
HPGP: An Abstraction-based Framework for Decision-
Theoretic Planning

Letícia Friske and Carlos Henrique Costa Ribeiro

Divisão de Ciência da Computação - Instituto Tecnológico de Aeronáutica
12228-900 São José dos Campos – Brasil

{leticia, carlos}@ita.br

Abstract. This paper is a report on research towards the development of an
abstraction-based framework for decision-theoretic planning. We make use of
two planning approaches in the context of probabilistic planning: planning by
abstraction and planning graphs. To create abstraction hierarchies our planner
uses an adapted version of a hierarchical planner under uncertainty, and to
search for plans, we propose a probabilistic planning algorithm based on
Pgraphplan. The article outlines the main framework characteristics, and
presents results on some problems found in the literature. Our preliminary
results suggest that our planner can reduce the size of the search space, when
compared with Pgraphplan, hierarchical planning under uncertainty and top-
down dynamic programming.

Keywords: Probabilistic Planning, PGraphplan and Dynamic Programming.

1 Introduction

Robust plan creation in probabilistic domains is a complex problem that can use a
variety of algorithms and techniques. Recent research in probabilistic planning is
focused on MDPs [1] and Dynamic Programming [2] or in state-space search
methods. An interesting proposal describes probabilistic problems on a Probabilistic
Planning Domain Definition Language - PPDDL [3], so that can it be solved as a
STRIPS planning problem. One limitation in this sense is that most existing STRIPS
planners are for deterministic domains, forcing these solutions to be adapted for
operation under uncertainties.

Some planners, like Buridan [4], Weaver [5], C-SHOP [6], Drips [7], PGraphPlan
[8, 9] and TGraphPlan [8], Paragraph [10] and Prottle[11] propose extensions to
STRIPS classical planners, to handle situations where action effects are probabilistic.

The Buridan planner uses partial-order planning to build plans that probably
achieve a goal. Weaver is a planner that can handle uncertainty about actions taken by
external agents, more than one possible initial state and non-deterministic outcomes
of actions. It produces conditional plans and computes the plan’s probability of
success automatically, through a Bayesian belief net. C-SHOP extends the classical
hierarchical planner SHOP [12] to act in situations with incomplete and uncertain
information about the environment and actions. Drips combines conditional planning

with probabilistic distribution of effects, and accomplishes abstraction of probabilistic
operators with common pre-conditions and effects. This mechanism makes it possible
that planning happens in different hierarchical abstraction levels. Pgraphplan and
Tgraphplan are extensions of the classical planner Graphplan to probabilistic
planning. Paragraph and Prottle extends the Graphplan framework for concurrent
probabilistic planning. They use the planning graph primarily for computing heuristic
estimates for a forward search.

Unfortunately, the inclusion of probabilistic effects causes an explosive growth in
the state-space search and dynamic programming methods. This leads us to
investigate approaches that efficiently deal with probabilistic operators and large
problems, which is the focus of this work. We consider two strategies to reduce the
search: planning by abstraction [13] (e.g. ABSTRIPS [14], Alpine [15], HW [16]) and
planning graphs [17], because both demonstrate significant reductions in the search
space when compared with other search strategies.

We then propose a hierarchical probabilistic planner, named HPGP – Hierarchical
Probabilistic Graphplan. HPGP automatically builds its abstraction hierarchy and
executes the hierarchical control planning based on the hierarchical planner HIPU
[18]. The search is based on an adaptation of PGraphplan [8].

In this article, we outline the main characteristics of the abstraction-based
framework for decision-theoretic planning, and present case studies in the Blocks
World problem and in the Flat-Tire domain, that are classical examples for
autonomous manipulation planning. Manipulation planning is concerned with
handling objects, e.g., to build assemblies. Actions include sensory-motor primitives
that involve forces, touch, vision, range detection, and other sensory information. A
plan might involve picking up an object from its marked sides, returning it if needed,
inserting it into an assembly, etc [19]. The remainder of this paper is organized as
follow. Section 2 presents basic definitions on planning and the notation that will be
adopted along the article. Section 3 provides some introductory knowledge about
Graphplan and Pgraphplan. Section 4 presents the automatic generation of abstraction
hierarchies in HIPU and demonstrates the resolution of hierarchical problems. Section
5 discusses the HPGP framework. Empirical results are presented in Section 6.
Finally, Section 7 proposes future work and concludes this paper.

