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Abstract. Tree edit distance is a conventional dissimilarity measure be-
tween labeled trees. However, tree edit distance including unit-cost edit
distance contains the similarity of label and that of tree structure simul-
taneously. Therefore, even if the label similarity between two trees that
share many nodes with the same label is high, the high label similarity
is hard to be recognized from their tree edit distance when their tree
sizes or shapes are quite different. To overcome this flaw, we propose a
novel method that obtains a label dissimilarity measure and a structural
dissimilarity measure separately by decomposing unit-cost edit distance.

1 Introduction

Tree is useful for expressing various objects such as semi-structured data and
genes [1]. For this reason, it is essential to compute tree similarity in the field of
pattern recognition and information retrieval.

In this paper we focus on labeled ordered trees with the root. Let T be a
rooted tree. T is called a labeled tree if each node is a assigned a symbol from
a finite alphabet Σ. T is ordered if a left to right order among siblings in T is
given. Tree edit distance [2] is one of the most common dissimilarity measures
between two trees and defined as the minimum cost necessary to convert from one
tree to another tree by repeating node edit operations (i.e, deletion, insertion and
relabeling). Tree edit distance is easily implemented with dynamic programming
for labeled ordered trees [3]. To compute a tree edit distance, users need to supply
a cost function defined on each edit operation. Because it is difficult to tailor
node edit costs for a specific application, unit-cost edit distance [4] in which all
of node edit operations cost 1 equally is used frequently.

Tree edit distance including unit-cost edit distance mixes the similarity of
node labels and that of tree structure, because not only label of nodes but also
tree shape are matched in turning a tree T1 to another tree T2. Thus, even if T1

and T2 share many nodes with the same label, the high label similarity is hard
to be recognized from their tree edit distance, if their tree sizes or shapes are
quite different. To overcome this flaw, this paper newly proposes to decompose
unit-cost edit distance into node edit operations to match node labels and into
those to match tree structure and, then, to obtain a label dissimilarity measure
from the former and a structural dissimilarity measure from the latter. Since



both measures take a value between 0 and 1, users can easily understand the
extent of dissimilarity. Furthermore, our label dissimilarity measure generalizes
tree inclusion [2] which is the problem to decide if a tree T1 includes another
tree T2. That is, it can measure the extent of the tree inclusion, even if T2 is not
completely contained in T1. Since our dissimilarity measures are obtained from
unit-cost edit distance, users may use unit-cost edit distance without additional
overhead like development of a new program, in case they are not satisfied with
our dissimilarity measures, which is a large advantage of our approach.

By applying our method to the noisy subsequence tree recognition problem
[5] and to the classification of XML documents, we show that our method yields
a better performance than the unit-cost edit distance.

The structure of this paper is as follows. Sect. 2 introduces the unit-cost edit
distance and the tree inclusion as preliminaries. Sect. 3 exemplifies the flaw of
the unit-cost edit distance. Sect. 4 presents our dissimilarity measures. Sections
5 and 6 report the experimental results. Sect. 7 is the conclusion.

2 Preliminaries

2.1 Unit-Cost Edit Distance

Here we define unit-cost edit distance between trees. Let T1 and T2 be labeled
ordered trees with the root. A node with a label x is denoted by “node x”. T1

can be converted to T2 by repeating deletion, insertion and relabeling of nodes.
All of the insertion, deletion and relabeling of nodes are named node edit

operations. These operations are defined formally as follows.
insertion: Let u1, u2, . . . , ul be the children of node y that are ordered, where
l is the number of children nodes for y. Inserting a node x as the child of y
between ui and uj (1 ≤ i < j ≤ l) means that x becomes a child of y and the
parent of nodes from ui+1 to uj−1.
deletion: Deleting a node x means that the children of x become the children
of the parent of x and then x is removed.
relabeling: Relabeling a node x to a node y means that the label of the node
is modified from x to y. It has no influence on the tree shape.

By introducing the notation of a null node λ, all of these operations can be
consistently described in the form of a node pair (x, y), where (x, y) indicates
that node x is changed to node y. A relabeling operation corresponds to the
case when x �= λ and y �= λ. If x = λ and y �= λ, (x, y) becomes an insertion
operation. If x �= λ and y = λ, (x, y) grows a deletion operation.

