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Abstract. In this paper we propose to do portfolio management using reinforcement learning
(RL) and independent factor model. Factors in independent factor model are mutually inde-
pendent and exhibit better predictability. RL is applied to each factor to capture temporal
dependence and provide investment suggestion on factor. Optimal weights on factors are found
by portfolio optimization method subject to the investment suggestions and general portfolio
constraints. Experimental results and analysis are given to show that the proposed method
has better performance when compare to two alternative portfolio management systems.

1 Introduction

During the past decade, there have been growing number of researches that apply reinforcement
learning (RL) [1, 2] techniques to solve problems in financial engineering [3]. What is of particular
interest would be using RL to design financial trading systems. Neuneier used Q-learning algorithm
to design a system for trading single asset [4]. The system was enhanced in [5] to enable multi-
asset trading. However, the size of action space increases exponentially with the number of assets,
hence it requires substantial amount of training data to determine policy for such a huge action
space. Ormoneit and Glynn applied a kernel-based RL approach on single-asset trading problem [6].
In [7] Dempster and Leemans proposed a layered single-asset trading system where recurrent RL
algorithm is used to offer trading recommendation. The recommendation is then evaluated by risk
management overlay to make final decision.

One problem of current researches is that, most works only addressed the simple single-asset
allocation problem, i.e. capital can either be kept in cash or invested in a risky asset. In practice,
however, investors rarely adopt such an extreme strategy. Instead they normally make investments
in a number of assets and take advantage of diversification to reduce investment risk. In this paper
we aim to provide a competitive portfolio management strategy exploiting RL.

A simple ”divide-and-conquer” approach using RL for portfolio management can be divided into
two steps. First, RL is run separately on each available asset to obtain the Q-values of different
actions; Second, asset weights are generated based on these Q-values. However, this approach is
subject to two questions. First, the obtained weights may not be optimal in terms of profit as RL
neglects the inter-relations between the returns of different assets. Second, whether it is good to
apply RL directly on assets is still under question. This is because the prediction of future reward
is important to RL’s performance while it is well known that asset return is difficult to predict.

The independent factor model in finance [8, 9, 10, 11] may help to address the above two ques-
tions. In the independent factor model, the observed asset returns are believed to be linear mixtures
of some hidden independent factors. Motivated by these works, we proposed to use RL on inde-
pendent factors instead of on asset returns as in past works. As the factors are as independent as
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Fig. 1. The structure of IF-RL portfolio management system

possible, the inter-relations between them are almost negligible. Hence we no longer need to consider
the inter-relations. Also there have been many research works believing that the independent fac-
tors are more structured and regular, and consequently can be predicted better [12, 13] than asset
returns. In this way using independent factors can be expected to strengthen the usefulness of RL
in portfolio management.

Therefore, in this paper, we propose to do portfolio management by virtue of RL and the inde-
pendent factor model. This proposed system is named independent factor RL (IF-RL) for portfolio
management. The independent factors can be estimated by using independent component analysis
(ICA) [14], a statistical technique for revealing hidden factors underlying the observed signals with
a linear transformation. The system implementation consists of four steps. Firstly, ICA is used to
construct independent factors from asset returns. Secondly, as the factors are almost independent
from each other, RL is run on all factors in parallel to obtain investment suggestions on factors.
Thirdly, portfolio optimization method is used to find factor weights that optimize specific objec-
tive function subject to investment suggestions from RL and general portfolio constraints. Lastly,
optimal asset weights are obtained by converting optimal factor weights.

The rest of the paper is organized as follows. In Sect.2 the design of the proposed IF-RL system
is described in detail. In Sect.3, another RL-based portfolio management system without utilizing
independent factors is formulated for comparison with the proposed system in later experiments.
Experimental results and analysis are provided in Sect.4 to compare the performances of IF-RL
system and two alternative portfolio management systems. Finally Sect.5 discusses some future
works and concludes.

2 Proposed system

In this section, we describe in detail the design of the proposed IF-RL system. Fig.1 shows the struc-
ture of the system which can be divide into two parts. The inner part within the dotted-line block
is a RL-based portfolio management model consisting of a RL module and a portfolio optimization
overlay. This model is designed to operate on multiple assets. The outer part is composed of factor
construction module and weight conversion module which are in charge of transformation between
assets and independent factors. In the following text, we elaborate the two parts respectively.



2.1 Factor construction module

Factor construction module extracts factors from asset returns. In this paper we adopt the FastICA
algorithm [15] to extract independent components from returns.

