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Abstract. Preference learning has recently received a lot of attention
within the machine learning field, concretely learning by pairwise
comparisons is a well-established technique in this field. We focus on the
problem of learning the overall preference weights of a set of alternatives
from the (possibly conflicting) uncertain and imprecise information
given by a group of experts into the form of interval pairwise comparison
matrices. Because of the complexity of real world problems, incomplete
information or knowledge and different patterns of the experts,
interval data provide a flexible framework to account uncertainty
and imprecision. In this context, we propose a two-stage method in
a distance-based framework, where the impact of the data certainty
degree is captured. First, it is obtained the group preference matrix
that best reflects imprecise information given by the experts. Then, the
crisp preference weights and the associated ranking of the alternatives
are derived from the obtained group matrix. The proposed methodology
is made operational by using an Interval Goal Programming formulation.
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1 Introduction

Preference learning has recently received a lot of attention within the machine
learning literature [1] [2]. Learning by pairwise comparisons is a well-established
technique in this field. In particular, it is a useful inference tool for assessing the
relative importance of several alternatives. Formally, we consider the following
preference learning scenario: let X = {x1, ..., xn}(n ≥ 2) be a finite set of
alternatives (or labels) and {E1, ..., Em} be a group of m experts. We assume
that preference information provided by the expert Ek is structured by a pairwise
comparison (pc) matrix Mk = (mk

ij), where mk
ij > 0 represents the relative

importance of the alternative i over the alternative j, given by expert k. In
many applications, due to incomplete information or knowledge, unquantifiable
information, imprecise data, etc., the information cannot be assessed precisely



in a quantitative form, so interval assessments are a natural way for expressing
preferences. Therefore, we will consider interval pc matrices in our work.

In this scenario, we focus on the problem of scoring and ranking alternatives
by computing their crisp preference weights that best reflect interval pairwise
preferences, M1, ...,Mm, given by multiple experts.

In this context, we face with different problems: the imprecision management
problem (expert preferences are expressed by interval data), the group problem
(i.e., how to integrate preferences from multiple experts) and the problem of
consistency (i.e., how to derive preference weights from interval pc matrices
without consistency properties).

In the Analytic Hierarchy Process (AHP) [14] context, the problem of
consistency for interval assessments is analysed in [3], [4], [5], [6] and [7]. On the
same context, the consensus problem has been studied under the fuzzy approach
in [8], [9] and [10]. In [11], a consistency-driven logarithmic goal programming
approach is applied for dealing with interval data for a particular distance. A
distance model for interval rankings has been proposed in [12].

The related works deal with imprecise data, but they do not consider data
certainty degree in the learning process. Because in multiple experts problems
information is non-homogeneous, it is represented by interval-valued data with
different precision degree, we propose to consider it. On the other hand, most
of the methods dealing with interval data lead to interval weights. When the
interval weights overlap, there is no a unique ranking of alternatives. In this
case, additional ranking procedures are required in order to compare the final
alternative scores.

We propose a two-stage method in a general distance-based framework, where
the impact of the data certainty degree is captured. First, a method to retrieve
the group preferences from the conflicting and imprecise individual preferences
is proposed. To do this, we look for the crisp information that best reflects the
multiple experts preferences by using a lp-metric relative to the precision data. In
the second step, the overall preference weights of the alternatives are computing
from the group preference information obtained in the first phase. The proposed
approach is made operational with the help of Interval Goal Programming (GP).

The paper is organized as follows. Section 2 focuses on the formulation of the
problem and describes the first stage of the proposed model, group preference
learning. In section 3, it is presented the second stage of the model and finally,
the main conclusions derived from this work are included in section 4.

2 Group preference learning

Let X = {x1, ..., xn}(n ≥ 2) be a finite set of alternatives and {E1, ..., Em} a
group of m experts. We assume that expert Ek is indecisive generating certain
imprecision in his preferences. Consequently, he quantifies his preferences on the
elements of X giving an interval pc matrix on X, Mk = ([mk

ij ,m
k
ij ]) as follows:

he judges that alternative i is between mk
ij and mk

ij times more important than



alternative j with mk
ij , mk

ij > 0 and mk
ij < mk

ij . Then, the interval comparison

matrix Mk is obtained
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(1)

In practice, the complexity of the problem, imperfect and subjective judgements,
different backgrounds of the experts, etc., lead to imprecise and incompatible
pairwise information. Also, disjoint intervals could be assigned by different
experts to the same objects, i.e. there could exist i and j and two different
experts such that

[
mk1

ij ,mk1
ij

]
∩

[
mk2

ij ,mk2
ij

]
= ∅.