When T1 is converted to T2, we denote this conversion by T1 → T2. The
tree conversion is determined uniquely by the set of the performed node edit
operations. This set is expresses as M(T1, T2) and M is called a tree mapping.
Fig. 1 illustrates the tree mapping. Let T [i] be the i-th node in T . A dotted line
from node T1[i] to node T2[j] indicates that T1[i] is relabeled to T2[j]. The nodes
in T1 not touched by a dotted line are deleted and those in T2 are inserted.

A node edit operation (x, y) is associated with its cost c(x, y). For computing
unit-cost edit distance, we assume that c(x, y) = 1 for any x, y satisfying x �= y
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and that c(x, x) = 0 for any x. This means that any insertion, deletion and
relabeling to a different label costs 1 evenly. Relabeling to a different label is
referred to as non-free relabeling.

Let DM (IM ) be the set of nodes deleted from T1 (respectively inserted to
T2) in M . Let SM be the set of relabeled node pairs in M . Then, the cost of M is
defined as (1) that is the total cost incurred in deletion, insertion and relabeling.

cost(M) =
∑

(v,w)∈SM

c(v, w) +
∑

v∈DM

c(v, λ) +
∑

w∈IM

c(λ, w). (1)

D(T1, T2) = minM{cost(M)} where the minimum is taken over M is called the
unit-cost edit distance between T1 and T2.

2.2 Tree Inclusion

When T1 can be converted to T2 only by node delete operations, T2 is said to be
included in T1. Tree inclusion problem is to determine if T2 is included in T1.

3 Flaw of Unit-Cost Edit Distance

Unit-cost edit distance contains the similarity of node labels and that of tree
structure simultaneously. Hence, even if a pair of trees share many nodes with
the same label, the high label similarity between them is hard to be recognized
from the unit-cost edit distance, if their tree sizes or shapes are much different.
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Fig. 2 illustrates the above claim. In this figure, T1 is a subtree of T2 and
every node label that appears in T1 also emerges in T2. By contrast, T3 do not
include the same label as T1 at all. Here, D(T1, T2), the unit-cost edit distance
between T1 and T2, becomes 8, where the optimal tree mapping is to insert
8 nodes into T1. On the other hand, D(T1, T3) = 5, where the optimal tree
mapping is to delete node f from T1 and relabel the remaining 4 nodes in T1.
Thus, T1 becomes closer to T3 than T2 under unit-cost edit distance, despite the
label similarity is higher between T1 and T2 than between T1 and T3.

This implies that unit-cost edit distance does not suit for applications for
which label similarity should be paid much attention.

4 Our Dissimilarity Measures

After mentioning the decomposition of unit-cost edit distance in Sect. 4.1, our
measures are defined in Sect. 4.2.

4.1 Decomposition of Unit-Cost Edit Distance

Especially, given two trees T1 and T2, we decompose the optimal tree mapping
from a tree with more nodes to a tree with less nodes into node edit operations
to match node labels and those to match tree structure. Let |T1| ≥ |T2| in the
subsequence, where |T | indicates the number of nodes in T and called the tree
size of T . When |T1| < |T2|, they are permuted. Let M(T1, T2) be the optimal
tree mapping from T1 to T2 which corresponds to the unit-cost edit distance.
We use Fig. 3 for explanation. Among the three types of node edit operations,
only insertion and deletion are related to the change of the tree shape. Hence,
we may suppose that M follows the next two steps in order.
Step 1: The tree shape is matched to T2 by insertion and deletion operations.
Step 2: After Step 1, the node labels are made consistent with T2 by relabeling.



Step 1 is further divided into two substeps in the next way.
Step 1a: The tree size is matched to T2 by deleting some nodes from T1.
Step 1b: The tree shape is matched between two trees of the same size by
insertion and deletion operations.

