i=1

β(i,x)Φi(xt − φi0 − φi1xt−1 − . . .− φipixt−mi). (1)

where Φi is i-th local AR model. In the mixture AR (MAR) model, β(i,x) are
the mixing parameters; and in the latter case, considered in this paper, β(i,x)

are selection functions, given as,

β(i,x) =
{

1 if x ∈ Φi

0 else (2)

where input vector x(t) = [x(t), x(t − 1), . . . , x(t − mi)]T , zt−1 represents the
information up to time t − 1, {φi} are parameters, K is the number of AR
processes and mi is the order of AR process i.

2.1 Lampinen and Oja’s Self-Organising AR models

Lampinen and Oja proposed a method called self-organizing AR map (SOAR)
based on a self-organizing map of ”neural” units for unsupervised segmentation
and classification of 1D and 2D signals [12]. The SOAR models index each neural
unit by i and each with weight vector wi which signifying an AR process. The
prediction is based on,

The error e(t) = x(t + 1) − xT w is further smoothed by an exponential
average over the recent estimation errors vi has been used instead of immediate
estimation errors ei

v′i = βei(t) + (1− β)vi. (3)



where β is a smoothing factor. The best matching unit is the one with smallest
v′i.

The winner and its neighborhood units update their weights according to

wi(t) = wi(t− 1) + g(r)e(t)x(t). (4)

where g(r) is a linearly decreasing adaptation rate. The model is shown work-
ing well in segmenting the image into texture classes, without priori knowledge
about the number of classes or the class models. The authors also presented
good experimental results on 1D artificial signal and 2D textures.

However the performance of the SOAR model in finding underlying AR
processes is hampered by the inaccuracy and volatile error terms (i.e. the win-
ning rule), despite being smoothed. It cannot guarantee a good estimation of the
parameters of the underlying process. Fig. 1 shows a divergence of such a model
for an AR(2) process. The initial weights were set randomly (upper figure) or to
the true parameters (lower figure).
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Fig. 1: Estimates of an AR(2) parameters by the SOAR with initial weights set ran-
domly (upper panel), and to the true parameters (lower panel).

2.2 Self-Organising Mixture AR models (SOMAR)

As we assume that the stochastic process is characterised by white noise corrup-
tion. As a sufficient condition, the modeling error should be close to the white
noise if the modelling is following a ”correct” path. Therefore, we investigate
the autocorrelation of the error instead of the error itself. In order to obtain
sufficient estimation information, we hereby use a small batch input or a patch.



The modelling error is a discrete time-series of length p, the batch size,
{e(1), e(2), . . . , e(p)}, with mean µ and variance σ2, an estimate of the auto-
correlation coefficient R(k) at lag k can be obtained as

R(k) =
1

(p− k)σ2

p−k∑
t=1

(e(t)− µ)(e(t + k)− µ). (5)
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Fig. 2: Autocorrelation of the modelling errors for models a0 - a3.

Fig. 2 shows the autocorrelations of a set of the modelling errors from a
patch of 20 points. The generating parameters are a0=[-.2, .5]. We randomly
test it on three sets of parameters a1=[-.1, .6], a2=[.1, -.1] and a3=[.5, -.2], their
correlations are plotted in Fig. 2.

Here we use the sum (of the absolute value) of autocorrelation coefficients
(SAC) as the similarity measure,

vi =
p∑

j=−p

|Ri(j)|. (6)

The SAC values for these four cases are 3.8832(a0), 4.3504(a1), 4.5224(a2),
and 4.5963(a3) respectively. As we can see that model a1 is closer to model a0

that to models a2 and a3, so are their SAC values.
In the proposed method, firstly a fixed number of consecutive input vectors

are used to make a patch input. Analogy to the SOM algorithm, we choose the
winner for that patch input according to the SAC, vi, i = 1, 2, . . . , N , i is the
index of local model and N is the total number of the local models.



Then the winner and its neighbours adapt their weights by

wi(t) = wi(t− 1) + h(r, t)η(t)e(t)x(t). (7)

where h(r, t) is the neighborhood function and η(t) is a decreasing adap-
tion parameter. Gaussian neighborhood function is used, and linearly decreasing
learning rate is used,

h(r, t) = e−( r
2δ(t) )

2

. (8)

η(t) = η0
τ0

τ0 + τ1t + τ2t2
. (9)

The neighborhood function is a useful feature for SOM alike techniques for
avoiding the training process being trapped to local minima, and for forming
topology among the nodes.

