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Abstract. With vibrant and rapidly growing web, website complexity
is constantly increasing, making it more difficult for users to quickly
locate the information they are looking for. This, on the other hand,
becomes more and more important due to the widespread reliance on
the many services available on the Internet nowadays. Web mining tech-
niques have been successfully used for quite some time, for example in
search engines like Google, to facilitate retrieval of relevant information.
This paper takes a different approach, as we believe that not only search
engines can facilitate the task of finding the information one is look-
ing for, but also an optimization of a website’s internal structure, which
is based on previously recorded user behavior. In this paper, we will
present a novel approach to identifying problematic structures in web-
sites. This method compares user behavior, derived via web log mining
techniques, to an analysis of the website’s link structure obtained by ap-
plying the Weighted PageRank algorithm (see [19]). We will then show
how to use these intermediate results in order to point out problematic
website structures to the website owner.

Keywords: data mining, web mining, user behavior, search engines,
PageRank.

1 Introduction

Website complexity is constantly increasing, making it more difficult for users
to quickly locate the information they are looking for. This, on the other hand,
becomes more and more important due to the widespread reliance on the many
services available on the Internet nowadays. Analyzing the user’s behavior in-
side the website structure, will provide insight on how to optimize the website’s
structure to improve usability.

Web Mining is the use of data mining methods to identify patterns and rela-
tionships amongst web resources. It is basically classified into web mining: web
content, web usage and web structure mining; the last two are used to solve
the website structure optimization problem. Web structure mining involves the
crawling and analysis of web page content to identify all links existing within



the page, which will then be used to create a directed graph representing the
structure of the site being mined. Each node within this graph signifies an in-
dividual page and each edge is a link between two pages. On the other hand,
web usage mining requires the parsing of web server logs to identify individual
user behavior. Specifically, the sites visited, total visits and total time spent
looking at the page, also known as “think time”, are considered. These values
are parsed from original server logs, or could be taken from preprocessed logs as
well. Furthermore, in this paper, we explain how to use the Weighted PageRank
algorithm [2, 3, 19, 20] for web-structure mining to analyze the hyperlink struc-
ture of a website. Also, we demonstrate how to use web log mining to obtain
data on the site user’s specific navigational behavior. We then describe a scheme
how to interpret and compare these intermediate results to measure the web-
site’s efficiency in terms of usability. Based on this, it shall be outlined how to
make recommendations to website owners in order to assist them in improving
their site’s usability.

The rest of this paper is organized as follows. Section 2 is related work.
Section 3 describes the proposed approach; we first present how web structure
mining is utilized in the process of website optimization; then describe the par-
ticipation of web usage mining to the process; then we discuss how the overall
recommendation is conveyed to the user of the analyzed website. Section 4 re-
ports test results that demonstrate the applicability and effectiveness of the
proposed approach. Section 5 is summary and conclusions.

2 Related Work

As described in the literature, numerous approaches have been taken to analyze
a website’s structure and correlate these results with usability, e.g., [6, 7, 9–11,
15, 16]. For instance, the work described in [14] devised a spatial frequent itemset
data mining algorithm to efficiently extract navigational structure from the hy-
perlink structure of a website. Navigational structure is defined as a set of links
commonly shared by most of the pages in a website. The approach is based on
a general purpose frequent itemset data mining algorithm, namely ECLAT [5].
ECLAT is used to mine only the hyperlinks inside a window with adaptive size,
that slides along the diagonal of the website’s adjacency matrix. They compared
the results of their algorithm with results from a user-based usability evaluation.
The evaluation method gave certain tasks to a user (like for example finding a
specific piece of information on a website) and recorded the time needed to ac-
complish a task and failure ratios. The researchers found a correlation between
the size of the navigational structure set and the overall usability of a website,
specifically the more navigational structure a website has, the more usable it is
as a general rule of thumb.

In [18], it is proposed to analyze the web log using data mining techniques
to extract rules and predict which pages users will be going to be based on their
prior behavior. It is then shown how to use this information to improve the
website structure. By its use of data mining techniques, this approach is related



to our approach described in this paper, although the details of the method
vary greatly, due to their use of frequent itemset data mining algorithms. The
main difference between our approach and the method described in [18] is that
they do not consider the time spent on a page by a visitor in order to measure
the importance of that particular page. Their approach applies frequent itemset
mining that discovers navigation preferences of the visitors based on the most
frequent visited pages and the frequent navigational visiting patterns. However,
we believe that in a particular frequent navigational pattern there might exist
some pages which form an intermediate step on the way to the desirable page
that a user is actually interested in. Therefore, the time spent on a page by a
visitor has to be considered as an important measure to quantify the significancy
of a page in a website structure.

