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Abstract. Fuzzy regression models has been traditionally considered
as a problem of linear programming. The use of quadratic programming
allows to overcome the limitations of linear programming as well as to
obtain highly adaptable regression approaches. However, we verify the
existence of multicollinearity in fuzzy regression and we propose a model
based on Ridge regression in order to address this problem.

1 Introduction

Regression analysis tries to model the relationship among one dependent variable
and one or more independent variables. During the regression analysis, an esti-
mate is computed from the available data though, in general, it is very difficult
to obtain an exact relation.

Probabilistic regression assumes the existence of a crisp aleatory term in
order to compute the relation. In contrast, fuzzy regression (first proposed by
Tanaka et al. [15]) considers the use of fuzzy numbers.

The use of fuzzy numbers improves the modeling of problems where the
output variable (numerical and continuous) is affected by imprecision. Even in
absence of imprecision, if the amount of available data is small, we have to be
cautious in the use of probabilistic regression. Fuzzy regression is also a prac-
tical alternative if our problem does not fulfill the suppositions of probabilistic
regression (as, for example, that the coefficient of the regression relation must
be constant).

Fuzzy regression analysis (with crisp input variables and fuzzy output vari-
able) can be categorized in two alternative groups:

– Proposals based on the use of possibility concepts [10–13,16, 17].
– Proposals based on the minimization of central values, mainly through the

use of the least squares method[7, 9].

Possibilistic regression is frequently carried out by means of the use of linear
programming. Nevertheless, implemented in such a way, this method does not
consider the optimization of the central tendency and usually derives a high
number of crisp estimates.
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In this work we introduce a proposal where both approaches of fuzzy regres-
sion analysis are integrated. We also show that the use of quadratic programming
can improve the management of multicollinearity among input variables. To ad-
dress this problem, we propose a new version of Fuzzy Ridge Regression.

The paper is organized as follows: next section presents new regression models
based on the use of quadratic programming, section 3 describes a new version of
Fuzzy Ridge Regression based on the methods of section 2, section 4 is devoted
to presents and example, and, finally, section 5 concludes the paper.

2 Fuzzy Linear Regression

Let X be a data matrix of m variables X1, ..., Xm, with n observations each one
(all of them real numbers), and Yi (i = 1, .., n) be a fuzzy set characterized by a
LR membership function µYi

(x), with center yi, left spread pi, and right spread
qi (Yi = (yi, pi, qi)).

The problem of fuzzy regression is to find fuzzy coefficients Aj = (aj , cLj , cRj)
such that the following model holds:

Yi =

m∑

j=1

AjXij (1)

The model formulated by Tanaka et al. [15] considers that the (fuzzy) co-
efficients which have to be estimated are affected by imprecision. This model
intends to minimize the imprecision by the following optimization criterion [14]:

Min

n∑

i=1

m∑

j=1

(cLi + cRi)|Xij | (2)

subject to usual condition that, at a given level of possibility (h), the h-cut of

the estimated value Ỹi contains the h-cut of the empiric value Yi. This restriction
can be expressed by means of the following formulation[1]:

m∑

j

ajXij + (1 − h)

m∑

j

cRj |Xij | ≥ yi + (1 − h)qi for i = 1, ..., n (3)

m∑

j

ajXij − (1 − h)

m∑

j

cLj|Xij | ≤ yi − (1 − h)pi for i = 1, ..., n (4)

cRj , cLj ≥ 0 for j = 1, ..., m (5)

where h is a degree of possibility for the estimate, such that

µ(Yi) ≥ h for i = 1, ..., n (6)

The aforementioned formulation arises from the application of Zadeh’s Ex-
tension Principle[18] and has been proved by Tanaka[15].
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2.1 Use of Quadratic Programming

Our first approximation to the use of quadratic programming in fuzzy regression
analysis is based on the interval model proposed by Tanaka and Lee[14].

