
Classification Based on
the Trace of Variables over Time

Frank Höppner and Alexander Topp

University of Applied Sciences Braunschweig/Wolfenbüttel
Robert Koch Platz 10-14

D-38440 Wolfsburg, Germany

Abstract. To be successful with certain classification problems or
knowledge discovery tasks it is not sufficient to look at the available vari-
ables at a single point in time, but their development has to be traced
over a period of time. It is shown that patterns and sequences of labeled
intervals represent a particularly well suited data format for this pur-
pose. An extension of existing classifiers is proposed that enables them
to handle this kind of sequential data. Compared to earlier approaches
the expressiveness of the pattern language (using Allen et al.’s interval
relationships) is increased, which allows the discovery of many temporal
patterns common to real-world applications.

1 Introduction

In knowledge discovery, in particular in classification tasks, the values of some
variables are used to predict the value of another variable, the so-called class
variable or label. Classifiers are trained by presenting historical cases including
the class value for training purposes. Each historical case usually represents a
real world object at some specific point in time (usually the time of recording
the case into the database). If the variables are volatile, however, then the class
label may depend on the history or development of the variables rather than
their value at the time of recording only. If measurements are numerical and
taken periodically we obtain time series, which we may analyze directly or feed
into a feature extraction process (such as the extraction of Fourier coefficients)
and use these features in traditional classifiers. Problems arise, however, if the
values are not measured at a constant rate, if there are gaps in the data or we
have mixed data types (not only numerical). As an example from health care,
we may measure a numerical ECG signal together with external influences such
as medication.

Rather than using information from a single point in time we are interested
in predicting the class by analyzing the complete history of the variables (such
as a patient’s file or log files for technical systems). The remainder of the paper
is organized as follows: In the next section, we will motivate the kind of data
representation that we are going to use, namely sequences of labeled intervals.
In section 3 we give a brief overview of related work on the analysis of interval

sequences in the literature and discusses drawbacks of the existing approaches.
Section 4 presents a new approach to this problem that greatly improves the
expressiveness of patterns compared to earlier proposals. In section 5 we present
some results from fault diagnosis and finish with the conclusions in section 6.

2 Representing Data Histories by Interval Sequences

In some cases, the state of an object in the real world changes monotonically. For
instance, a customer purchases more and more products from a company, but
usually does not send it back to the retailer at some later point in time. Thus, the
set of purchased items grows but an item once bought is never removed from this
set. In such a monotonic setting, it is sufficient to store when another product
has been purchased. Time-stamped event sequences can be used to represent
this kind of data.

If we consider objects of the real world in general, however, most of them
do not disclose such a monotonic behavior. If we observe the operation of an
electrical device, we observe changes of its internal state from 0 (off) to 1 (on)
but also from 1 to 0. In a medical domain symptoms may occur and vanish
again later on. The demand for a certain product may be overwhelming today
but negligible some months later.

One could still use event sequences (one event indicating that the symptom
occurs and another when it vanishes) to represent these non-monotonic changes
of the world. Suppose we have three devices A, B and C and that we observe some
malfunction but cannot tell exactly when and why the failure occurs. We have
recorded several histories and want to induce knowledge about the circumstances
of failure from this data. Let us assume that the problem arises if devices are
turned on in the order A, B, C but turned off in the order A, C, B. The goal
is to discover this pattern in our database of historical cases. When still using
event sequences to represent this data, the target sequence is represented by the
following sequence:

Aon Bon Con Aoff Coff Boff

Since the seminal work in [1, 2] many algorithms have been proposed for
the analysis of event sequences. Our target sequence will be discovered by any of
these approaches if it is found frequently in the histories and helps to discriminate
the two classes (fault/no fault). In all approaches the sequence above is found
being a subsequence of the following:

Aon Bon Aoff Con Aon Aoff Coff Boff

However, this case does not correspond at all to our target pattern: It is not
true that the devices are turned on in the order A, B, C, because A has already
been turned off before C is turned on. Only the fact that A is reactivated later
makes it possible to match the event sequence here. Thus, our quite simple target
problem cannot be represented and matched correctly. The reason is that events
in an event sequence are considered independent from each other, but in fact
every ‘power-on’ event corresponds to the very next ‘power-off’ event referencing

the same device. When expressing the temporal pattern as a sequence of events,
we would have to impose such constraints explicitly (but this is usually not done
in the literature on event sequences).