2 Planning in Uncertain Environments

One of the common uncertainties that an agent can find regards the actions, which can
have stochastic effects. In other words, the next environmental state is expressed as a
probability distribution over states. Planning problems with this kind of uncertainties
have been approached in Artificial Intelligence through adaptation of problems of
classical planning and high-level languages, such as STRIPS, to act in uncertainty
domains.

The adaptations proposed here modify the definition of the classical planning
problem, specifically regarding the operators. The space problem is defined by a set
of probabilistic operators, where each operator consists of preconditions and one or
more subsets of effects. For each subset of effects there is an associated occurrence

probability ℘i(Ei
α), such that 0<℘i(Ei

α) ≤1 and Σi
N℘i=1. Figure 1 shows a

probabilistic operator that has three subsets of effects (arrow destinations correspond
to subsets). Each subset has add-effects and del-effects (propositions) that describe
the state modifications generated by the application of the operator with an associated
occurrence probability.

p1, p2, p3

0.5 0.25 0.25

Operator

e1, e2, e4 e1, e2, e3, e1, e2, e3
Fig. 1. Generic probabilistic operator

3 Graphplan Framework

The Graphplan planner [17] defines an efficient method of solving classical STRIPS
problems. Graphplan is based on compiling a planning problem into a polynomial-
size structure called planning graph. A planning graph is a layered graph alternating
between proposition nodes layers and action nodes layers. Each level represents the
union of what might be reachable at a given time step. The initial level consists of
proposition nodes that represent the initial conditions. The next level of the graph has
a node for each operator that might possibly be performed at the corresponding time
step. Special actions are used to represent the persistence of a proposition from one
time step to the next. The second proposition level consists of the add-effects of the
first action level. Successive levels are generated by inference according to action
preconditions and effects. Edges in a planning graph connect actions to their
preconditions and their add and delete effects.

During graph building, the graph retains binary mutual exclusion information,
indicating when two actions or propositions can not exist simultaneously. This
information can be used to prune the search. Graphplan begins by creating a planning
graph from the initial conditions until all the goals appear in the graph and none are
pairwise mutually exclusive, then searches the planning graph for the plan solutions
using a backward chaining search.

3.1 PGraphplan

A structural change to the standard planning graph is required in order to
accommodate probabilistic actions. In this subsection we will describe this changes
and the search procedure for PGraphplan [8, 9].

We consider probabilistic operators, such as presented in section 2. To support
these kinds of operators, the graph is constructed in the normal manner except that
each outgoing edge of an action has associated with it the event (subset of effects)
which produced the edge.

3.2 Searching the Probabilistic Planning Graph

Given a bounded number of time steps tmax, Pgraphplan builds the planning graph
and then performs a finite-horizon dynamic programming to find the optimal tmax-
step contingent plan [9]. The optimal plan corresponds to the plan of highest expected
utility. The utility function adopted in this paper corresponds to finding the plan with
the highest probability of success. The complete algorithm and more details about
Pgraphplan search can be found in [8, 9].

 To speed up the search, Pgraphplan propagates two distinct kinds of information
through the graph. Both kinds of information are used to tell the planner when the
path it is currently exploring provably cannot reach the goal within the given time
horizon and therefore it may safely return failure in its recursive calls [8]. The two
types of information are summarized below.
1. Removing unneeded vertices: a “needed” node is the node from which there exists

at least one path to the goal. Pgraphplan removes from the planning graph all nodes
that do not have any paths to the goal literal (unneeded nodes). This occurs as
follow. Are removed from the last propositional level (tmax level) of the graph, all
propositions that not are in the goal. Now, consider the actions at tmax-1 action
level. If all add-effects of the one action were removed, then that action too is
unneeded and can be withdrawn from the graph. Working backwards, any
proposition at time tmax-1 that has no out-edges can be removed as well, and so
on.

2. Value propagation: the idea of value propagation is to propagate heuristic values
(hvalues) through the nodes of the graph such that the heuristic value of any state
S, defined to be the sum of the hvalues of the nodes of the states, is guaranteed to
be greater than or equal to the true value of S. If the planner finds that the heuristic
value of the current state at time t is less than t, then it can backtrack. This means
that it cannot possibly reach the goal by time tmax.