If we want to minimize the extensions, taking into account that we use non
symmetrical triangular membership functions, and we want to consider the min-
imization of the deviation with respect to the central tendency, we have the
objective function

J = k1

n∑

i=1

(yi − a
′

Xi)
2 + k2(cLX

′

Xc
′

L + cRX
′

Xc
′

R) (7)

where k1 and k2 are weights ∈ [0, 1] that perform a very important role: they
allow to give more importance to the central tendency (k1 > k2) or to the
reduction of the estimate’s uncertainty (k1 < k2) in the process.

The model with this objective function (7) and restrictions (3)-(5) will be
called Extended Tanaka Model (ETM) in this paper and, with the parameters,
ETM(k1, k2).

Let us now focus not in the minimization of the uncertainty of the estimated
results but on the quadratic deviation with respect to the empiric data. That is,
we will contrast the estimated spreads with respect to the spreads of the output
data (pi and qi).

According to this new criterion, the objective function represents the quadratic
error for both the central tendency and each one of the spreads:

J = k1

∑n

i=1
(yi − a

′

Xi)
2+

+k2(

n∑

i=1

(yi − pi − (a
′

− c
′

L)Xi)
2 +

n∑

i=1

(yi + qi − (a
′

+ c
′

R)Xi)
2) (8)

The model with objective function (8) and restrictions (3)-(5) will be called
Quadratic Possibilistic Model (QPM) in this paper and, with the parameters,
QPM(k1, k2). It can be proben that this last model does not depend on the data
unit.

One of the main criticisms to possibilistic regression analysis is that as the
number of available data increases the length of estimated spreads also increases.

In this context, we propose a third new model, called Quadratic Non-Possibi-
listic (QNP), which considers the objective function (8) and which only incor-
porates the restriction (5).

Example 1 We experiment with data taken from Tanaka’s paper[14], where X
goes from 1 to 8.

First, we have applied the model of Kim[8] and Chang[2] with X varying
from 1 to 22. The results of this analysis are depicted in Fig. 1. As can be
observed, when X=15, the three curves converge (ai = ai−cLi = ai +cRi). With
values higher than 15, the relationship among extreme points in the estimated
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Fig. 1. Predictions with methods of Kim [8] and Chang [2]

membership functions reverses, so that the left extreme is higher than the right
extreme (which has no sense).

The same experimentation with Model QNP is depicted in Figure 2. Model
QNP forces the estimate’s structure to be the same for both the central ten-
dency and the fuzzy extremes. This fact, which can be seen as a restriction in
the behavior of the spreads, guarantees that the inconsistencies of the previous
example do not appear.
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Fig. 2. Predictions with method QNP
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This predictive capability of the proposed model overcomes the limitation
analyzed by Kim et. al [8], where the capability of prediction is restricted only
to probabilistic models.

Outliers pay a determining role in the estimation of the extensions in possi-
bilistic regression. That is the reason why we propose the use of an alternative
model, the aforementioned QNP, where restrictions 3-5 are reduced to only re-
striccion 5. In this new model, the estimations of extensions represent the whole
set of data extensions, and not only outliers, as in the possibilistic case.

3 Fuzzy Ridge Regression

The approach based on quadratic programming analyzed in previous sections
has the additional advantage of allowing the management of multicollinearity.
With this approach, we can set regression methods which deal with the problem
of multicollinearity among input variables, as for example, fuzzy ridge regression.

In the seminal paper of fuzzy regression, Tanaka et al. [15] stated about their
concrete example “the fact that A4 and A5 are negative depends on the strong
correlations between variables X4 and X5”. Actually, the correlation between
X1 and X5 is 0.95, much higher than any other value of correlation in Y and
Xi, which indicates a very high multicollinearity. It can be assumed that the
same distortion effect that affects probabilistic regression can be found in fuzzy
regression.

The most popular probabilistic regression techniques that are usually used to
deal with multicollinearity are Principal Component Regression and the Ridge
Regression. Recently, papers about Fuzzy Ridge Regression has appeared in the
literature which use an approach closely related to the support vector machine
proposed by Vapnik[5, 6].