The work described in [13] proposed two hyperlink analysis-based algorithms
to find relevant pages for a given Web page. The work is different in nature from
our work; however it applies web mining techniques. The first algorithm extends
the citation analysis to web page hyperlink analysis. The citation analysis was
first developed to classify core sets of articles, authors, or journals to different
fields of study. In the context of the Web mining, the hyperlinks are considered
as citations among the pages. The second algorithm makes use of linear algebra
theories to extract more precise relationships among the Web pages to discover
relevant pages. By using linear algebra, they integrate the topologic relationships
among the pages into the process to identify deeper relations among pages for
finding the relevant pages. The work described in [12] describes an expanded
neighborhood of pages with the target to include more potentially relevant pages.

In the approach described in [19], the standard PageRank algorithm was mod-
ified by distributing rank amongst related pages with respect to their weighted
importance, rather than treating all pages equally. This results in a more accu-
rate representation of the importance of all pages within a website. We used the
Weighted PageRank formula outlined in [19] to complement the web structure
mining portion of our approach, with the hope of returning more accurate results
than the standard PageRank algorithm.

In [21], the authors outline a method of preparing web logs for mining specific
data on a per session basis. This way, an individual’s browsing behavior can be
recorded using the time and page data gathered. Preparations to the log file such
as stripping entries left by robots are also discussed.

3 Overview

In order to achieve our goal of recommending changes to the link structure of a
website, we have identified two main subproblems which must be initially solved.
First, to determine which pages are important, as implied by the structure of
the website. Second, to conclude which pages the users of this website consider
to be important, based on the information amassed from the web log. Once we
have solved these two subproblems, we now have methods in place which give
us two different rankings of the same web pages. Our final task is implementing



a scheme to compare the results of the first two problems and make meaningful
recommendations. In the subsections which follow, we will discuss the algorithms
we will use for unraveling each of these tasks and the reasoning behind these
algorithms.

3.1 Web Structure Mining

Web structure mining involves crawling through a series of related web pages
(for example all pages inside a user defined subdomain), extracting meaningful
data that identifies the page and use that data to give the page a rank based
on given criteria. To begin with, a set or root of web pages is provided, an
application called a crawler will traverse these pages and extract the needed
information from them. The information we are interested in are the hyperlinks
contained within the page.

Extracting this information can be done using regular expressions. There are
challenges using regular expressions, because they assume that the code used
within the web page follows all standards. Simple errors, such as some HTML
tags not being closed or improperly formatted and non-HTML code such as CSS
or javascript can throw off the parsing of the page and lead to inaccurate results.

Once the hyperlinks within the webpage have been extracted, the crawler
will recursively continue crawling the web pages whose links were found in the
current page after replicates have been removed, since crawling the same page
twice is unnecessary. Any duplicate hyperlinks within the page will need to be
removed, as well as any links that have already been processed or are already in
the queue awaiting processing. After having crawled the complete website or a
user defined part of it, depending on what the user specifies, the standard page
rank PR(pi) of each page pi can be computed as

PR(pi) =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj)

L(pj)
(1)

where N is the total number of pages that have been crawled, M(pi) is the set
of pages that link to pi, L(pj) is the number of outgoing links on page pj , and
d is a damping factor, usually chosen around 0.85. The damping factor can be
interpreted as the probability that a user follows the links on a page. It has been
included due to the following observation: Sometimes a user does not follow the
links on a page pk and just chooses to see a random page pl by entering its
address directly. This should be considered when computing the page rank of pl.
Thus, in the above formula, 1−d

N can be seen as the influence of a random jump
to page pi on the page rank PR(pi).

In [19], an improved version of standard page rank is proposed. The weighted
page rank algorithm (WPR) considers the fact that the page rank of a popular
page should have a higher weight than the one of an unpopular page. The WPR
value is computed as:

WPR(pi) =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj)W
in
(pj ,pi)

W out
(pj ,pi)

(2)



Here, W in
(pj ,pi)

and W out
(pj ,pi)

are the weights of the link between documents pj and

pi. They can be computed as:

W in
(pj ,pi)

=
Ipi∑

p∈R(pj )
Ip

(3)

W out
(pj ,pi)

=
Opi∑

p∈R(pj )
Op

(4)

where Ix is the number if links pointing to page x, Ox is the number of outgoing
links in page x and R(x) is the set of pages that are linked to from page x.
Each element of the sum of page ranks is multiplied by it’s respective weight.
The result is that more important pages are given a higher page rank, unlike
the original page rank algorithm that divides the rank of a page evenly amongst
documents it links to. At the end, a more accurate result is achieved.