Assume that we can invest in a market consisting of N risky assets and risk-free cash. At time
t, let εi (t) be the return of asset i at t, which is defined as

εi (t) =
pi (t + 1)− pi (t)

pi (t)

where pi (t) is the price of asset i at t. The asset returns at t can be summarized with a vector
ε(t)= (ε1 (t) , . . . , εN (t))T , and for t = 1, . . . , T , a return matrix ε = (ε(1), . . . , ε(T )) can be formed
where each row represents the historical returns of a single asset. In the independent factor model,
the returns ε1 (t) , . . . , εN (t) are assumed to be linear combinations of some independent factors. To
recover the independent factors, ICA uses the linear transformation

f(t) = Bε(t) (1)

where f(t) = (f1(t), f2(t), · · · , fN (t))T with fi(t) being the ith recovered factor at t1, and the matrix
B is the de-mixing matrix for ε(t).

With a proper de-mixing matrix B, we can implement the factor construction module. In IF-RL
system, we consider the factors as returns of some pseudo-assets 2.

2.2 Weight conversion module

The weight conversion module converts the optimal factor weights obtained from the inner part to
corresponding asset weights. Let the asset weights and factor weights be wa and wf respectively.
We have

wT
a ε(t) = wT

f f(t)

By substituting Eq.(1) into the above equation, we can have the relation between wa and wf

wa = BT wf (2)

Like asset weights, factor weights are also subject to some portfolio constraints when utilized in
portfolio management task. The general portfolio constraints on asset weights can be stated as3

N∑

i=1

wai ≤ 1 and ∀i = 1, . . . , N wai ≥ 0 (3)

where wai is the asset weight on asset i. The sum of asset weights is set to be no bigger than 1 as
there may be some capital allocated in cash. The equation can be rewritten in matrix form as

[1]TNwa ≤ 1 and wa ≥ [0]N

where [1]N and [0]N are respectively N -dimension vector of all 1’s and all 0’s. By utilizing Eq.(??)
and Eq.(2), general portfolio constraints on factor weights can be specified as

[1]TNwf ≤ 1 and BT wf ≥ [0]N (4)

These constraints will be used in portfolio optimization with respect to factor weights (see Sect.2.4).
1 For simplicity, we assume that the number of factors is equal to that of the assets.
2 In the rest of this paper, for simplicity, we use factor in the place of pseudo-asset unless noted otherwise.
3 Please be noted that in this paper we assume non-negative asset weights to disallow short-selling.
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2.3 RL module

The RL module consists of many RL units, which structure is shown in Fig.2, with each unit
operating on one factor. RL units are run in parallel, and output RL decisions on corresponding
factors. In practice, it is common for investors to set constraints on the proportion of specific asset in
the portfolio. Similarly, in this paper we interpret RL decisions as suggestions on degree of investment
of factors, i.e. constraints on factor weights.

In each RL unit, we solve a single-asset allocation problem trading with one factor. The available
actions are -1 and 1, representing respectively short and long position. We choose this action setting
because we can see from Eq.(4) that factor weights may be negative, which indicates short-selling
of the factors. At time t , for factor i, the state sit = ($it, kit) consists of two parts: $it describes
the market impact which is independent of investor’s decision; while kit ∈ {−1, 1} represents the
current investment position (short or long). Within each RL unit, we maintain Q-values of the
binary actions. Q-values represent the expected future return of applying specific action at given
state, and can be updated with the following formula during training:

Qa (s) ← (1− η)Qa (s) + η (r + γ max (Q−1(s′) , Q1 (s′))

where 〈s, a, r, s′〉 is the observed tuple of current state, applied action, perceived reward and next
state, η is learning rate, 0 ≤ γ ≤ 1 is the discount factor in RL, and Qa (s) is estimated Q-value of
applying action a at state s. In trading system, generally the reward can be represented as the capital



gain subtracted by the transaction cost, i.e. at time t, for factor i, we have rit = git + cit, where
git is the change of total capital during [t, t + 1] due to the price variations, and cit the commission
charge for traing at t , if applicable. For convenience, transaction cost is assumed non-positive to
denote the paid charge. In the context of factor trading, the capital gain and transaction cost can
be computed with

git = log (1 + ait · fi (t))

cit = log


1− δ ·

N∑

j=1

|bij | · |kit − ait|



where δ is transaction cost rate of asset trading.
At time t, for factor i, the optimal action a∗it can be determined via

a∗it = sgn (d (sit)) (5)

where d (sit) = Q1 (sit) − Q−1 (sit) is the difference between Q-values at sit, and sgn() is the sign
function. In RL module, we use two sigmoid-shape functions Fu () and Fl () (see Eq.(6)) to generate
decisions on upper bound and lower bound of factor weight to control the weight from approaching
boundary values of -1 and 1.