Step 1 becomes T1 → Tm and Step 2 becomes Tm → T2 in Fig. 3. Let S′
M is

the set of non-free relabeling operations performed in M . Then the cost in Step 1
is |IM |+ |DM | and that in Step 2 is |S′

M |. In the example of Fig. 3, as two nodes
D and E are removed and node X is inserted in Step 1, |IM |+ |DM | = 3. Then,
as Step 2 includes only one non-free relabeling operation (C, Y ), |S′

M | = 1.
Since the cost in Step 1a is obviously |T1|− |T2|, the cost in Step 1b becomes

|IM | + |DM | − (|T1| − |T2|). Note that the number of insertion operations and
that of deletion operations are the same in Step 1b, because the tree size does
not change in Step 1b. In addition, insertion operations are performed only in
Step 1b. Hence, we have |IM | + |DM | − (|T1| − |T2|) = 2|IM |.

Because the nodes inserted in Step 1b (e.g. node X in Fig 3) must have labels
included in T2, the matching of labels is realized by |IM | insertion operations
in Step 1b and |S′

M | relabeling operations in Step 2. On the other hand, the
matching of tree structure is realized by deletion operations in Step 1a and
insertion and deletion operations in Step 1b.

4.2 Definitions of Our Dissimilarity Measures

Label Dissimilarity Measure: In the optimal tree mapping M , the number
of node edit operations for matching labels is exactly |IM | + |S′

M |. The label
dissimilarity measure is defined as (2) in which |IM |+ |S′

M | is normalized by the
tree size |T2|. The term “label dissimilarity measure” is abbreviated as LDM.

LDM(T1, T2) =
|IM | + |S′

M |
|T2| (2)

Since the matched labels remain in T2, 0 ≤ |IM | + |S′
M | ≤ |T2|. Hence, LDM

takes a value between 0 and 1. Note that LDM takes the preservation of the
order of nodes common to T1 and T2 into account. LDM has the next features.

– If and only if T1 includes T2, the LDM between them equals 0, because the
optimal tree mapping consists of only deletion operations.

– When T1 and T2 do not have any common label at all, the LDM becomes 1,
since any node in T2 must be prepared by means of insertion or relabeling.

For the trees in Fig. 3, the LDM grows 1+1
4 = 0.5. In this way, LDM gener-

alizes tree inclusion and measures the extent that T1 includes T2, even if T2 is
not completely included in T1.

Structural Dissimilarity Measure (SDM) is defined as Formula (3).

SDM(T1, T2) =
1
2

( |T1| − |T2|
|T1| +

|IM |
|T2|

)
(3)



The first term in (3) divides the cost for Step 1a by T1 to exclude the influence
of the tree size. Obviously, 0 ≤ |T1|−|T2|

|T1| ≤ 1. The second term in (3) corresponds
to the cost of matching the shapes of the two trees of the same size in Step 1b,
which equals 2|IM |. Note that the size of the two trees in Step 1b is |T2|. As a
tree mapping which deletes all nodes from one tree and then inserts all nodes
contained in T2 is feasible, the cost for Step 1b is at most 2|T2|. Thus, we have
0 ≤ |IM |

|T2| ≤ 1. Hence, SDM takes a value between 0 and 1.

4.3 Related Works

LDM works as a measure for approximate tree inclusion. With respect to ap-
proximate tree inclusion, Schlieder and Naumann [6] measures the quality of a
tree inclusion by the number of nodes skipped in the tree mapping. Pinter et
al. [7] allows the inexact matching of node labels in subtree homeomorphism, a
special case of tree inclusion. They rank subtree homeomorphisms by label simi-
larity. These two works disallow inexact tree inclusion in terms of tree structure
unlike our approach. Sanz et al. [8] studies approximate subtree identification
which admits an inexact matching of tree structure like our paper. Although
their algorithm is very fast, it cannot recognize the exact tree inclusion, as the
ancestor relationship is weakened. Bunke and Shearer [9] proposes a dissimi-
larity measure in which the size of the maximum common embedded subtree
is divided by max{|T1|, |T2|}. Their measure generalizes not tree inclusion but
graph isomorphism.

