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Abstract In this paper we introduce an evolutionary hyperheuristic
approach to solve difficult strip packing problems. We have designed a
genetic based hyperheuristic using the most recently proposed low-level
heuristics in the literature. Two versions for tuning parameters have also
been evaluated. The results obtained are very encouraging showing that
our approach outperforms the single heuristics and others well-known
techniques.
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1 Introduction

In this paper we focus our attention on methods to solve the two-dimensional
strip packing problem, where a set of rectangles (objects) must be positioned on a
container (a rectangular space area). This container has a fixed width dimension
and a variable height size. The goal is, when possible, to introduce all the objects
in the container without overlapping, using a minimum height dimension of
the container. In the literature many approaches have been proposed. In our
understanding a more complete revision has been presented in E. Hopper’s Thesis
[10]. However, in the last few years the interest in this subject has increased, as
has the interest in the number of research papers presenting new approaches and
improvements to the existing strategies. These approaches are in general single
heuristics or heuristics incorporated into metaheuristics methods. Recently, the
concept of hyperheuristic has been introduced and tested successfully in different
problems, [5]. The key idea is to tackle problems using various low-level heuristics
and develop a framework that controls the applications of the heuristics. Using
this framework the time consuming task of designing an algorithm with special
components for a specific algorithm is reduced. This kind of approach is useful
to obtain a good solution for a problem in a reasonable amount of time. It
emphasises a trade-off between the quality of the solution and the invested time
for designing the algorithm.

Our goal in this research is to show that our hyperheuristic can be applied
to solve difficult Strip Packing Problems giving good quality solutions in an
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efficient way from both points of view: running and designing time. Our approach
is compared using well known benchmarks. This paper is organised as follows:
First we present an overview of methods based on heuristics to solve the strip
packing problem, which are included in our hyperheuristic approach. Next we
introduce our framework. We will then present the results obtained using the
benchmarks. Finally, our conclusions and future trends in this research area are
presented.

2 Heuristics based Methods

In this section we present a briefly revision of the most recently published heuris-
tics for strip packing problems that are relevant for our approach. Baker intro-
duced [2] Bottom-Left (BL) heuristics, which orders the objects according to
their area. The objects are then located on the most bottom and left coordinates
possible. BL has been improved by Chazelle [7] using Bottom-Left-Fill (BLF)
algorithm. Hopper [11] presented BLD which is an improved strategy of BL,
where the objects are ordered using various criteria (height, width, perimeter,
area) and the algorithm selects the best result obtained. Lesh et al. in [14] con-
centrate their research to improve BLD heuristic. They proposed BLD∗ where
the objects are randomly ordered according to the Kendall-tau distance from
all of the possible fixed orders. This strategy is called Bubble Search, [14], the
key of the algorithm is the order of the objects to be placed and the object
rotation capability. The results reported indicate that the top-right corner is the
most suitable decision, and the most effective order is from their minimal length.
Bortfeldt [3] introduced a Genetic Algorithm called SPGAL and claimed that it
obtained the best results known in the literature. The algorithm generates an
initial population using a BFDH∗ heuristic which is an improvement on the
BFDH heuristic initially proposed in [16]. This heuristic works as follows: The
objects are oriented such that their width is no lower than their height, and
they are ordered from highest to lowest. Each object is packed in a rectangular
sub-area of the container in the bottom left corner. The width of the sub-area
is given by the container, and the height is given by the first object packed in
this sub-area. In some cases when it is possible to include the current object to
be placed on some sub-areas, it is positioned in the sub-area having the least
available area. In other cases the algorithm opens a new sub-area above the ex-
isting sub-areas positioning the current object in the bottom left corner as the
first object of this sub-area. As we mentioned before BFDH∗ seeks to improve
this heuristic by doing the following: It allows object rotations, so that when
the algorithm searches to include the current object into a sub-area it tests both
orientations and selects the best. Prior to create a new sub-area the algorithm
searches the holes produced to the right of the sub-areas, dividing the available
holes on guillotinable holes. It then tries to include the bigger object in the hole
farthest left of the available area. Burke et al. [6] proposed the constructive algo-
rithm Best-Fit (BF). The order in which the rectangles are placed into the strip
depends on the layout of the partial solution, and the rectangle fitting best into



this layout is selected. Zhang et al. [19] propose the heuristic HR, introducing a
recursive algorithm which locates the objects on the bottom left corner. When
the first object is positioned in the container it identifies the two remaining areas.
It recursively continues placing objects from the biggest area to the lowest area.
The algorithm gives priority to the objects with bigger areas. The authors claim
that their algorithm quickly obtains the best results on Hopper’s benchmarks.

