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Abstract. This paper is a report on research towards the development of an 
abstraction-based framework for decision-theoretic planning. We make use of 
two planning approaches in the context of probabilistic planning: planning by 
abstraction and planning graphs. To create abstraction hierarchies our planner 
uses an adapted version of a hierarchical planner under uncertainty, and to 
search for plans, we propose a probabilistic planning algorithm based on 
Pgraphplan. The article outlines the main framework characteristics, and 
presents results on some problems found in the literature. Our preliminary 
results suggest that our planner can reduce the size of the search space, when 
compared with Pgraphplan, hierarchical planning under uncertainty and top-
down dynamic programming. 
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1 Introduction 

Robust plan creation in probabilistic domains is a complex problem that can use a 
variety of algorithms and techniques. Recent research in probabilistic planning is 
focused on MDPs [1] and Dynamic Programming [2] or in state-space search 
methods. An interesting proposal describes probabilistic problems on a Probabilistic 
Planning Domain Definition Language - PPDDL [3], so that can it be solved as a 
STRIPS planning problem. One limitation in this sense is that most existing STRIPS 
planners are for deterministic domains, forcing these solutions to be adapted for 
operation under uncertainties. 

Some planners, like Buridan [4], Weaver [5], C-SHOP [6], Drips [7], PGraphPlan 
[8, 9] and TGraphPlan [8], Paragraph [10] and Prottle[11] propose extensions to 
STRIPS classical planners, to handle situations where action effects are probabilistic. 

The Buridan planner uses partial-order planning to build plans that probably 
achieve a goal. Weaver is a planner that can handle uncertainty about actions taken by 
external agents, more than one possible initial state and non-deterministic outcomes 
of actions. It produces conditional plans and computes the plan’s probability of 
success automatically, through a Bayesian belief net. C-SHOP extends the classical 
hierarchical planner SHOP [12] to act in situations with incomplete and uncertain 
information about the environment and actions. Drips combines conditional planning 



with probabilistic distribution of effects, and accomplishes abstraction of probabilistic 
operators with common pre-conditions and effects. This mechanism makes it possible 
that planning happens in different hierarchical abstraction levels. Pgraphplan and 
Tgraphplan are extensions of the classical planner Graphplan to probabilistic 
planning. Paragraph and Prottle extends the Graphplan framework for concurrent 
probabilistic planning. They use the planning graph primarily for computing heuristic 
estimates for a forward search. 

Unfortunately, the inclusion of probabilistic effects causes an explosive growth in 
the state-space search and dynamic programming methods. This leads us to 
investigate approaches that efficiently deal with probabilistic operators and large 
problems, which is the focus of this work. We consider two strategies to reduce the 
search: planning by abstraction [13] (e.g. ABSTRIPS [14], Alpine [15], HW [16]) and 
planning graphs [17], because both demonstrate significant reductions in the search 
space when compared with other search strategies.  

We then propose a hierarchical probabilistic planner, named HPGP – Hierarchical 
Probabilistic Graphplan. HPGP automatically builds its abstraction hierarchy and 
executes the hierarchical control planning based on the hierarchical planner HIPU 
[18]. The search is based on an adaptation of PGraphplan [8]. 

In this article, we outline the main characteristics of the abstraction-based 
framework for decision-theoretic planning, and present case studies in the Blocks 
World problem and in the Flat-Tire domain, that are classical examples for 
autonomous manipulation planning. Manipulation planning is concerned with 
handling objects, e.g., to build assemblies. Actions include sensory-motor primitives 
that involve forces, touch, vision, range detection, and other sensory information. A 
plan might involve picking up an object from its marked sides, returning it if needed, 
inserting it into an assembly, etc [19]. The remainder of this paper is organized as 
follow. Section 2 presents basic definitions on planning and the notation that will be 
adopted along the article. Section 3 provides some introductory knowledge about 
Graphplan and Pgraphplan. Section 4 presents the automatic generation of abstraction 
hierarchies in HIPU and demonstrates the resolution of hierarchical problems. Section 
5 discusses the HPGP framework. Empirical results are presented in Section 6. 
Finally, Section 7 proposes future work and concludes this paper. 

2 Planning in Uncertain Environments 

One of the common uncertainties that an agent can find regards the actions, which can 
have stochastic effects. In other words, the next environmental state is expressed as a 
probability distribution over states. Planning problems with this kind of uncertainties 
have been approached in Artificial Intelligence through adaptation of problems of 
classical planning and high-level languages, such as STRIPS, to act in uncertainty 
domains. 