Fu (d (sit)) =
1
2

(1 + tanh (Nu · d (sit)))

Fl (d (sit)) =
1
2

(−1 + tanh (Nl · d (sit)))
(6)

where Nu and Nl are respectively upper/lower bound parameter. The outputted RL decisions can
be stated as

∀i = 1, . . . , N Fl (d (sit)) ≤ wfi ≤ Fu (d (sit)) (7)

An example of upper and lower bound is shown in Fig.3, we can see from the figure that when
RL prefers action 1 (or -1), the difference between Q-values is a positive (or negative) value, the
upper and lower bound approaches to 1 and 0 (or 0 and -1) respectively with greater preference, i.e.
bigger absolute value of difference between Q-values.

2.4 Portfolio optimization overlay

The portfolio optimization overlay can be implemented with various portfolio optimization methods.
In this paper’s experiments, we use mean-variance optimization (MVO) model, which was initialized
by Markowitz in his landmark paper [16] and may be the most renowned portfolio optimization
method. In MVO, the objective function to be maximized can be expressed as

U (wa) = wT
a ε− uwT

a Σwa

where ε and Σ are respectively expected return and covariance matrix, u ≥ 0 is the risk aversion.
By utilizing Eq.(2), we can state the optimization problem in IF-RL’s portfolio optimization overlay
as maximizing the following objective function subject to constraints in Eq.(4) and Eq.(7)

U (wf ) = wT
f Bε− uwT

f BΣBT wf



RL unit 1

RL unit N

RL module

 RL-POM

portfolio
optimization

overlay

.

.

.

asset
returns

RL
decisions

asset
weights

wa

r1

.

.

.

rN

Fig. 4. The structure of RL-POM system

3 Another RL-based portfolio management system

In this section, we formulate another RL-based portfolio management system as shown in Fig.4. We
can find from the figure that this system has a structure similar to IF-RL system, except that RL
is used directly on asset returns instead of independent factors. The system is named RL-POM as
it combines RL module and portfolio optimization overlay. In the sysem, RL is run separately on
inter-related asset returns, which may lead to suboptimal portfolio. Also the poor predictability of
asset returns will limit the usefulness of RL in portfolio management. The RL-POM system will be
used for comparison with the IF-RL system in experiments to investigate the advatange of applying
RL on independent factors.

In the RL-POM system, the RL module is also composed of many RL units. RL units provide
RL decisions on degree of investment of assets. Since the asset weight lies in the range [0, 1], the
available actions are set as 0 (invest in cash) and 1 (invest in risky asset). At time t, for asset i , let
the Q-values of binary actions be Q0 (sit) and Q1 (sit) respectively, the optimal action a∗it is

a∗it = H (d (sit)) (8)

where d (sit) = Q1 (sit) − Q0 (sit) is the difference between Q-values at sit, and H () is heaviside
step function. In RL-POM we only need to provide decision on upper bound of asset weights with

Fu (d (sit)) =
1
2

(1 + tanh (Nu · d (sit)))

The outputted RL decisions are

∀i = 1, . . . , N wai ≤ Fu (d (sit)) (9)

The portfolio optimization overlay directly find the asset weights wa that optimize specific
objective function while subject to constraints in Eq.(3) and Eq.(9).

4 Experimental results and analysis

Experiment on real stock data in Hong Kong market is provided in this section to illustrate the
performance of proposed IF-RL portfolio management system. The experiment is carried out by
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Fig. 5. Profit gains of the two portfolio management systems in the testing stage

investing in a portfolio of 8 stocks4. The experimental data consists of 1000 data points from April
22, 2003 to May 4, 2007. The first 750 data points are used as training data set, whereas the
remaining 250 days compose the testing stage. The transaction cost rate δ is set as 0.5%.

4.1 Experimental results

In the experiment, we compare the performances of two portfolio management systems, i.e. RL-POM
system and IF-RL system, described respectively in previous two sections. For both systems, MVO
is chosen to implement portfolio optimization overlay with risk aversion u = 1, and the upper/lower
bound parameter Nu and Nl are both set as 100.

For both systems, the 250-day testing stage is divided into 5 segments, and asset weights are
rebalanced at the beginning of each segment. In the testing stage, the tested segment will be added
to the training data set before moving forward to next segment; and the RL modules in RL-POM
and IFRL system continue to train their trading policies with newly-observed data. This mechanism
enables the systems adaptive to the changes in the dynamic market.