It seems that the key idea is to find a good order of the objects for any
positioning heuristic. In [18] they present a genetic algorithm and a simulated
annealing algorithm, both of which try to find the best order for the objects to
be placed in the container using the BLF strategy. For our hyperheuristics we
have selected HR, BF , BLF , BFDH∗ as the low-level heuristics, because they
are shown to be individually competitive. However, some small adaptations are
required for the heuristics designed for guillotinable problems.

3 The evolutionary hyperheuristic approach

From the analysis of the four low-level heuristics we can remark the following:

– Performance changes according to the order of the list of the objects, their
rotation, and their location (i.e. right or left on the floor).

– The data structure to obtain a good implementation code is not always the
same for all of these heuristics.

Taking into account these remarks we have designed an evolutionary hyper-
heuristic approach which allows us to include a good individual implementation
for each heuristic considering them as black boxes. They communicate follow-
ing a protocol for both interchanging and cooperation of the current state of
the search. Our representation includes the following components: Heuristic H,
Number of objects to be placed using H, nH . The type of ordering of the list of
the nH objects assigned, and finally if H must consider the objects rotated or
no.

In this paper we are interested in evaluating a genetic based hyperheuristic
which is able to use population capabilities to combine the different heuristics
according to each individual fitness. In the following section we describe this
approach called G-SP.

3.1 The Genetic Inspired Hyperheuristic: G-SP

Here we propose a new hyperheuristic that is based on genetic algorithms. There
exist some genetic inspired hyperheuristics in the literature to solve combinato-
rial problems, [8], [9]. However, in most of the cases they use a representation
that just corresponds to a simple sequence of low-level heuristics to be applied.

Representation In our approach, we have defined a representation that is able
to manage and to exploit more information. We have divided the low-level heuris-
tics according to their functionality. Thus, we distinguish among greedy, ordering



and rotation heuristics. This kind of representation allows the algorithm to have
a wider combination between low-level heuristics. The chromosome has also in-
cluded the number of objects to be positioned using each low-level heuristics
combination. The chromosome structure is shown in figure 1. In this chromo-
some we can identify that the algorithm must use the first low-level heuristic
using the second ordering heuristic applying the fourth rotation heuristic to
locate the first five objects. Note that the chromosome has not a fixed size.

Figure1. Chromosome Structure

Specialised Genetic Operators The algorithm has four operators. One re-
combination operator and three mutation-like operators.

– Recombination Operator named Cross-OP: In our approach the recombina-
tion operator is an one-point crossover. The cross-point is selected such that
a cut inside on the gen single structure is forbidden. It takes two parents
to generate two offsprings. After crossing, the operator must do a post-
procedure in order to respect the number of objects to be placed by each
individual. Either the lacks or the excess of the number of objects are dis-
tributed evenly among the genes in the chromosome structure. The goal of
this operator, in our approach, is to do exploration of the search space of
the low-level heuristics.

– Asexual Operators: Each operator has an especial rôle.

• Add-OP: The algorithm randomly selects a heuristic Hs from the rep-
resentation of a selected chromosome. This heuristic has Ns objects to
be positioned. A new heuristic is included after Hs. The new heuristic is
required to position n1 ≤ Ns of the objects previously assigned to Hs.
The n1 value is randomly selected. The key idea of this operation is to
include new heuristics in a different step of the algorithm in order to
obtain better cooperation among them.

• Delete-OP: The algorithm randomly chooses a heuristic from the selected
chromosome. The heuristic is then deleted and the number of objects
previously assigned, to be located by it, are added to the objects of the
previous heuristic. Thus, the algorithm is able to discard some heuristics
that are not being relevant to improve its performance.

• Replace-OP: The algorithm randomly selects both a heuristic to be re-
placed and the heuristic to be included. The new heuristic included in-
herits the number of objects to be placed. The other components of its
representation are randomly generated. The idea of this operation is to
give more exploration capability to the algorithm.



Evaluation Function and Selection Our approach uses the traditional fit-
ness function for strip-packing [11], that is to minimise the container’s height
used. It is supposed that the container’s width is fixed. A minimisation Roulette
Wheel selection is implemented in order to increase the probability of choosing
an individual with low height values.

Hyperheuristic Algorithm Figure 2 shows the hyperheuristic structure. The
procedure create population randomly generate the initial population of indi-
viduals. The evaluate sequence heuristics applies the low-level heuristics in the
order that they appear on the chromosome and it evaluates the chromosome.