The adaptations proposed here modify the definition of the classical planning 
problem, specifically regarding the operators. The space problem is defined by a set 
of probabilistic operators, where each operator consists of preconditions and one or 
more subsets of effects. For each subset of effects there is an associated occurrence 



probability ℘i(Ei
α), such that 0<℘i(Ei

α) ≤1 and Σi
N℘i=1. Figure 1 shows a 

probabilistic operator that has three subsets of effects (arrow destinations correspond 
to subsets). Each subset has add-effects and del-effects (propositions) that describe 
the state modifications generated by the application of the operator with an associated 
occurrence probability. 
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Fig. 1. Generic probabilistic operator 

3 Graphplan Framework 

The Graphplan planner [17] defines an efficient method of solving classical STRIPS 
problems. Graphplan is based on compiling a planning problem into a polynomial-
size structure called planning graph. A planning graph is a layered graph alternating 
between proposition nodes layers and action nodes layers. Each level represents the 
union of what might be reachable at a given time step. The initial level consists of 
proposition nodes that represent the initial conditions. The next level of the graph has 
a node for each operator that might possibly be performed at the corresponding time 
step. Special actions are used to represent the persistence of a proposition from one 
time step to the next. The second proposition level consists of the add-effects of the 
first action level. Successive levels are generated by inference according to action 
preconditions and effects. Edges in a planning graph connect actions to their 
preconditions and their add and delete effects. 

During graph building, the graph retains binary mutual exclusion information, 
indicating when two actions or propositions can not exist simultaneously. This 
information can be used to prune the search. Graphplan begins by creating a planning 
graph from the initial conditions until all the goals appear in the graph and none are 
pairwise mutually exclusive, then searches the planning graph for the plan solutions 
using a backward chaining search. 

3.1 PGraphplan 

A structural change to the standard planning graph is required in order to 
accommodate probabilistic actions. In this subsection we will describe this changes 
and the search procedure for PGraphplan [8, 9]. 

We consider probabilistic operators, such as presented in section 2. To support 
these kinds of operators, the graph is constructed in the normal manner except that 
each outgoing edge of an action has associated with it the event (subset of effects) 
which produced the edge. 



3.2 Searching the Probabilistic Planning Graph 

Given a bounded number of time steps tmax, Pgraphplan builds the planning graph 
and then performs a finite-horizon dynamic programming to find the optimal tmax-
step contingent plan [9]. The optimal plan corresponds to the plan of highest expected 
utility. The utility function adopted in this paper corresponds to finding the plan with 
the highest probability of success. The complete algorithm and more details about 
Pgraphplan search can be found in [8, 9]. 

 To speed up the search, Pgraphplan propagates two distinct kinds of information 
through the graph. Both kinds of information are used to tell the planner when the 
path it is currently exploring provably cannot reach the goal within the given time 
horizon and therefore it may safely return failure in its recursive calls [8]. The two 
types of information are summarized below. 
1. Removing unneeded vertices: a “needed” node is the node from which there exists 

at least one path to the goal. Pgraphplan removes from the planning graph all nodes 
that do not have any paths to the goal literal (unneeded nodes). This occurs as 
follow. Are removed from the last propositional level (tmax level) of the graph, all 
propositions that not are in the goal. Now, consider the actions at tmax-1 action 
level. If all add-effects of the one action were removed, then that action too is 
unneeded and can be withdrawn from the graph. Working backwards, any 
proposition at time tmax-1 that has no out-edges can be removed as well, and so 
on. 

2. Value propagation: the idea of value propagation is to propagate heuristic values 
(hvalues)  through the nodes of the graph such that the heuristic value of any state 
S, defined to be the sum of the hvalues of the nodes of the states, is guaranteed to 
be greater than or equal to the true value of S. If the planner finds that the heuristic 
value of the current state at time t is less than t, then it can backtrack. This means 
that it cannot possibly reach the goal by time tmax.  

4 HIPU - Hierarchical Planner under Uncertainty  

HIPU – Hierarchical Planner under Uncertainty [18] is an extension of the Alpine 
method [15], adapted to act under uncertainty conditions. Regarding uncertainties, it 
allows a probabilistic distribution of possible operator effects and a probabilistic 
choice under possible initial states of the domain. HIPU automatically generates an 
abstraction hierarchy and plan from this hierarchy. Planning begins at the highest 
level of abstraction, and the solution found in this level is refined by lower levels. 
During refinement, the plan found so far is evaluated, verifying if the solution 
succeeds with probability equal or higher than a predefined value. 

4.1 Generating Abstractions in HIPU 

The starting point for generating abstraction hierarchies in HIPU is Algorithm 1. This 
algorithm establishes the possible interactions among literals, creating a graph of 
constraints that will be used in the creation of the abstraction hierarchy.  