4 HIPU - Hierarchical Planner under Uncertainty

HIPU – Hierarchical Planner under Uncertainty [18] is an extension of the Alpine
method [15], adapted to act under uncertainty conditions. Regarding uncertainties, it
allows a probabilistic distribution of possible operator effects and a probabilistic
choice under possible initial states of the domain. HIPU automatically generates an
abstraction hierarchy and plan from this hierarchy. Planning begins at the highest
level of abstraction, and the solution found in this level is refined by lower levels.
During refinement, the plan found so far is evaluated, verifying if the solution
succeeds with probability equal or higher than a predefined value.

4.1 Generating Abstractions in HIPU

The starting point for generating abstraction hierarchies in HIPU is Algorithm 1. This
algorithm establishes the possible interactions among literals, creating a graph of
constraints that will be used in the creation of the abstraction hierarchy.

Function Find-Constraints(graph,operators,goals):
Input: The operators of the apace problem and the goals of a problem.
Output: constraints to guarantee ordered monotonicity for the problem.
For each literal in the goals do
If not(Constraint-Determinated(literal, graph))
Constraint-Determinated(literal,graph) TRUE;
 For each operator in Operators do
 Subset_relevant FALSE;
 For each Subset_Effects(operator) do

If literal in Subset_Effects (operator) do
Subset_Relevant TRUE;
For each Effect in Subset_Effects (operator) do
Add_Directed_Edge(literal,Effect, graph);

If (Subset_Relevant)
preconds Preconditions(operator);
For each precondition in Preconds do

Add-Directed-Edge(literal, precondition, graph);
Find_constraint(graph, operators, Preconditions);

return(graph);

Algorithm 1. Algorithm for determining constraints

After creating the graph of constraints, we find the strongly connected components
using depth-first search. The next step constructs a reduced graph where the nodes
that comprise connected components in the original graph correspond to a single node
in the reduced graph. Literals within a node in the reduced graph must be placed in
the same abstraction space and the connections between nodes define a partial order.
The partial order is transformed into a total order using a topological sort. The total
order graph originates the abstraction hierarchy, each level of the total order graph
corresponding to a hierarchical level.

4.2 Hierarchical Planning Solver

Given a hierarchy of abstractions, HIPU proceeds as follows. First the problem solver
maps the original problem to the highest level of the hierarchy (level i) by deleting
literals from the initial states, goal states and operators literals that are not relevant to
the abstraction level. The planner then performs a depth-first search adapted to
probabilistic operators to find a solution for that level. The solution found in level i
will be used in the next abstraction level (level i-1), where the literals of the
intermediate states serve as sub goals at level i-1. The problem solver then solves each
of the intermediate subproblems, using the final state of one subproblem as initial
state for the next subproblem. The process is repeated until the plan has been refined
in all hierarchical levels.

During the search, when a plan that satisfies the goal state is found, the probability
that the current plan will achieve it is computed using the forward assessment
algorithm [4]. If the probability is high enough, then the plan is a solution and
planning terminates successfully, otherwise the planner continues, choosing a new
state to expand or returning fault.

5 HPGP – Hierarchical Probabilistic Graphplan

The main difference between HIPU and HPGP is that instead of depth-first search,
HPGP uses PGraphplan to find plans. Some modifications are necessary so that PGP
can handle the hierarchical planner HIPU.

The first adaptation to embed PGP into the HIPU framework regards the maximum
time steps (tmax) for the plan search. In PGP the number of time steps is previously
defined by the user. This requires knowledge about the domain of the problem or
exhausting attempts until that ideal number is found. As HIPU is totally automated,
we need to discover a manner to automatically define tmax. We propose an alternative
using the planning graph. First we expand the probabilistic graph until all the goals
appear in it. While the goal state is not reached, the graph expansion continues until it
is leveled (two consecutive levels are identical), or a maximum steps number (a
system attribute) is reached. When a graph is leveled without reaching all the goals, it
means that no solution exists. The next step is to remove from the graph all unneeded
vertices and attribute to tmax the number of different actions (minus the persistent
ones) existing in the graph. Although this heuristic seems reasonable, it can be
conservative in specific cases, because the idea is to define tmax as the minimum
number of operators necessary to reach the goal state. For example, consider the
Blocks World problem presented in Appendix A. The operator paint_block reaches
the goal “painted block” with probability 0.8, but there exists a probability of
finishing the paint with the block not painted. However, if we carry the paint and try
to paint the block again, the probability of concluding the task with success increases.
Certainly, these two new steps (operators) will not be included in the plan if we
expand the graph until the level of the goal state level is reached. Another situation in
which the heuristics can be conservative is when an operator removes preconditions
of other operators, making it necessary to include or repeat actions. But this situation
happens because the probabilistic graph plan is a relaxed model (that ignores delete
effects), and not exactly a consequence of the heuristics adopted for the tmax
calculation. This problem could be solved with the inclusion of mutual exclusion
relations in the graph, as suggested in [20]. Nevertheless, in this paper we ignore this
improvement. When the method to define tmax fails during planner execution, the
user will be required to inform tmax, or it will be given the maximum value allowed.