Here we show a simple example. In total 1,250 consecutive points were con-
structed by two AR(2) processes a1 = [.5,−.2] and a2 = [.4,−.3]. The signal
consists of 5 consequent 250 point long segments. Each segment was generated
randomly by one of those two AR processes. The training set is the first 1000
points, shown in Fig. 3 and the testing set is the other 250 points. The sets were
divided into 50-point patches.
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Fig. 3: Training set: 1,000 consecutive points generated by two AR(2) processes a1 =
[0.5,−0.2] and a2 = [0.4,−0.3].

The training set was used to train the SOMAR network, the results of the
weights are shown in Fig. 4. The trained SOMAR network was tested on the
testing set. The results of prediction is illustrated on Fig. 5.

3 Experimental Results

In the section, we present experiments on the artificial data (Mackey-Glass data)
and the foreign exchange rate data in respect to the ability of the propose method
in characterising the dynamics of non-linear, non-stationary time-series.
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Fig. 4: Parameter estimation of two AR(2) processes a1 = [0.5,−0.2] and a2 =
[0.4,−0.3].
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Fig. 5: The dash line represents the original data points, the red solid line represents
the prediction by the proposed SOMAR network.

3.1 Mackey-Glass data

To further investigate the capabilities of the proposed SOMAR network, we apply
it on a consecutive 600 points Mackey-Glass data, a dynamic system defined by
the differential equation:

dx

dt
= βx(t) +

αx(t− δ)
1 + x(t− δ)10

. (10)

with the parameter values δ = 17, α = 0.2, β = −0.1. We assume the Mackey-
Glass data consists of a number of unknown AR processes. In this experi-
ment, the input is the Mackey-Glass series grouped in every 15 points x(i) =
[x(i), x(i + 1), . . . , x(i + 14)]. We prefixed the order of AR process to 14 in favor
of the results of BIC in a previous study [13]. Experiments with other value have
been implemented without any significant difference. The result of prediction of
Mackey-Glass data shows on Fig. 6.
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Fig. 6: The dash line represents the original data points, the red solid line represents
the prediction by the SOMAR network on Mackey-Glass data.

3.2 Foreign exchange rate data

The data was retrieved from the PACIFIC Exchange Rate Service provided by
W. Antwiler at UBCs Sauder School of Business. It consists 15 years’ daily
exchange rates excluding weekends and bank holidays when currency markets
were closed. The proposed SOMAR network was trained on 3,000 consecutive
data points and the performance of prediction was tested on the following 200
data points. Both the training and testing sets were windowed with the length
of 15 points to form input vectors.

For a comparison with other SOM-based methods, we conducted two types
of tests as follows.

Predicted FX return The correct prediction percentage, which is a criterion
to check whether the prediction is made on the right direction (i.e. we cal-
culate how many percents predicted returns2 have the same signs as their
corresponding actual returns), shown in Fig. 7.

Predicted FX price Mean-Square-Error between the testing exchange rates
and predicted ones, shown in Fig. 8.

Table 1: Overall predicted FX returns and prices of various methods on the foreign
exchange rate data.

SOMAR SOAR VSOM RSOM

FX return (%) 66.30 54.01 51.00 51.80

FX price 0.0450 0.0601 0.0625 0.0695

2 We applied the price-return convert(i.e. x′t = ln
xt+1

xt
here the xt is the scalar values

of the original data at the time t) to the original data.
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Fig. 7: Predicted returns spanned over 85 days. The dash line represents the FX returns,
the solid line represents the prediction by the SOMAR network.
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Fig. 8: Predicted rates spanned over 85 days. The dash line represents the FX prices,
the solid line represents the prediction by the SOMAR network.

The results from two tests are compared to the vector SOM, SOAR and
Recurrent SOM, in Table 1. It can be seen that the SOMAR outperforms other
temporal SOM models. The experiments show that SOMAR is a good alternative
method to cope with the nonstationarity and multiple underlying processes time-
series.

4 Conclusions

A new approach to tackling nonstationarity of real-world time-series has been
proposed by using the self-organising mixture autoregressive (SOMAR) model.
The model consists of local autoregressive (AR) models and is organised and
learnt by a self-organising map, so forming topologically ordered local regres-
sive models. The proposed autocorrelation-based similarity measure makes the
network effective and more robust compared to the error-based or Euclidean-
based measures. The experiments show that the proposed model can correctly
detect and uncover underlying AR models. They also show that the proposed



method outperforms other SOM-based methods in modelling and prediction of
nonstationary foreign exchange rates time-series.
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