The dependency between corresponding events is better prevailed if both
events form a single data object rather than two independent ones: one interval
for each up-time (and/or down-time) of the device. Now, using intervals the
pattern looks like this:

Aon A Aoff
Bon B Boff

Con C Coff time →

Next, the notion of being a subsequence must be defined for interval se-
quences. Firstly, for P being a subpattern of sequence S all intervals in P must
occur in S (just like with events). Secondly, the desired relationships between
the intervals has to be formulated, just as the (partial) order in case of event
sequences. Allen et al. [3] has introduced 13 interval relationships that are shown
in Fig. 1. The relationship between intervals is more complex than that of events,
but the concept remains the same: For any two intervals A and B the set of al-
lowed relationships has to be specified. In our case, we could require the following
pairwise relationships: A overlaps B and C, B contains C.

If we now revisit our second historical case, it is represented by the following
interval sequence:

Aon A Aoff Aon A Aoff
Bon B Boff

Con C Coff time →

When trying to match the intervals in this sequence to our pattern we have
two possibilities for A: the first A correctly overlaps B but does not overlap C
and the second neither overlaps B nor C. So this notion of ‘being a subsequence’
corresponds much better to our intention and does not mistake this sequence as
an occurrence of target pattern.

This example consisted of dichotomous variables only, but variables at other
scales can also be used (cf. Fig. 2). For instance, a new interval may be introduced
whenever a categorical variable changes its value or a numerical variable changes
its qualitative behavior (e.g. increasing/decreasing, low/medium/high, etc., see
also [4]).

A
B time

B before [b] A

B overlaps [o] A
B is−finished−by [if] A

B starts [s] A
B contains [c] A

A after [a] B
A is−met−by [im] B
A is−overlapped−by [io] B
A finishes [f] B
A during [d] B
A is−started−by [is] B
A equals [=] BB equals [=] A

B meets [m] A

A

C
B

C
B
A

A B C
= m b
im = o
a io =

matrix of interval relationships

Fig. 1. There are 13 possible relationships between two intervals.

c b

true

c

true

b

attribute

binary

categorical

numerical

time

a

true

Fig. 2. Transformation of historical data into an interval sequence.

3 Related Work

More formally, we define an interval sequence s = (si, li, ei)i=1..n as a finite
sequence of intervals [si, ei] ∈ IR2 with labels li ∈ L, where i = 1..n, si < ei

and L is a finite set of labels. Our data set consists of several such sequences,
each carrying an additional class label for classification. We denote the set of 13
interval relationships by I = {b, a, m, im, o, io, if, f, c, d, s, is, eq} (cf. Fig. 1).

In the literature there is comparatively little work on the analysis of interval
sequences for the purpose of classification or knowledge discovery. Most of them
have their own notion of a pattern (subpattern of an interval sequence) and how
it is matched against another sequence. We can compare the different notions
of a pattern using the following unifying view. A pattern P is captured by the
following matrix, where the m rows and columns denote intervals (resp. their
label) kj ∈ L and the matrix elements Ri,j ⊆ I the set of possible pairwise
relationships:

k1 k2 ... km

k1 {eq} R1,2 ... R1,k

k2 R2,1 {eq} ... R2,k

...
...

...
. . .

...
km R1,2 R1,3 ... {eq}

On the diagonal, where we compare identical (sets of) intervals kj , the
relationship has to be equals (Rj,j = {eq}). A pattern P matches a se-
quence S = (si, li, ei)i=1..n of length n, if we can find an injective mapping
ϕ : {1, 2, ..,m} → {1, 2, .., n} such that (a) label kj in the pattern equals label
lϕ(j) in the sequence and (b) the interval relationship r between [sϕ(i), eϕ(i)] and
[sϕ(j), eϕ(j)] is contained in Ri,j for all i, j ∈ {1, 2, ..,m}.