 A

B

C

D

G1

G2

p1

p2

p3

p4

Fig. 2. Operators with redundant effects.

Contrasting with previous cases (where the heuristic is conservative), we now
discuss a situation in which the heuristic will overestimate tmax, causing a search
space augmentation. The value tmax would be overestimated if there are redundant
propositions in the operator effects. An example is illustrated in Figure 2. The graph

showed has four actions (A, B, C and D), three of these (A, B and C) reach a goal
literal G1 and two (C and D) goal G2. In the plan, just one of them will be really
executed (action C). As each action has add-effects linked to a goal literal, none of
them will be deleted during removal of the unneeded nodes, causing a increase (from
1 to 4) in the number of time steps (operators) to reach the goal state. This problem
would be attenuated by considering only one operator when more than one reaches
the same propositions.

A key difference between HIPU and PGP is the type of proposed solution. HIPU
solves the problem by finding a sequence of operators (concatenation of partial plans)
that reach the goal state with an associated probability of success. PGP creates an
optimal contingent plan (an optimal finite-horizon policy), i.e., a mapping from states
to operators with the goal of maximizing an expected utility for some utility function
(probability of success). Those search models are incompatible. We now propose two
alternatives to solve this problem, as follows.

The first alternative modifies HIPU to search contingent plans and not sequential
plans. This implies refining all the valid plans found during the search. However,
working with contingent plans would cause an increase in the plan space, and we
cannot guarantee that it will lead to a significant reduction through hierarchization.
We consider then a second solution: to refine the plan with the highest success
probability. If the plan can’t be completely refined, the second plan with highest
probability of success will be chosen, and so forth. Algorithm 2 summarizes HPGP.

Performs HPGP (Initial State, Goal State, Operators):
1. Generate the abstraction hierarchy exactly as HIPU.
2. Create the abstraction spaces for each hierarchical level by deleting from the initial state, goal

states and operators propositions that are not relevant to the abstraction level.
 For each hierarchical level and respective subproblems:

3. Produce the probabilistic planning graph.
4. Remove unneeded nodes.
5. Calculate the number of actions in the graph and attribute the value to tmax.
6. If it is not possible to reach the goal state in the graph, backtrack (return fail), else continue.
7. Reinsert the temporary excluded nodes in the graph.
8. Continue the expansion until the level tmax is reached.
9. Exclude unneeded nodes and propagate heuristic values.

10. Perform a finite-horizon dynamic programming to find the optimal contingent plan (see
complete algorithm in [8]).

11. Choose the plan with highest probability of success.
12. Refine the plan found (refinement is the same performed by HIPU, presented in Subsection

4.2) executing steps 3 to 12 for each subproblem.

Algorithm 2. High level HPGP algorithm.

6 Empirical Results

HPGP was partially implemented. The code was generated in C (for planning) and
Lisp (for hierarchy determination). We performed experiments for the Blocks World
and Flat-Tire Domains (Appendix A), and compared results with Pgraphplan, HIPU,

and standard top-down Dynamic Programming TDDP [8]. HIPU executes standard
top-down Dynamic Programming for searching plans, and considers the same time
horizon (tmax values) as HPGP.
 For the first case study (Blocks World Domain), the abstraction hierarchy
generated by HIPU (or HPGP) contains two levels and the respective literals: Level 1
- Paint and color(x), and Level 2 - on(x,y), onTable(x), clear(x) and clear(y).
Numerical results are in Table 1. The number of states of HIPU and HPGP is the sum
of states generated at each abstraction level.
 For the experiments presented in Table 1, tmax was automatically calculated using
the heuristic discussed in Section 5. Table 2 shows results with a manual definition of
tmax. Only Pgraphplan and top-down Dynamic Programming (contingent planners)
were considered in these experiments. Results are compared in terms of the number of
states searched and the probability of success of the generated plans.