Pseudocode of G-SP
Begin
iter=0
create population(pop size, chromosome init size, gene type)
while max iter < iter do

individuals = get population()
evaluate heuristics sequences(individuals)
update individuals fitness()
if random < cross probability
Cross-OP();
if random < delete probability
Delete-OP();
if random < add probability
Add-OP();
if random < replace probability
Replace-OP();
update population()
iter++

end while
End

Figure2. Structure of the Hyperheuristic G-SP

3.2 Tuning

The performance of an evolutionary algorithm strongly depends on its parame-
ter values. Because our hyperheuristic is based on an evolutionary approach it
experiments the same sensitivity problem. Given that, we have evaluated two
approaches to estimate good parameter values for our hyperheuristic. The first
one, called ST (i.e., standard tuning), is the classical generate and test proce-
dure. The second approach, called RV, is a new one based on REVAC approach,
recently proposed in [17] which uses statistical properties. In the test section we
evaluate both schemas.

Tuning using REVAC. The Relevance Estimation and Value Calibration Ap-
proach (REVAC) [17] has been used for tuning. Roughly speaking, REVAC is a



genetic algorithm that uses some statistical properties to determine the better
parameter values and also to discard some genetic operators that, with a statis-
tical significance, do not really improve the algorithm to be tuned. It is based on
the shannon entropy to measure solutions diversity. The method has shown to
be effective, but is a time consuming task because it finds the better values by
evaluating many runs of all the problem instances. For this, we have selected the
hardest instances that really seem to require the investment in this additional
computational effort. The operator’s probabilities obtained can be seen in the
table 1.

ST RV

Cross-OP 0.3 0.346
Delete-OP 0.33 0.720
Add-OP 0.33 0.323

Replace-OP 0.33 0.282

Table1. Operator’s probabilities tuned using Standard Tuning and REVAC estima-
tions

As can we observe, the Standard Tuning (ST) version indicates that the
Cross-OP probability is quite less employed than the mutation operators and
each asexual operator can be applied with equal probability. For REVAC (RV)
we have selected the six hardest instances from the 21 problem instances. The
running time for each instance has been fixed in 30 seconds (3 minutes for each
instance set). The number of iterations done by REVAC, as it has been rec-
ommended by the authors, was 1000 iterations. Thus, the calibration required
around 48 hours CPU time. According to the results shown in table 1, we can
conclude that the four operators are significant for our hyperheuristic. Note that
the higher probability value is for the operator Delete-OP.

4 Tests

We have done two kind of tests. The first one is to compare the results obtained
using single low-level heuristics with our hyperheuristic approaches. We report
the quality of the solution found and the percentage of each single low-level
heuristic used by the hyperheuristic. The second test compares G-SP versions
with the better reported results from the state of the art for strip-packing. Both
tests use as benchmarks the Hopper’s instances [11] for problems C1, . . . , C7.
The hardware platform for the experiments was a PC Pentium IV Dual Core,
3.4Ghz with 512 MB RAM under the Mandriva 2006 operating system. The
algorithm has been implemented in C++.

4.1 Comparison with low-level heuristics

In order to obtain significant results, the hyperheuristic has been executed 10
times for each problem category with various initial populations. We limit the
running time to 60 seconds for each problem category.



Gap to the solution: The table 2 shows the percentage from both the optimal

solution to the best solution found (gap % =
(bestfound−opt)

opt
) and the average for

each single heuristic and for the hyperheuristic G-SP with ST and RV tuning.
The quality of the solution found by each single heuristic has been strongly
improved using our approaches. Furthermore, the hyperheuristic allows both a
division of the task and a cooperation among the heuristics for positioning the
objects.

BLF HR BFDH
∗ BF G-SP ST G-SP RV

C1 6.6 6.6 6.6 5 0.0 0.0
C2 13.3 8.8 8.8 8.8 4.00 4.00
C3 11.1 6.6 6.6 6.6 3.56 3.33
C4 4.4 3.8 3.8 3.3 1.78 1.67
C5 2.6 2.6 2.6 2.6 1.33 1.22
C6 3.1 2.7 2.7 2.5 1.53 1.56
C7 2.6 2.6 2.6 2.2 1.49 1.65

Average 6.24 4.81 4.81 4.42 1.95 1.91

Table2. Gap to the solution for: low-level heuristics, hyperheuristic G-SP ST and G-SP
RV

G − SP ST G − SP RV

Figure3. Boxplots for both G-SP versions

Statistical Comparison: As we mentioned before, our aim is to show that a
collaborative schema among simple low-level heuristics improves their individual
behaviour. As the low level heuristics considered in this work are deterministic,
the gap obtained by applying them at isolated is always the same. However,
this is not the case in our hyperheuristics because they could obtain different
gaps for the same problem at different runs. Figure 3 shows the boxplots for
both hyperheuristics for each problem category. We can observe that the biggest
difference among the gaps is obtained in the category C2 for both algorithms.
That is because problem 2 in category C2 is very hard for all low-level heuristics
as well as for our hyperheuristics. In addition, the hyperheuristic G-SP RV shows
more stability than G-SP ST. The above is especially remarkable for problems
on categories C3, C4 and C6.