If Ri,j = I holds for all i 6= j, any interval relationship would suffice and
matching of patterns reduces to an existence test for all interval labels (just
as in association rule mining). If we restrict Ri,j to a subset of {a, b, eq} we
can simulate event sequences where two events either occur in parallel or in
succession. Let us now consider how some approaches to the analysis of interval
sequences fit in this view:

– In [5] the relation between k1 and k2 is always unique (|R1,2| = 1). For
any further interval kj the relationship is again unique with respect to the
smallest interval that encloses all preceding intervals k1...kj−1, but this leaves
several possibilities open for the individual interval comparison Ri,j . As an

example, if R1,2 = {o} and the union of k1 and k2 again overlaps k3 we have
R1,3 = {o,m, b} and R2,3 = {o, s, d}.

– In [6] the relation Ri,j is either contains/during or remains unspecified.
– In [4] all possible relationships Ri,j are exploited, given that |Ri,j | = 1.
– Other authors prefer other relationships over Allen et al.’s, such as is-older-

than or survives [7]. However, since the 13 relationships by Allen et al. are
complete, those relationships can always be represented as a disjunctive com-
bination of relationships in I.

The approach in [4] is quite general in the sense that all Ri,j are configurable
whereas the other approaches focus either on a few Ri,j or on a specific subset
of I only. On the other hand, all pairwise relationships are strictly fixed in this
approach, but many relationships that occur frequently in practice cannot be
expressed by a single relationship r ∈ I. For instance, ‘A starts within B’ clarifies
the location of the start time Aon of A with respect to B (Aon ∈]Bon, Boff[),
but the position of Aoff is left open. Therefore, a number of different interval
relationships between A and B are possible: A is-overlapped-by B, A during B,
A finishes B. To reflect the true relationship correctly, Ri,j should be chosen as
{io, d, f}. Another example is ‘A and B are disjoint’ that can be resembled by
after and before relationships (Ri,j = {a, b}).

4 Increasing the Expressiveness

The goal of this work is to relax the conditions on the sets of interval relationships
Ri,j to increase the expressiveness of the pattern language and thus to discover
more realistic dependencies. We want to achieve this in two steps:

Firstly, rather than specifying all relationships between any two intervals, we
want to restrict ourselves to those relationships that are really helpful for the
classification. By reducing the number of constraints in this way, the patterns
become more robust against effects of dilation and translation and an undesirable
rule fragmentation is avoided. As an example, suppose the true relationship is
‘A and B occur before C’, which is quite a simple pattern. It does not contain
any information about the relationship between A and B, so all 13 relationships
are possible. The approach of [4] is capable of learning the relationship ‘A before
C’ and ‘B before C’ but also requires a single relationship between A and B. As
we have seen, there is no such single relationship, so if we are forced to fix this
relationship artificially, the support of this pattern is fragmented into 13 rules.
A rule evaluation measure would rank each of these 13 rules much lower than a
rule that corresponds to the true pattern.

Secondly, we want to relax the requirement |Ri,j | = 1 such that relationships
beyond the basic ones can be discovered (e.g., does not intersect: Ri,j = {after,
before}).

4.1 Choice of the Classifier

We use a standard rule (or tree) learner that develops its model incrementally,
such as ITRule [8] or C4.5 [9]. Such algorithms have already been used for

temporal data in the literature, but there a variable is often just replicated
several times to represent its value at different points in time. Since these points
in time have to be fixed before the model is learned and deployed, a dilation or
translation of events may easily misguide such a classifier.