Table 1. Results in the Blocks World Problem, 4 and 7 blocks, tmax automatically generated.

States Probability Planner
4 blocks
tmax = 9

7 blocks
tmax=18

4 blocks 7 blocks

HIPU 224 123469 0.4096 0.209715
HPGP 90 56037 0.4096 0.209715
Pgraphplan 787 146652 0.4096 0.209715
TDDP 12507 >33600000 0.4096 0.209715

Table 2. Results in the Blocks World Problem, 4 and 7 blocks, tmax user-defined.

States Probability Planner
4 blocks
tmax= 12

7 blocks
tmax=22

4 blocks

7 blocks

Pgraphplan 7547 20229508 0.73728 0.738198
TDDP 23164 Timeout 0.73728 Timeout

 HPGP empirically searches through less states than HIPU. Both hierarchical
planners have advantages (in search states) when compared with Pgraphplan and
TDDP. Contingent planners (Pgraphplan and TDDP) are able to find plans with
higher probability of success when we increase the number of time steps (tmax), but
with a higher cost (number of states searched).

Table 3. Results in the Flat-Tire domain, tmax=14, automatically calculated.

Planner States Probability
HIPU 2657 0.8145
TDDP 6350 0.8145
HPGP 1213 0.8145
Pgraphplan 2886 0.8145

 Experiments realized in the Flat-Tire domain are showed in Table 3.
Hierarchization divided the problem in two hierarchical levels, with respective
literals: Level 1 - on(nut,hub), on-ground(nut), free(hub), in(wheel,container),
have(wheel), on(wheel,hub). Level 2 – open(container), close(container). The number
of time steps tmax was automatically calculated, it is the same (14) for all planners.

 HIPU and TDDP use the same search strategy, however, the hierarchical process
(HIPU planner) produces better results than the flat planner (TDDP). HPGP was
significantly better (less search states) than HIPU and Pgraphplan.

7 Conclusions and Future Work

This paper presented HPGP, an abstraction-based framework for probabilistic
planning. The abstraction hierarchy is automatically generated by a hierarchical
planner under uncertainty, and the plan search proposed here is an extension of the
Pgraphplan planner, adapted to handle hierarchical planning. We proposed a heuristic
to automatically generate time steps (tmax) to finite-horizon search.
 We related preliminary experimental results on the Block’s World and Flat-Tire
Domains. An analysis of the results demonstrates that HPGP can reduce significantly
the space search in probabilistic planning. However, to guarantee that the heuristic
that automatically defines tmax is viable would be premature. We prefer to leave the
definition of the number of steps as an open question until improvements (some of
which are proposed in this article) are implemented.
 Proposals for future work are adapting HPGP to search contingent plans and
executing Tgraphplan [8] to search plans in our hierarchical framework. Tgraphplan
finds the highest probability trajectory from the start state to the goal, and produces
potentially sub-optimal policies. We are working at the implementation of a future
Hierarchical Tgraphplan Planner (HTGP). Likewise, a deeper evaluation of HPGP
performance through comparisons with other planners and tests on other domains are
activities for future research.
 We also suggest using different search strategies and heuristics to increase the
hierarchical planner efficiency.

References

1. Geffner, H., Bonet, B.: Solving Large POMDPs Using Real Time Dynamic Programming.
Working Notes Fall AAAI Symposium on POMDPS (1998)

2. Bonet, B., Geffner, H.: Planning and Control in Artificial Intelligence: A Unifying
Perspective. Appl. Intell. 14(3) (2001) 237-252

3. Younes, H.L.S., Littman, M.L.: PPDDL1.0: An extension to PDDL for expressing planning
domains with probabilistic effects. Technical Report CMU-CS-04-167, Pittsburgh (2004)

4. Kushmerick, N., Hanks, S., Weld, D.: An Algorithm for Probabilistic Planning. Artificial
Intelligence. vol. 76, (1994) 239-286

5. Blyte, J.: Planning Under Uncertainty in Dynamic Domains. Doctor Thesis. Carnegie
Mellon University. Pittsburgh, PA, May (1998)

6. Bougerra, A., Karlsson, L.: Hierarchical Task Planning under Uncertainty. In 3rd Italian
Workshop on Planning and Scheduling. Perugia, Italy (2004)

7. Doan, A., Haddawy, P.: Decision-Theoretic Refinement Planning: Principles and
Application. Technical Report TR 95-01-01, February (1995)