Fig.4 shows the profit gains of the three systems in the testing stage. The proposed IF-RL system
can be found to outperform the RL-POM systems in terms of profitability. We also notice that IF-RL
system can control the loss better when asset prices decrease, e.g. around day 50 to 60.

Table 1 provides more performance statistics including mean return, risk, Sharpe Ratio, etc. All
the performance statistics are measured on the testing stage, and risk is defined as variance of the
trading return. In the table, dod stands for degree of diversification [17]. This measure tells how well

4 The 8 stocks are all constituent stocks of Hang Seng Index in Hong Kong market. They are 0002-0003.HK,
0005-0006.HK, 0011.HK, 0013.HK, and 0016-0017.HK.



Table 1. Performances of the three portfolio management systems

system name profit (%) mean return risk Sharpe Ratio dod
RL-POM 24.59 9.92e-4 2.25e-4 6.61e-2 0.4978

IFRL 28.10 1.10e-3 2.12e-4 7.54e-2 0.5976

the system diversifies its investments. It is computed with

dod =
1
N

N∑
m=1

wT
m [[1]N −wm]

where N is the number of segments, and wm is the asset weights determined at the beginning of
segment m.

From the table we can have two observations. First, the IF-RL system achieves a higher mean
return, lower risk and better Sharpe Ratio when compared to the RL-POM system. These results
can provide some positive evidences for the conjecture that independent factors may have better
predictability than asset returns. Second, in terms of dod, the IF-RL system can achieve a more
diversified portfolio than the RL-POM system does.

4.2 Analysis on portfolio formation

Besides the performance measures discussed above, we are also interested in the optimal asset weights
found by the three systems. In Fig.6 we show the asset weights of the two systems determined at
the beginning of the 5 segments. Among all the 8 assets, there are 7 assets selected by at least one
system during the testing stage. We use a clustering of 7 bars to represent asset weights, where the
bar height is equal to the weight on the corresponding asset. For those bars with non-zero height,
asset indexes are marked on top of them.

It can be observed from Fig.6 that asset 8 is consistently selected by both systems as a major
component. This can be contributed to this asset’s significant profitability when compared to other 7
assets. Despite this similarity in constructing portfolio, the portfolios found by the IF-RL system are
still different from those found by RL-POM system in terms of the minor portfolio components. This
may be the reason why IF-RL system can achieve better performance than the RL-POM system.
To further demonstrate this, we pick some example segments to show how different asset selections
by IF-RL and RL-POM system lead to different performances.

In segment 2, while both systems choose to invest in asset 3 and 8, IF-RL system also invests
in asset 1 and prefers it to asset 3. Fig.7(a) shows the normalized prices5 of asset 1, 3 and 8 during
segment 2. We can see that asset 1 outperforms asset 3 in terms of profit, indicating a better choice
of IF-RL system. The opposite trends of asset 1 and 3 in the middle part of the segment show that
adding asset 1 to portfolio can effectively reduce the portfolio risk. In segment 5, both system invest
similar amount of capital in asset 8, but IF-RL system chooses to diversify the remaining capital
in asset 1, 4 and 5 while RL-POM invests only in asset 1. Fig.7(b) depicts the normalized prices of
asset 1, 4 and 5 in segment 5. We can see that asset 4 and 5 outperform asset 1, which indicates
that the diversification decision of IF-RL system is correct.

The analysis of portfolio formation shows that with the assistance of independent factors, IF-
RL system can take advantage of the better predictability of factors and find better-performing
portfolios.
5 Here the asset prices are normalized so that prices at the beginning of the segment are 1, the same

normalization is also used for segment 5.
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5 Conclusion and future work

In this paper, we propose Independent Factor RL (IF-RL) system for portfolio management. With
the assistance of independent factors, we can operate RL on all factors in parallel, which enables an
efficient system structure. Also, combining independent factors with RL can take advantages of both
techniques: RL has good forecasting power, while independent factors are believed to have better
predictability than asset returns. Experimental results on real stock data in Hong Kong market
show that IF-RL system achieves better trading performance than the comparative MVO model
and RL-POM system. Analysis on portfolio formation shows that IF-RL system attempt to find
better-performing portfolio that is different in formation from the portfolios found by other two
systems, thus demonstrating the usefulness of independent factors.

Future work may include using other ICA techniques to extract independent factors, as well as
applying IF-RL system on more data sets with more optimization criterions such as those related
to downside risk.
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