The set of available variables for rule development is therefore altered in our
approach and additionally depends on how far a rule has already been developed.
At the beginning, one dichotomous variable per interval label is introduced. At
this stage, the rule learner derives rules that consist of conditions on the existence
or absence of certain intervals (labels) in the complete history, such as:

if ¬D ∧A ∧B then fault (1)

(reading ‘if there is no interval labeled D but two intervals labeled A and B in
the history, then we predict fault’). As soon as a rule requires the existence of
at least two intervals in the history (here: A and B), additional variables are
provided for further rule refinement. For each pair of such intervals a nominal
attribute is introduced over the domain 2I , indicating all relationships between
A and B found in the history. In the next step the rule may now be specialized
by adding yet another clause on the existence or absence of an interval but also
by adding a condition on the relationship between two intervals, such as:

if ¬D ∧A ∧B ∧A〈R〉B then fault (2)

How to find this set R will be discussed in the next section. For instance, if
R = {m, o} the rule holds only for those cases where A meets or overlaps B. If
a rule does not contain any condition on the relationship between two intervals
ki and kj , this situation of complete ignorance corresponds to Ri,j = I.

4.2 Sets of Relations

The newly introduced variables over the domain 2I have 213 different values. For
obvious reasons we do not want to check each of the 8192 possibilities to find
the best rule specialization. To reduce this number we form groups of interval
relationships and treat the relationships in a group collectively. If the intervals
are derived in a preprocessing step from some other data, the exact location
of the interval bounds is quite often questionable due to the several (heuristic)
steps applied during preprocessing. In such a case it does not make much sense
to consider relationships that require an exact match of interval bounds in full
detail, because these matches are rather incidental. Here we are only interested
in the relationships b, a, o, io, d, c but for reasons of completeness we form groups
with the remaining relationships such that we obtain a partition such as:

G = {{b, m}, {a, im}, {o}, {io}, {d}, {c}, {eq, s, is, f, if}} (3)

While it is quite canonical to group m and b, it is less obvious what to do with is
or if, for instance. Grouping {o, if} and {io, f} also appears to be a reasonable
choice. For the remainder of the paper the actual partition is not important, it
may be chosen differently from application to application.

Rather than considering all 213 subsets of I we restrict ourselves to subsets of
G. More precisely, for Ri,j we consider only subsets of I that can be represented
as the union of elements of G. For the remainder of this section by ‘relationship
r’ we refer to a group of relationships r ∈ G rather than single element of
r ∈ I. Suppose that we have found a rule (1) requiring the existence of two
intervals, say A and B. We want to extend the rule in the fashion of example
(2), so our task is to find the set of relations R leading to the best refined
rule according to some rule evaluation measure (e.g. the J-measure used in [8]).
All necessary information for the rule evaluation measure can be found in the
following contingency table, where the left/right part corresponds to the rule
before/after the refinement on the interval relationship.

base rule (1) refinement (2)

number of cases class class
positive negative positive negative

rule antecedent holds a b pR nR

rule antecedent does not hold c d P − pR N − nR

total P N P N

Since the base rule is already given, the left half of the table is already known.
The total number of positive and negative cases (P and N , resp.) remains iden-
tical for the base rule and the refinement, therefore it is sufficient to determine
pR and nR for each possible refinement. To decide which subset R improves the
given rule best, we need to construct the right contingency table for each possible
choice of R. Thanks to the introduction of groups we have 27 = 128 possibilities
for R. This still requires some effort that we want to reduce further.

We restrict our discussion to the determination of nR, but the same argu-
ments hold analogously for pR. While nR denotes the number of sequences in
which A and B can be observed in (at least) one of the relationships in R, we use
mR to denote the number of sequences in which A and B can be observed in all
of the relationships in R simultaneously. Let us now examine how to determine
nR for the various choices of R:

– |R| = 1: We determine n{r} directly, that is, among the sequences that satisfy
the antecedent of the base rule, we count in how many cases A and B satisfy
relationship r.

– |R| = 2: Due to |A ∪ B| = |A| + |B| − |A ∩ B| we have n{r,s} = n{r} +
n{s} − m{r,s}. Since we know already the frequencies n{r}, we additionally
determine m{r,s} for all pairs of relationships r, s.