8. Blum, A.L., Langford, J.C.: Probabilistic planning in the graphplan framework. In
proceedings EPC (1999) 319-332.

9. Blum, A.L., Langford, J.C.: Probabilistic planning in the graphplan framework. In AIPS98
Workshop on Planning as Combinatorial Search, 8-12, June (1998)

10. Little, I., Thiébaux, S.: Concurrent Probabilistic Planning in the Graphplan Framework. In
proceedings: 16th International Conference on Automated Planning and Scheduling -
ICAPS-06 (2006)

11. Little, I., Aberdeen, D., Thiébaux, S.: Prottle: A probabilistic temporal planner. In Proc. of
the 20th American Nat. Conf. on Artificial Intelligence - AAAI’05 - (2005)

12. Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: Shop: Simple hierarchical ordered planner.
In Procs of the Int. Joint Conference on AI (1999) 968-973

13. Giunchiglia, F., Villaorita, A., and Walsh, T.: Theories of abstraction. AI Communication,
10(3-4):167-176 (1997)

14. Knoblock, C.: An analysis of Abstrips. In Artificial Intelligence Planning Systems:
Proceedings of the first international conference (1992)

15. Knoblock, C.: Automatically generating abstractions for planning. Artificial Intelligence,
vol. 68(2), p. 243-302 (1994)

16. Armano, G., Cherchi, G., Vargiu, E.: A Parametric Hierarchical Planner for Experimenting
Abstraction Techniques. IJCAI 2003: (2003) 936-941

17. Blum, A., Furst, M.: Fast Planning through Planning Graph Analysis. Artificial
Intelligence, 90 (1997) 281-300

18. Friske, L.M., Ribeiro, C.H.C.: Planning Under Uncertainty with Abstraction Hierarchies.
Lecture Notes in Computer Science, vol. 4224, (2006) 1057-1066

19. Ghallab, M., Nau, D., Traverso, P.: Automated Planning Theory and Pratice. Morgan
Kaufmann Publishers. ISBN 1-55860-856-7, (2004).

20. Wenxiang, G., Rixian, L., Huajie, O., Minghao, Y.: An Improved Probabilistic Planning
Algorithm Based on Pgraphplan, Proceedings of the Third International Conference on
Machine Learning and Cybernetics. vol. 4 (2004) 2374- 2377

Appendix A

Blocks World Domain augmented with probabilistic colorblock operator. This domain consists of a
set of cubic blocks sitting on a table. The blocks can be stacked, but only one block can fit directly on
top of another. A robot arm can pick up a block, paint the block, and move it to another position,
either on the table or on top of another block. The arm can only pick up one block at time, so it
cannot pick up a block that has another one on it. The goal will always be to build one or more stacks
of painted blocks, specified in terms of what blocks are on top of what other block. This domain has
four operators, as follow:
Op: stack (x y), Preconds: clear (x), clear (y), on-table (x), Effects: on (x y), ~clear(y), ~on-table(x)
Op: unstack (x y), Preconds: on(x y), clear (x), Effects: on-table(x), clear(y), ~on(x y)
Op: colorblock(x), Preconds: clear(x), on-table(x), paint, no-color(x), Effects: 0.8(color(x), ~no-
color(x)), 0.2(~paint, no-paint)
Op: chargepaint, Preconds: no-paint, Effects: paint, ~no-paint.

Flat-Tire Domain considers the problem of fixing a flat tire. The domain has the following eight
action schemata:
Op: open(x), Preconds: closed(x), Effects: ~closed(x), open(x)
Op: close(x), Preconds: open(x), Effects: ~open(x), closed(x)
Op: fetch (x y), Preconds: in(x y), open(y), Effects: ~in(x y), have(x)
Op: put-away(x y), Preconds: have(x), open(y), Effects: in(x y), ~have(x)
Op: remove-wheel(x y), Preconds: on(x y), on-ground Nut1, on-ground Nut2, on-ground Nut3, on-
ground Nut4, Effects: have(x), free(y), ~on(x y)
Op: put-on-wheel(x y), Preconds: have(x), free(y), Effects: on(x y), ~free(y), ~have(x)
Op: remove-nut(x y), Preconds: on(x y), Effects: 0.95(~on(x y), on-ground(x))
Op: fixit-nut(x y z),Preconds: on-ground(x), on(z y), Effects: ~on-ground(x), on(x y)