We chose to use WPR instead of the standard page rank, since it has proven
to yield slightly better results in experiments (see [19]). The output of this
processing stage is a list of [pi,WPR(pi)] pairs, sorted in descending order by
the WPR values.

3.2 Web Log Mining

We have decided to base the rankings which users give to web pages on two
parameters: 1) frequency (number of visits), and 2) time (total time spent by all
users at a web page).

Preprocessing: We need to take steps to “clean” the web log to minimize
interference from robots before using it to generate the actual output of this
stage. One approach we consider useful for this has been proposed in [21], where
it is proposed to discard those sessions that match the following access patternts
that are likely to be robots characteristics:

– Visiting around midnight, during light traffic load periods in order to avoid
time latency.

– Using HEAD instead of GET as the access method to verify the validity of
a hyperlink; the Head method performs faster in this case as it does not
retrieve the web document itself.

– Doing breadth search rather than depth search; robots do not navigate down
to low-level pages because they do not need to access detailed and specific
topics

– Ignoring graphical content; robots are not interested in images and graphic
files because their goal is to retrieve information and possibly to create and
update their databases.

Based on the cleaned logfile, we then identify sessions, which in turn are used
to compute the total number of visits vi and the total time spent by users ti
for each page. It shall be noted that we must ensure that the number of user
sessions we extract from the web log are of sufficient size to give us a realistic
ranking of popular pages.



Computing log rank values: As already mentioned, the first parameter to
consider in the process is the number of times a particular page was visited by
our group of users. The fact that a user has visited a page may lead us to believe
that they consider it an important page. While this is true in many cases, there
is also the possibility that the page was just an intermediate step or “hop” on
the way to the page which the user is actually interested in. A very high number
of visits from page A→ B and a relatively low total time spent at page B seem
to imply that the page B is used primarily (or even exclusively) as a ”hopping”
point. In this case, a viable recommendation may be to change the link structure
of the website so that the user is able to navigate directly from A→ C, without
having to make a stop in-between at page B. Therefore, we need a way to give
lesser weight to the visit counter and a higher weight to the total time in our
ranking scheme.

Assuming that vi is the number of visitors for a page i and ti is the total
time spent by all visitors on this page, the log rank value li shall be defined as:

li = 0.4vi + 0.6ti (5)

Taking a weighted sum of the visits and time will result in a value that represents
the importance of a page relative to the others. Pages that are frequently visited
and accessed for long periods of time will have a larger log rank than pages with
an insignificant number of visits and think time. Rather than giving time and
visits equal importance as discussed above, the difference is quantified through a
constant, in this case being a 60/40 split, respectively. Depending on the content
of the web site being analyzed, these constants can be changed to account for
the specific audience or purpose of the site. For example, a website with pages
normally filled with large amounts of visual/textual information will have on
average longer think times than pages sparsely filled with content. A balance
between having fewer pages with large amounts of content, versus many pages
with little content must be identified and quantified in the log rank function in
order to be accurate. Finally, the output of this stage, is a list of pages sorted
by their log rank value li.

3.3 Analysis

This is the last stage of processing and yields results directly for the users, in
form of recommendations on how to change their website. The required input is:

– A list of pages with their page rank values pi ∈ R+, which is sorted by the
page rank values.

– A list of websites with their ranking values li ∈ R+ from the weblog mining,
which is sorted by the ranking values.

Preprocessing: First, we need to preprocess the page rank and log ranking
values. This step consists of normalizing them to a common index of integers.
This is done by taking the list of page ranks and sorting them in descending



order. We then chose to assign an index to each page rank value, the largest
page rank receiving index zero, and the smallest page rank receiving the highest
index value. In the event that several pages share the same page rank value, they
would receive the same index value. The same process is then repeated for the
log rank values.

This step changes the log and page rank values from two different distri-
butions into a simple linear distribution, which facilitates appropriate compari-
son. We validated this step during the evaluation of our method (see Section 4),
where the log and page rank values had significantly different distributions, which
yielded non-sensical analysis results.

The output of this step consists of two lists, the page rank and log rank in-
dexes along with their respective page. At this step, the lists are still independent
of each other.