5 Application to Noisy Subsequence Tree Recognition

Our LDM is especially suitable for the noisy subsequence tree recognition [5]
that is formulated as follows:

Suppose we have a database DB of labeled ordered trees. Let T be any tree
from DB. UT is an arbitrary subtree of T obtained by randomly deleting nodes
from T . A noisy subsequence tree YT of T is constructed by garbling UT by
insertion, deletion and relabeling further. Fig. 4 illustrates an example. Here,
the nodes surrounded by a circle in T constitutes UT . The nodes surrounded by
a rectangle in UT and YT correspond to noises in the tree conversion UT → YT .
The task of the noisy subsequence tree recognition problem is to identify the
original tree T from the trees in DB, given YT . One major application of this
problem is the comparison of RNA secondary structures.

For this problem, Oommen and Loke [5] computed the constrained tree
edit distances between YT and every tree in DB and judged the tree in DB
that is the least dissimilar to YT as the original tree T . The constrained tree
edit distance is a special tree edit distance under the condition that the num-
ber of relabeling operations executed in the tree mapping is fixed. In particu-
lar, they assume that the number of relabeling operations denoted by L exe-
cuted in UT → YT can be obtained by some means. The computational com-
plexity of the constrained tree edit distance between two trees T1 and T2 be-
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comes O(|T1||T2| ∗ min{|T1|, |T2|}2 ∗ span(T1) ∗ span(T2)), where span(T ) =
min{No. of leaves in T , No. of depths in T}.

Our method utilizes the LDM instead of the constrained tree edit distance.
The computational complexity of LDM is O(|T1||T2|∗span(T1)∗span(T2)) which
inherits from tree edit distance. Our method is splendid, as it does not need L.

Our method is compared with the one by Oommen and Loke. We perform the
same experiment as their paper [5]: We prepare 25 labeled ordered tree as DB
which vary in sizes from 25 to 35 nodes. A label of a node is chosen uniformly
randomly from the English alphabet. For a tree T in DB, a corresponding noisy
subsequence tree is constructed in the following manner.

1. 60% of the nodes in T are randomly selected and removed to produce UT .
2. In making YT , each node in UT is deleted with a probability of 5% and

relabeled with a probability that follows the QWERTY confusion matrix in
[5] which models the errors in stroking a keyboard. Also, several nodes are
inserted to randomly chosen places in UT such that the number of inserted
nodes follows the geometric distribution with an expectation value of 2.

10 noisy subsequence trees are made per a tree in DB. Thus, 250 noisy sub-
sequence trees are generated in total. The average number of noises to deform
UT is 3.67 that consists of 1.98 insertion, 0.53 deletion and 1.16 relabeling op-
erations. The average size of 25 trees in DB is 30.7 and that of the 250 noisy
subsequence trees is 13.8.

For each noisy subsequence subtree, its original tree is searched from DB
both with our method and Oommen’s method [5]. As the result, 99.6 % out of
the 250 noisy sybsequence trees are correctly recognized by our method, which
is superior to the success ratio of 92.8% by Oommen’s method reported in [5].
Though we also implemented the unit-cost constrained tree edit distance, we
could not attain a success ratio higher than 90%. The execution time of our
method is 21.8s, whereas that of Oommen’s method is 114.4s. Each execution
time contains the time to compute a dissimilarity measure 250×25 = 6250 times.
Our method is faster than Oommen’s method, since unit-cost edit distance is
lighter to compute than unit-cost constrained edit distance.



We remark here that even if 5 relabeling operations and 5 insertion operations
are performed on each UT to create each YT , the success ratio still grows about
98%. Roughly speaking, LDM is not affected by the gap of the tree sizes between
T and UT , so LDM is robust.

6 Application to Classification of XML documents

This section demonstrates that our measures yield a more natural clustering
result (that is, a dendrogram) when combined with hierarchical clustering al-
gorithms than the unit-cost edit distance in classifying XML documents. Espe-
cially, when a set of XML documents from multiple different XML databases are
given, our measures are good at bundling the XML documents from the identical
database into the same cluster. Our method works in two phases as follows.
Step 1: The hierarchical clustering is executed by using the LDM only. From the
clustering result, clusters C1, C2, . . . , Ck are determined.
Step 2: The hierarchical clustering is performed once more. This time, we use a
weighted sum Lij +αSij as the dissimilarity measure between a tree i and a tree
j. Here, Lij and Sij are the LDM and the SDM between tree i and tree j. The
weighting parameter α is determined from the constraint that the membership
of clusters C1, C2, . . . , Ck remains unchanged. As the result, α is not so large.