Function Find-Constraints(graph,operators,goals): 
Input: The operators of the apace problem and the goals of a problem. 
Output: constraints to guarantee ordered monotonicity for the problem. 
For each literal in the goals do 
If not(Constraint-Determinated(literal, graph))  
Constraint-Determinated(literal,graph) TRUE; 
 For each operator in Operators do 
  Subset_relevant FALSE; 
  For each Subset_Effects(operator) do 

If literal in Subset_Effects (operator) do 
Subset_Relevant TRUE; 
For each Effect in Subset_Effects (operator) do 
Add_Directed_Edge(literal,Effect, graph); 

If (Subset_Relevant) 
preconds Preconditions(operator); 
For each precondition in Preconds do 

Add-Directed-Edge(literal, precondition, graph); 
Find_constraint(graph, operators, Preconditions); 

return(graph); 

Algorithm 1. Algorithm for determining constraints 

After creating the graph of constraints, we find the strongly connected components 
using depth-first search. The next step constructs a reduced graph where the nodes 
that comprise connected components in the original graph correspond to a single node 
in the reduced graph. Literals within a node in the reduced graph must be placed in 
the same abstraction space and the connections between nodes define a partial order. 
The partial order is transformed into a total order using a topological sort. The total 
order graph originates the abstraction hierarchy, each level of the total order graph 
corresponding to a hierarchical level. 

4.2 Hierarchical Planning Solver 

Given a hierarchy of abstractions, HIPU proceeds as follows. First the problem solver 
maps the original problem to the highest level of the hierarchy (level i) by deleting 
literals from the initial states, goal states and operators literals that are not relevant to 
the abstraction level. The planner then performs a depth-first search adapted to 
probabilistic operators to find a solution for that level. The solution found in level i 
will be used in the next abstraction level (level i-1), where the literals of the 
intermediate states serve as sub goals at level i-1. The problem solver then solves each 
of the intermediate subproblems, using the final state of one subproblem as initial 
state for the next subproblem. The process is repeated until the plan has been refined 
in all hierarchical levels. 

During the search, when a plan that satisfies the goal state is found, the probability 
that the current plan will achieve it is computed using the forward assessment 
algorithm [4]. If the probability is high enough, then the plan is a solution and 
planning terminates successfully, otherwise the planner continues, choosing a new 
state to expand or returning fault. 



5 HPGP – Hierarchical Probabilistic Graphplan 

The main difference between HIPU and HPGP is that instead of depth-first search, 
HPGP uses PGraphplan to find plans. Some modifications are necessary so that PGP 
can handle the hierarchical planner HIPU. 

The first adaptation to embed PGP into the HIPU framework regards the maximum 
time steps (tmax) for the plan search. In PGP the number of time steps is previously 
defined by the user. This requires knowledge about the domain of the problem or 
exhausting attempts until that ideal number is found. As HIPU is totally automated, 
we need to discover a manner to automatically define tmax. We propose an alternative 
using the planning graph. First we expand the probabilistic graph until all the goals 
appear in it. While the goal state is not reached, the graph expansion continues until it 
is leveled (two consecutive levels are identical), or a maximum steps number (a 
system attribute) is reached. When a graph is leveled without reaching all the goals, it 
means that no solution exists. The next step is to remove from the graph all unneeded 
vertices and attribute to tmax the number of different actions (minus the persistent 
ones) existing in the graph. Although this heuristic seems reasonable, it can be 
conservative in specific cases, because the idea is to define tmax as the minimum 
number of operators necessary to reach the goal state. For example, consider the 
Blocks World problem presented in Appendix A. The operator paint_block reaches 
the goal “painted block” with probability 0.8, but there exists a probability of 
finishing the paint with the block not painted. However, if we carry the paint and try 
to paint the block again, the probability of concluding the task with success increases. 
Certainly, these two new steps (operators) will not be included in the plan if we 
expand the graph until the level of the goal state level is reached. Another situation in 
which the heuristics can be conservative is when an operator removes preconditions 
of other operators, making it necessary to include or repeat actions. But this situation 
happens because the probabilistic graph plan is a relaxed model (that ignores delete 
effects), and not exactly a consequence of the heuristics adopted for the tmax 
calculation. This problem could be solved with the inclusion of mutual exclusion 
relations in the graph, as suggested in [20]. Nevertheless, in this paper we ignore this 
improvement. When the method to define tmax fails during planner execution, the 
user will be required to inform tmax, or it will be given the maximum value allowed.  
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Fig. 2. Operators with redundant effects. 