Performing Analysis: After the preprocessing step, we can now compute the
following value di for each page:

di = index(li)− index(pi) (6)

This calculates the difference in rank between the two rank values. Ideally, we
will find di = 0, because there should be little deviation in the ranking of the
page rank and log rank values. Finally, the pages will be sorted in ascending
order according to their di values. At the top and the bottom of the list, we can
distinguish the following cases:

1. The page has got a high page rank index and a low log rank index (di very
low).

2. The page has got a low page rank index and a high log rank index (di very
high).

In case 1, the software performing the analysis should recommend the user to
put the site into a place, where it is harder to reach, in favor of pages that might
require to be reachable more easily. This includes but is not limited to:

– Removing links to that page, especially on those pages with high page rank.
– Linking to the page from places with low page rank value instead.

In case 2, the software should recommend modifying the link structure in a
fashion that makes the page easier to reach. This means, for example, adding
links to that page, especially on suitable pages with high page rank.

The intuition for a very high or very low deviation generally being undesir-
able, is the following: One could interpret a high page rank value as a site being
easily reachable from other (important) pages, whereas a low page rank value
thus could be interpreted as an indicator, that the page is hard to reach. On
the other hand, a high log rank value testifies that a page is popular, whereas
low log rank values indicate unpopular pages. Therefore, in the first case with a
very low di, the site is easy to reach, but only few people actually want to see



it; and in the second case with a very high di, the page is very hard to reach for
visitors, but comparably many people want the information on it and have to
spend time looking for it. Thus, it is natural, that according to this scheme, an
ideally positioned page has a value di ≈ 0.

The Relinking Process: The aforementioned “relinking” process has to be
carried out manually by the website owner since he/she has to consider the
content structure of the page; thus it is out of the scope of this algorithm to
propose concrete relinking in terms of “Link page A to B” or “Remove the link
on page A”. The outlined algorithm merely represents a support in determining
possibly misplaced pages and in deciding where to add or remove links (page
rank values can be helpful here).

To assist him/her in the process, after this stage, the website owner should
be presented with the following information:

– The sorted list of pages (called UNLINK list), with di < 0 and d∗i > ε1,
where ε1 is a user defined threshold.

– The sorted list of pages (called LINK-TO list), with di > 0 and d∗i > ε2,
where ε2 is another user defined threshold.

– For each webpage in the above lists, provide the set of pages that link to
it (incoming links) and the set of pages that are being linked to from it
(outgoing links).

– The page rank and log rank value for each webpage that has been analyzed,
including but not limited to those in the UNLINK and the LINK-TO list.

This information should be sufficient to detect and resolve design issues in a
website’s structure that affect usability. The ranking approach is supportive in
that it helps the owner to focus on the important issues. To guide the process of
relinking or altering the structure, page rank and log rank values are provided.

4 Evaluation

We tested our algorithm on a medium sized website (≈ 631 pages) obtained
from [17], which provides reference for HiFi devices. Its structure is mostly wider
than deep, as for example when it lists the manufacturers of documented de-
vices. Since this website has been provided for experiments with data mining
techniques, it already came with a log file that had been parsed into sessions.
Performing the analysis on the site yielded the distribution of deviation values
di as shown in Figure 1.

As can be seen from Figure 1, we have a relatively low number of pages
with a deviation far from the ideal value. The majority of the pages fall within
a small margin of ±200, which is still acceptable. Some pages like for exam-
ple /dr-660/index.html (lowest di value) showed a large discrepancy between
user popularity and reachability, since it was linked to from one of the central
pages, but hardly received any hits. Other pages like /manufacturers/korg/s-
3/index.html (second highest di value) appear to have been very popular with



Fig. 1. Plot of di (sorted by di)

the site users, but are relatively hard to reach since they are hidden “deep”
in the website’s structure. A viable change in this case would be to provide a
link to it on the pages at or close to the website’s document root (for example
in a “Favorites” or “Recommendations” section), since this is where the users
start browsing. Further investigation of the highest and lowest values, showed
the same tendency and thus revealed locations where relinking seemed necessary
after manual investigation from our side.

Despite a certain “noise” (meaning pages that are classified as misplaced,
but cannot be really relinked), our method has succeeded to identify problematic
locations in the website’s structure.

5 Summary and Conclusions

In this paper, we explained how to use the Weighted PageRank algorithm for
web-structure mining to analyze the hyperlink structure of a website. Further,
we demonstrated how to use web log mining to obtain data on the site user’s
specific navigational behavior. Our approach then showed how to combine these
values in order to measure a website’s usability. We successfully validated our
method using the data set provided under [17], which shows that this is a sim-
ple but viable approach to solve the given problem. In our opinion, a similar
method should be used as part of a larger set of tools, when it comes to usability
optimization of websites.
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