Our method aims to categorize the XML documents from the same database
into the same cluster in Step 1, because LDM can equate them without regard to
the number of repeatable tags or elements that are specified with the ’*’ regular
expression in the schema. Note that these repeatable tags/elements cause tree
structural difference among the XML documents from the same database. After
Step 1, Step 2 attempts to classify the XML documents inside each cluster,
considering their structural dissimilarities.

Step 1 need to determine the number of clusters k. k can be estimated from
the dendrogram such that a sudden increase of the LDM value between a pair of
clusters to be merged in the agglomeration signifies that two heterogeneous clus-
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Table 1. Performance comparison to the unit-cost edit distance

Actors Car IndexTerms OrdinaryIssue No. of Misses

Our Method 20 20 20 20 0

Unit-Cost Edit Distance 9 20 20 19 12

ters that should not be united are merged. Step 2 produces a single dendrogram
over the whole data by using a weighted sum of the LDM and the SDM.

6.1 Experimental Results

80 XML documents are sampled from the next 4 different XML databases (that
is, 20 documents per a database): (1) XML-Actors, (2) the database of car
catalogs from Edmunds.com, (3) ACM SIGMOD RECORD IndexTermsPage
and (4) ACM SIGMOD RECORD OrdinaryIssuePage.

These documents are classified with our method, where the group averaging
method is adopted as a hierarchical clustering algorithm. Fig. 5 displays the LDM
values of the merged clusters in Step 1. Since the LDM rises greatly when the
number of clusters is reduced from 5 to 4, the number of clusters is determined
as 4, which is the correct answer. Each of the 4 clusters contains exactly 20 XML
documents that come from the same database. Table 1 compares our method
with the unit-cost edit distance. It shows how many XML documents from the
same database appear as a single clump on the dendrogram. Inferior to our
method, the unit-cost edit distance fails for 12 XML documents because it is
annoyed by the difference in tree sizes. The final dendrogram by our method
after Step 2 is published on our web page [10].

Instead, the final dendrogram by our method for a smaller dataset is pre-
sented here. The dataset consists of 4 documents from the XML-actors (i.e.,
A1,A2,A3,A4), 4 documents from the IndexTermsPage (i.e., I1, I2, I3, I4) and 8
documents from the OrdinaryIssuePage (i.e., from O1 to O7). The dendrogram
is described in Fig. 6 where α = 2.8. The three clusters are separated clearly.

Table 2 shows the number of ’articlesTuple’ elements in the XML documents
from the OrdinaryIssuePage database. This element is defined as a repeatable
element in the schema. The cluster for the OrdinaryIssuePage database classifies
the members according to the number of the elements, reflecting the structural
dissimilarity among the members. Since each articlesTuple element corresponds
to a technical paper in one journal issue, our method is to categorize several
journal issues according to the number of papers published in them.

Table 2. the number of the ’articlesTuple’ elements in XML documents

XML document O1 O2 O3 O4 O5 O6 O7 08

No. of appearances 8 7 7 7 4 10 9 8



7 Conclusion

This paper proposes a novel method to extract a label dissimilarity measure and
a structural dissimilarity measure between two trees separately by decomposing
their unit-cost edit distance. As our dissimilarity measures are derived from
unit-cost edit distance with a little overhead, they are expected to complement
unit-cost edit distance for applications for which unit-cost edit distance do not
perform well for the reason that unit-cost edit distance mixes the similarity
of node labels and that of tree structure. Furthermore, our label dissimilarity
measure works as a measure for approximate tree inclusion and can evaluate the
extent of tree inclusion, if a tree is not completely included in another tree. We
verify the effectiveness of our dissimilarity measures with two experiments.
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