– |R| = 3: Repeating the same argument of the previous case, we have

n{r,s,t} = n{r} + n{s} + n{t} −m{r,s} −m{r,t} −m{s,t} + m{r,s,t}

We only approximate nR for this case, by neglecting the term m{r,s,t}. We
consider the error we introduce by this estimation to be rather small, because
m{r,s,t} counts how often intervals A and B have been observed in all three
relationships r, s and t in the same sequence.1

1 If, however, this assumption is violated, we also determine mr,s,t.

– |R| > 3: Instead of considering sets R with |R| > 3 we take S = G\R into
account, leading to |S| ≤ 3. For two given intervals A and B, the condition
A〈R〉B is equivalent to ¬(A〈S〉B). Therefore using the negation of a ‘small’
set S (of size ≤ 3) can be a substitute for using a ’large’ set R (of size
≥ 4).2 The frequency of ¬(A〈S〉B) can be readily obtained from b− nS (cf.
contingency table), because b denotes the number of histories before rule
refinement and nS is the number of cases for which one relation r ∈ S has
been observed – consequently in b−nS cases no relationship r ∈ S has been
found in the sequences (but a relation r ∈ R).

By counting the frequencies nR for |R| = 1 (7 counters when using (3)) and
mR for |R| = 2 (21 counters) we have reduced the number of frequency counts
from 128 to 28. Only for sets R with cardinality 3 and 4 we thereby introduce a
small error, in all other cases we obtain exact results.

Being able to derive the contingency table from these frequencies, we could in
principle check for each possible value of R how the rule measure of the respective
algorithm evaluates the refinement. Rather than trying all possibilities we use
the following heuristic: The original rule is evaluated by some rule evaluation
measure and yields a initial value of J0 that any refinement must beat. We start
from an empty set R0 = ∅. For a given set Ri we choose the most promising
relationship r such that the rule measure is optimized by Ri+1 = Ri ∪ {r}. This
optimization is achieved for most rule measures by maximizing the difference
pR − nR from the contingency table. Among the sets of relationships R1 ⊆
R2 ⊆ R3 (and S1 ⊆ S2 ⊆ S3 for the negations) we finally choose the one that
is evaluated best by the rule measure. In case this is J0, no rule refinement is
made. This represents, of course, a greedy optimization that does not guarantee
global optimality.

5 Evaluation

Future work will include the application of this algorithm to medical data from
health care. In this section, we apply our technique to a simple case in fault diag-
nosis. Figure 3 shows a small Java program using two parallel threads accessing
a shared variable. The access to this variable is not synchronized, which is why
some undesired effects occur. The first dummy thread calls methods f , g and h,
one after the other. f stores a first value in the shared variable, g a second one,
and h reads both values and returns their sum. We compare if the returned sum
is correct (which gives us the classification label for a test run of the program).
A second thread consists of a single call of k that also uses the shared variable
temporarily, but at the end it restores the value from the beginning. A faulty
result occurs, for instance, if the call of g overlaps the call of k. This program
has been executed several times: each function call gives us an interval in our

2 While this is perfectly true for two given intervals, when arguing about the relation-
ship of A and B in a set of sequences there are little differences in the semantics,
because multiple instances of A and B may occur.

interval sequence (the label is the name of the method, the execution time gives
the temporal interval).

class A implements Runnable {

Random random = new Random();

private int[] shared;
boolean ok;
A(int[] data) { shared=data; }

void f(int i) {

Thread.sleep(random.nextInt(40));
shared[0]=i;

}

void g(int i) {

Thread.sleep(random.nextInt(40));
shared[1]=i;

}

int h() {

Thread.sleep(random.nextInt(40));
int r = shared[0]+shared[1];
return r;

}

public void run() {

Thread.sleep(random.nextInt(40));
int i,j;
f(i=random.nextInt(10));
g(j=random.nextInt(10));
ok = (i+j==h()); // class label

}

}

class B implements Runnable {

Random random = new Random();

private int[] shared;
B(int[] data) { shared=data; }

void k() {

int i = shared[1];
shared[1] = random.nextInt(1000);
Thread.sleep(random.nextInt(40));
shared[1] = i;
return i;

}

public void run() {

Thread.sleep(random.nextInt(100));
k();

// Thread.sleep (random.nextInt (40)); k ();
}

}

public class Demo {

static int[] data = new int[2];
public static void main(String[] args){

ExecutorService app =

Executors.newFixedThreadPool(2);
app.execute(new A(data));
app.execute(new B(data));
app.shutdown();

}

}

Fig. 3. Example Source Code from which interval sequences were generated: Calls to
methods f, g, h or k are recorded, the history of a complete run is labeled with the
value of the boolean variable ’ok’ in class A.