In this phase, the challenge is to look for the group preferences that represent
in some sense the multiple experts preference acting as a whole. The ideal
solution meaning unanimous agreement, among all experts regarding all possible
alternatives is difficult to achieve in real-life situations. Therefore, we provide a
method for retrieving the group preference information that best reflects the
multiple experts preferences (M1, ...,Mm) attending to the data precision. We
provide a method to obtain a matrix C, named group preference matrix, such
that all experts consider the information of C to be close to their data. In order to
measure the degree of closeness, we consider the lp-distances family with weights
relatives to data precision degree. Thus, we look for an n×n crisp positive matrix
C, whose entries cii = 1 if i = 1, .., n and cij is obtained for each pair (i, j) (i 6= j)
according to the following expression

min
cij>0

 m∑
k=1

 ∣∣mk
ij − cij

∣∣
log mk

ij − log mk
ij

p1/p

if 1 ≤ p < ∞ (2)

over the set of positive numbers.
For p = ∞ metric, for each (i, j) (i 6= j), the problem turns into the minmax

problem.

min
cij>0

 max
k=1,..,m


∣∣mk

ij − cij

∣∣
log mk

ij − log mk
ij


 (3)

over the set of positive numbers.
We notice that in the above problems the input data are interval, mk

ij ∈
[mk

ij ,m
k
ij ] that is the interval goal of the expert k for each entry (i, j).

The value log mk
ij − log mk

ij is considered a measure of the imprecision degree

of mk
ij data given by expert k. Because we work with pairwise estimations of the



weight ratios, the logarithmic transformation is used to equalize the precision
degree of the mk

ij data and its reciprocal 1/mk
ij (assuming interval arithmetic).

It should be noticed that as the range of the data (the vagueness) increases,
less importance is given to this data in the objective function.

In the posed problems, the relative residual aggregation is affected by the
parameter p of the distance. Thus as p increases, more importance is given to the
largest relative residual value. The extremes of this set are the distance l1, which
minimizes the sum of relative residual and the Chebyshev or Minmax metric l∞,
which minimizes the maximum relative deviation. Metric p = 2 corresponds to
the Euclidean distance, generating a least square problem.

Once the analytical model has been established, we focus on solving the
proposed minimization problems. In order to board them with interval data, we
consider Interval Goal Programming ([12] and [13]). In this context, for each
pair (i, j) (i 6= j), we consider the common deviational variables used in GP (see
for example [12]):
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k = 1, · · · ,m

where nk
ij and pk

ij measure the relative under-achievement and the relative over-

achievement with respect to the low target mk
ij , respectively. Variables nk

ij and

pk
ij play the same role for the high target mk

ij . They quantify in terms of the
extremes of the intervals, ”how relatively far” the solution cij is from the interval
target for the expert k.

Because we consider interval target for each (i, j), the unwanted deviation
variables are nk

ij and pk
ij and they have to be minimized. Therefore, for each pair

(i, j) (i 6= j), we look for the cij data that minimizes the objective function:[
m∑

k=1

(
nk

ij + pk
ij

)p
]

if 1 ≤ p < ∞ (8)



subject to

mk
ij − cij

log mk
ij − log mk

ij

− nk
ij + pk

ij = 0 k = 1, ...,m (9)

mk
ij − cij

log mk
ij − log mk

ij

− nk
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ij = 0 k = 1, ...,m (10)

nk
ij , n

k
ij , p

k
ij , p

k
ij ≥ 0 k = 1, ...,m

cij > 0

Expressions (9) and (10), connecting the variable cij with the new variables
nk

ij , pk
ij , nk

ij and pk
ij , have been obtained by substracting (4) from (5), and

substracting (6) from (7), respectively.
For p = ∞, for each pair (i, j) (i 6= j), we get a mathematical programming

problem min Dij over the nonnegative numbers subject to the above goals and
constraints plus nk

ij +pk
ij ≤ Dij , k = 1, ...,m. Dij is an extra nonnegative variable

that quantifies the maximum relative deviation for the (i, j)-entry.
For the most common values of p, p = 1 and p = ∞, the above formulations

are reduced to linear programming problems that can be solved using the simplex
method. The case p = 2 is a quadratic programming problem for which several
numerical tools are available.