Low-level heuristics runs: In table 3 we report the percentage of the number
of times that each heuristic has been applied for each type of problem in our
best genetic based hyperheuristic approach for the best heuristics combination.

C1 C2 C3 C4 C5 C6 C7 Avg.

BLF 45.43 41.60 50.12 54.49 51.55 58.21 66.91 52.62
HR 15.65 9.87 7.02 1.43 3.93 2.47 4.72 6.44

BFDH∗ 3.50 28.80 2.74 0.88 1.19 0.55 0.27 5.42
BF 35.42 19.73 40.12 43.20 43.33 38.76 28.10 35.52

Table3. Average use of low-level heuristics in the G-SP RV version

This table can be interpreted as the number of the objects (in percentage)
that each heuristic located on the floor. We can appreciate that each problem
requires a different combination of the low-level heuristics. This is the advan-
tage of the implicit natural adaptation of the hyperheuristic framework. A more
detailed comparison of the use of the low-level heuristics is shown in figure 4.
The figures show that BFDH∗ tends to be less applied as the size of the prob-
lem increases. On the contrary, BLF shows exactly the opposite behaviour. A
pattern can not be identified for both BF and HR heuristics. Note however that
BF has been used more frequently than HR. In addition, HR is more useful to
solve smaller problem categories. Thus, the application percentage of the low-
level heuristics depends on the problem instance to be solved. Furthermore, the
algorithm is able to self-adapt to the problem at hand.

G − SP ST G − SP RV

Figure4. Percentage of low-level heuristics used for G-SP

4.2 Comparison with state-of-the-art algorithms

The table 4 summarises the better results found in the literature [11], [12], [19],
[3,4], [13], [1], [15], along with the results obtained by our approach for the
Hopper’s instances. Results show that our hyperheuristic versions obtain good
quality solutions and even better than various especially-designed algorithms



Category

Technique C1 C2 C3 C4 C5 C6 C7 Avg.

GA + BLF, [11] 4 7 5 3 4 4 5 4.57
SA + BLF, [11] 4 6 5 3 3 3 4 4

Iori, [12] 1.59 2.08 2.15 4.75 3.92 4.00 - 3.98
HR, [19] 8.33 4.45 6.67 2.22 1.85 2.5 1.8 3.97

SPGAL-R, [4] 1.7 0.0 2.2 0.0 0.0 0.3 0.3 0.6
SPGAL, [3] 1.59 2.08 3.16 2.70 1.46 1.64 1.23 1.98
BLD*, [13] - - - - 2 2.4 - 2.2

R-GRASP, [1] 0 0 1.08 1.64 1.10 0.83 1.23 0.84
Martello B&B, [15] 0 0 2.15 - - - - 0.71

G-SP ST 0 4.00 3.56 1.78 1.33 1.53 1.49 1.95
G-SP RV 0 4.00 3.33 1.67 1.22 1.56 1.65 1.91

Table4. Gap to the solution for: state-of-the-art algorithms and G-SP tuned versions

(metaheuristics and heuristics) except for the SPGAL-R and R-GRASP algo-
rithms that present the better solutions. These algorithms have been especially
designed for these benchmarks. The above demonstrate that our approach is
very competitive. In order to obtain quite good solutions, the parameters must
be tuned according to the problem at hand, but this is not the main goal of
hyperheuristics. For this reason, we did not invest a large amount of time tun-
ing parameters. Instead of that, we tried to use cheap techniques to adjust the
parameters to solve each problem and still giving good quality solutions. In addi-
tion, note that the values for HR in this section are not the same of the previous
section. In the previous test we have fixed the running time in 60 seconds. Here
the results are the best reported for this technique without imposing any time
constraint.

5 Conclusions

Our research allows us to conclude that using our evolutionary hyperheuristic
approach we can improve the performance of the single heuristics and some of
the results obtained in the literature. That indicates that our approach is very
promising to solve difficult strip packing problems. The above tell us that the
hyperheuristics are strongly rich by having the following characteristics: flexible,
cheap and easy to be implemented and, at the same time, are able to obtain
quite good solutions. Moreover, our hyperheuristic is able to adapt itself to the
problem by selecting the best combination of the low-level heuristics.
We remark that the selection of suitable low-level heuristics is a main task when
we design hyperheuristics. In order to obtain competitive solutions with regard
to the state of the art, we strongly require to select efficient low-level heuristics.
The key idea is to allow the cooperation among them in order to improve their
single behaviours.
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