To demonstrate the advantage of the proposed approach, the following table
shows the best rule obtained when only single relationships (|R| = 1) are allowed
(J-value of 0.1). A critical situation is given, if k covers the endpoint of either g
or h. While this cannot be expressed exactly using a single relationship only, it is
very well recovered from the top two rules delivered by the proposed algorithm –
a great improvement in terms of the J-value is achieved. The third rule illustrates
the usefulness of relationship negation: A fault will not occur if f occurs before
k, which is expressed by the negative condition in the third rule.

single relation only if k ∧ g ∧ g〈{o}〉k then fault J=0.100
any number of relations if k ∧ g ∧ g〈{o},{d}〉k then fault J=0.205

if k ∧ h ∧ h〈{o},{d}〉k then fault J=0.139
if k ∧ f ∧ ¬(f〈{b,m}〉k) then fault J=0.078

A second dataset includes the interval k twice (uncomment last line of
B.run()) and we generate rules that predict no-fault rather than fault. The best
rule of our approach has a J-values more than twice as high as the best rule
obtained when single relationships are allowed only. The first rule corresponds
quite well to a negation of the top rule in the previous table. The second rule is
an example for a rule that refines multiple relationships.

single relation if k ∧ g ∧ g〈{o}〉k then fault J=0.043
multiple if g ∧ k ∧ ¬(k〈{io},{c},{eq,s,is,f,if}〉g) then no-fault J=0.091
relationships if h ∧ f ∧ k〈{b,m},{o}〉f ∧ k〈{b,m}〉h then no-fault J=0.074

6 Conclusion

Most of the work on mining sequential data deals with event sequences. We have
argued in this paper, why interval sequences are better suited to capture the
trace of variables over time. The few papers on mining interval sequences in the
literature make use of Apriori-like algorithms. In this paper we have proposed a
way to extend more traditional classifiers (such as rule or tree learners) to handle
interval sequences. The resulting models are well suited to express temporal
dependencies that are common in realistic applications, the expressiveness is
greatly improved over earlier approaches.

References

[1] Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of 11th Int. Conf.
on Data Engineering, Taipei, Taiwan (March 1995) 3–14

[2] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in se-
quences. In: Proc. of the 1st ACM SIGKDD Int. Conf. on Knowl. Discovery and
Data Mining, Menlo Park, Calif. (1995) 210–215

[3] Allen, J.F., Kautz, H.A., Pelavin, R.N., Tenenberg, J.D.: Reasoning about Plans.
Morgan Kaufmann Publishers (1991)

[4] Höppner, F.: Discovery of temporal patterns – learning rules about the qualitative
behaviour of time series. In: Proc. of the 5th Europ. Conf. on Principles of Data
Mining and Knowl. Discovery. Number 2168 in LNAI, Freiburg, Germany, Springer
(September 2001) 192–203

[5] Kam, P.S., Fu, A.W.C.: Discovering temporal patterns for interval-based events.
In: Proc. of the 2nd Int. Conf. on Data Warehousing and Knowl. Discovery. Volume
1874 of LNCS., Springer (2000) 317–326

[6] Villafane, R., Hua, K.A., Tran, D., Maulik, B.: Knowledge discovery from series of
interval events. Journal of Intelligent Information Systems 15(1) (2000) 71–89

[7] Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence
54(1) (1992) 199–227

[8] Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction
from databases. IEEE Trans. on Knowledge and Data Engineering 4(4) (August
1992) 301–316

[9] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers (1993)