Example 1. Let us present a numerical example ([17]) to illustrate how the
proposed methodology works. A group of four experts assess their preferences
about four alternatives, through the pc interval matrices M1, M2, M3 and M4,
on the Saaty’s scale ([14]) as follows:
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M3 =
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We find that matrices given by the experts provide information discrepant and
not compatible.

The proposed method is applied in order to find the consensus matrix C
(first phase) using lp-metrics, for p = 1, p = 2 and p = ∞ and the results are
listed in Table 1.



Table 1. Consensus matrix C for p = 1, 2,∞

Matrix C for Matrix C for Matrix C for
p = 1 p = 2 p = ∞ 1.000 5.000 0.332 5.000

0.201 1.000 0.200 0.200
2.999 5.000 1.000 5.000
0.200 5.000 0.200 1.000


 1.000 4.555 1.221 5.000

0.231 1.000 0.200 0.200
2.036 5.000 1.000 5.000
0.200 5.000 0.200 1.000


 1.000 4.303 1.666 5.000

0.247 1.000 0.200 0.200
1.666 5.000 1.000 5.000
0.200 5.000 0.200 1.000



3 Generating the group preference weights

Once the lp-group preference matrix C has been computed, the task is to obtain
the crisp preference weights w1, ..., wn, of the alternatives from the matrix C. We
assume that preference weights are positive and normalized, i.e.

∑n
i=1 wi = 1.

Several procedures are available in the literature concerning this problem.
The eigenvector method [14] is the standard method employed in the AHP
context for reciprocal matrices. On the other hand, distance-based methods are
provided by [15] and [16] among others. We adopt the distance-based approach
followed in [16]. The idea is to look for w = (w1, ..., wn)t taking into account the
consistency properties of the matrix C in a lq-distance framework. The priority
vector is obtained by solving the following optimization problem:

min
w∈F

 n∑
i=1

n∑
j=1

|cijwj − wi|q
1/q

if 1 ≤ q < ∞ (12)

min
w∈F

[
max

i,j=1,..,n
(|cijwj − wi|)

]
if q = ∞

over the feasible set F = {w = (w1, ..., wn)t/wi > 0,
∑n

i=1 wi = 1}.

We apply the second phase of the methodology to compute the preference
weights associated to the matrices of the example given in section 2. For
simplicity’s sake, we assume the matrix C has been obtained with p = 2. The
obtained priority vectors and the associated rankings for the most usual values
of q, q = 1, 2,∞ are listed in Table 2.

We notice that there is a tie between options x2 and x4 for metric q = 1. This
tie is solved in the results obtained with q = 2 and q = ∞ yielding dominance for
option x4 over x2. We remark that as q increases, the effect of greater deviations
is emphasized.

We developed a GP matrix generator using MS Visual FoxPro R© and
problems were optimized using ILOG CPLEX R© (Java classes).



Table 2. Preference weights and their associated rankings for q = 1, 2,∞

Metric
q = 1 q = 2 q = ∞

w (0.394, 0.087, 0.432, 0.087)t (0.357, 0.067, 0.483, 0.093)t (0.345, 0.069, 0.471, 0.115)t

Ranking x3 � x1 � x4 = x2 x3 � x1 � x4 � x2 x3 � x1 � x4 � x2

4 Conclusions

Methods for learning and predicting preferences in an automatic way is a topic in
disciplines such as machine learning, recommendation systems and information
retrieval systems. A problem in this field is the scoring and ranking of decision
alternatives from imprecise preference information from different sources. We
focus on the problem of learning the overall preference weights of a set of
alternatives in a multiple interval pc matrices scenario.

The proposed methodology is articulated into two phases. First, it is provided
a lp-distance model attending to data precision, that synthesizes expert’s interval
pc matrices into a crisp group matrix. This phase may prove to be useful in a
group decision problem where difficulties in articulating consensus information
from conflicting interests and different viewpoints are most common. In this
context the parameter p has a consensus meaning, it places more or less emphasis
on the relative contribution of individual deviations. On the other hand, the
effect of the precision degree, attached to deviations in the objective function
considered in the paper, is to place more or less emphasis on the relative
contribution of data deviations according to the precise knowledge of the data.

In the second phase, we deal with the problem of outputting crisp weights of
the alternatives from the group information. Most of the methods dealing with
interval data lead to interval weights. When the interval weights overlap, there
is no unique ranking of alternatives. In this case, additional ranking procedures
are required in order to compare the final alternative scores.

Another key characteristic of our approach is the ability of numerical methods
for computing the proposed solution for the most usual metrics.
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