Contrasting with previous cases (where the heuristic is conservative), we now 
discuss a situation in which the heuristic will overestimate tmax, causing a search 
space augmentation. The value tmax would be overestimated if there are redundant 
propositions in the operator effects. An example is illustrated in Figure 2. The graph 



showed has four actions (A, B, C and D), three of these (A, B and C) reach a goal 
literal G1 and two (C and D) goal G2. In the plan, just one of them will be really 
executed (action C). As each action has add-effects linked to a goal literal, none of 
them will be deleted during  removal of the unneeded nodes, causing a increase (from 
1 to 4) in the number of time steps (operators) to reach the goal state. This problem 
would be attenuated by considering only one operator when more than one reaches 
the same propositions. 

A key difference between HIPU and PGP is the type of proposed solution. HIPU 
solves the problem by finding a sequence of operators (concatenation of partial plans) 
that reach the goal state with an associated probability of success. PGP creates an 
optimal contingent plan (an optimal finite-horizon policy), i.e., a mapping from states 
to operators with the goal of maximizing an expected utility for some utility function 
(probability of success). Those search models are incompatible. We now propose two 
alternatives to solve this problem, as follows. 

The first alternative modifies HIPU to search contingent plans and not sequential 
plans. This implies refining all the valid plans found during the search. However, 
working with contingent plans would cause an increase in the plan space, and we 
cannot guarantee that it will lead to a significant reduction through hierarchization. 
We consider then a second solution: to refine the plan with the highest success 
probability. If the plan can’t be completely refined, the second plan with highest 
probability of success will be chosen, and so forth. Algorithm 2 summarizes HPGP. 
 
Performs HPGP (Initial State, Goal State, Operators): 
1. Generate the abstraction hierarchy exactly as HIPU.  
2. Create the abstraction spaces for each hierarchical level by deleting from the initial state, goal 

states and operators propositions that are not relevant to the abstraction level.  
 For each hierarchical level and respective subproblems: 

3. Produce the probabilistic planning graph. 
4. Remove unneeded nodes. 
5. Calculate the number of actions in the graph and attribute the value to tmax. 
6. If it is not possible to reach the goal state in the graph, backtrack (return fail), else continue. 
7. Reinsert the temporary excluded nodes in the graph. 
8. Continue the expansion until the level tmax is reached. 
9. Exclude unneeded nodes and propagate heuristic values. 

10. Perform a finite-horizon dynamic programming to find the optimal contingent plan (see 
complete algorithm in [8]). 

11. Choose the plan with highest probability of success. 
12. Refine the plan found (refinement is the same performed by HIPU, presented in Subsection 

4.2) executing steps 3 to 12 for each subproblem. 

Algorithm 2. High level HPGP algorithm. 

6 Empirical Results 

HPGP was partially implemented. The code was generated in C (for planning) and 
Lisp (for hierarchy determination). We performed experiments for the Blocks World 
and Flat-Tire Domains (Appendix A), and compared results with Pgraphplan, HIPU, 



and standard top-down Dynamic Programming TDDP [8]. HIPU executes standard 
top-down Dynamic Programming for searching plans, and considers the same time 
horizon (tmax values) as HPGP. 
 For the first case study (Blocks World Domain), the abstraction hierarchy 
generated by HIPU (or HPGP) contains two levels and the respective literals: Level 1 
- Paint and color(x), and Level 2 - on(x,y), onTable(x), clear(x) and clear(y). 
Numerical results are in Table 1. The number of states of HIPU and HPGP is the sum 
of states generated at each abstraction level. 
 For the experiments presented in Table 1, tmax was automatically calculated using 
the heuristic discussed in Section 5. Table 2 shows results with a manual definition of 
tmax. Only Pgraphplan and top-down Dynamic Programming (contingent planners) 
were considered in these experiments. Results are compared in terms of the number of 
states searched and the probability of success of the generated plans. 

Table 1. Results in the Blocks World Problem, 4 and 7 blocks, tmax automatically generated. 

States Probability Planner 
4 blocks 
tmax = 9 

7 blocks 
tmax=18 

4 blocks 7 blocks 

HIPU 224 123469 0.4096 0.209715 
HPGP 90 56037 0.4096 0.209715 
Pgraphplan 787 146652 0.4096 0.209715 
TDDP 12507 >33600000 0.4096 0.209715 

Table 2. Results in the Blocks World Problem, 4 and 7 blocks, tmax user-defined. 

States Probability Planner 
4 blocks 
tmax= 12 

7 blocks 
tmax=22 

4 blocks 
 

7 blocks 

Pgraphplan 7547 20229508 0.73728 0.738198 
TDDP 23164 Timeout 0.73728 Timeout 

 HPGP empirically searches through less states than HIPU. Both hierarchical 
planners have advantages (in search states) when compared with Pgraphplan and 
TDDP. Contingent planners (Pgraphplan and TDDP) are able to find plans with 
higher probability of success when we increase the number of time steps (tmax), but 
with a higher cost (number of states searched). 

Table 3. Results in the Flat-Tire domain, tmax=14, automatically calculated. 

Planner States Probability 
HIPU 2657 0.8145 
TDDP 6350 0.8145 
HPGP 1213 0.8145 
Pgraphplan 2886 0.8145 

 Experiments realized in the Flat-Tire domain are showed in Table 3. 
Hierarchization  divided the problem in two hierarchical levels, with respective 
literals: Level 1 - on(nut,hub), on-ground(nut), free(hub), in(wheel,container), 
have(wheel), on(wheel,hub). Level 2 – open(container), close(container). The number 
of time steps tmax was automatically calculated, it is the same (14) for all planners. 



 HIPU and TDDP use the same search strategy, however, the hierarchical process 
(HIPU planner) produces better results than the flat planner (TDDP). HPGP was 
significantly better (less search states) than HIPU and Pgraphplan. 

7 Conclusions and Future Work  

This paper presented HPGP, an abstraction-based framework for probabilistic 
planning. The abstraction hierarchy is automatically generated by a hierarchical 
planner under uncertainty, and the plan search proposed here is an extension of the 
Pgraphplan planner, adapted to handle hierarchical planning. We proposed a heuristic 
to automatically generate time steps (tmax) to finite-horizon search. 
 We related preliminary experimental results on the Block’s World and Flat-Tire 
Domains. An analysis of the results demonstrates that HPGP can reduce significantly 
the space search in probabilistic planning. However, to guarantee that the heuristic 
that automatically defines tmax is viable would be premature. We prefer to leave the 
definition of the number of steps as an open question until improvements (some of 
which are proposed in this article) are implemented. 
 Proposals for future work are adapting HPGP to search contingent plans and 
executing Tgraphplan [8] to search plans in our hierarchical framework. Tgraphplan 
finds the highest probability trajectory from the start state to the goal, and produces 
potentially sub-optimal policies. We are working at the implementation of a future 
Hierarchical Tgraphplan Planner (HTGP). Likewise, a deeper evaluation of HPGP 
performance through comparisons with other planners and tests on other domains are 
activities for future research. 
 We also suggest using different search strategies and heuristics to increase the 
hierarchical planner efficiency. 
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Appendix A 

Blocks World Domain augmented with probabilistic colorblock operator. This domain consists of a 
set of cubic blocks sitting on a table. The blocks can be stacked, but only one block can fit directly on 
top of another. A robot arm can pick up a block, paint the block, and move it to another position, 
either on the table or on top of another block. The arm can only pick up one block at time, so it 
cannot pick up a block that has another one on it. The goal will always be to build one or more stacks 
of painted blocks, specified in terms of what blocks are on top of what other block. This domain has 
four operators, as follow: 
Op: stack (x y), Preconds: clear (x), clear (y), on-table (x), Effects: on (x y), ~clear(y), ~on-table(x) 
Op: unstack (x y), Preconds: on(x y), clear (x), Effects: on-table(x), clear(y), ~on(x y) 
Op: colorblock(x), Preconds: clear(x), on-table(x), paint, no-color(x), Effects: 0.8(color(x), ~no-
color(x)), 0.2(~paint, no-paint) 
Op: chargepaint, Preconds: no-paint, Effects:  paint, ~no-paint. 
 
Flat-Tire Domain considers the problem of fixing a flat tire. The domain has the following eight 
action schemata: 
Op: open(x), Preconds: closed(x), Effects: ~closed(x), open(x) 
Op: close(x), Preconds: open(x), Effects: ~open(x), closed(x) 
Op: fetch (x y), Preconds: in(x y), open(y), Effects: ~in(x y), have(x) 
Op: put-away(x y), Preconds: have(x), open(y), Effects: in(x y), ~have(x) 
Op: remove-wheel(x y), Preconds: on(x y), on-ground Nut1, on-ground Nut2, on-ground Nut3, on-
ground Nut4, Effects: have(x), free(y), ~on(x y) 
Op: put-on-wheel(x y), Preconds: have(x), free(y), Effects: on(x y), ~free(y), ~have(x) 
Op: remove-nut(x y), Preconds: on(x y), Effects: 0.95(~on(x y), on-ground(x)) 
Op: fixit-nut(x y z),Preconds: on-ground(x), on(z y), Effects: ~on-ground(x), on(x y) 