In the area of probabilistic regression, Ridge regression can be seen as a
correction of the matrix X‘X. This matrix, in presence of multicollinearity, has
values close to zero. It can be proven that the expected value for estimations ã

′

ã

is

E(ã
′

ã) = a
′

a + σ2
∑

i

( ct

λi

)
(9)

where λi are the eigenvalues values of X’X and ct is a constant. If these values
are close to 0, the expected value for a ′a increases a lot, producing coefficients
with high absolute value and with the opposite sign, as the comment of Tanaka
et al. suggests.

The introduction of a small positive value in the diagonal of X’X moves the
least value of λi far from zero, and, thus, the expected value for ã

′

ã decreases.
The Ridge Regression can be seen as the addition of a new factor to the

objective function. This factor depends on a parameter λ, called Rigde parame-
ter. Ridge regression minimizes the conventional criterion of least squares in the
following way [4]:
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aridge = min
a

[∑

i

(yi −
∑

j

Xijai)
2 + λ

∑

j

a2

j

]
(10)

The Ridge solutions are not equivariant under changes in the scale of the
inputs.

The model of Fuzzy Ridge Regression (FRR), introduced firstly in our work
[3], is formalized with the following objective function:

k1

∑n

i=1
(yi − a

′

Xi)
2 + k2(

∑n

i=1
(yi − pi − (a

′

− c
′

L)Xi)
2+

+

n∑

i=1

(yi + qi − (a
′

+ c
′

R)Xi)
2) + λ(a′a) (11)

where the penalty only acts on the vector of central values. This model will
be called FRR (fuzzy ridge regression).

An extension of the model, including the extensions, is
k1

∑n

i=1
(yi − a

′

Xi)
2 + k2(

∑n

i=1
(yi − pi − (a

′

− c
′

L)Xi)
2+

+

n∑

i=1

(yi + qi− (a
′

+ c
′

R)Xi)
2)+λ(

m∑

j=1

(k3a
2

j +k4((aj − cLj)
2 +(aj + cRj)

2)) (12)

where k3yk4 are constants to weight the terms, and the spreads are aj − cLj

and aj + cRj . This model will called EFRRλ(k3, k4) (extension of fuzzy ridge
regression with parameters λ, k3 y k4).

There exist many proposals to choose λ. Many of them suggest varying the
parameter in a certain interval, checking the behavior of the coefficients, and
choosing λ when the estimates remain stable.

A more general approach can be proposed, where the λ Ridge parameter
depends on each variable (λj with j = 1, .., m). In this case, the objective function
is as follows

k1

∑n

i=1
(yi − a

′

Xi)
2 + k2(

∑n

i=1
(yi − pi − (a

′

− c
′

L)Xi)
2+

+

n∑

i=1

(yi+qi−(a
′

+c
′

R)Xi)
2)+(

m∑

j=1

λj(k3a
2

j +k4((aj −cLj)
2+(aj +cRj)

2)) (13)

called GFRR (generalized fuzzy regression model) with the parameters λj , k3

and k4.

3.1 Examples

Let use introduce an example of use of the previously described methods.

Example 2 The example, similar to the one used for Tanaka [15] to illustrate
the problem of multicollinearity, will be used here to experiment with the previ-
ously defined Fuzzy Ridge Regression model. We will use the method QPM, with
k1 = 1 and k2 = 1 for our calculus.
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Fig. 3. Central coefficients, ai, as λi increases

Figure 3 depicts the trajectory of the coefficients’ centers, when the λi param-
eters are function of the diagonal of the matrix X’X (from 0 to 1 with increments
of 0.1).

According to the example of Tanaka et al. (Y is the price of a house), all
the coefficients must be positive (maybe with the exception of the number of
Japanese rooms) because as the value of the variable increases the value of the
house must also increase. The regression analysis, either of least squares or our
fuzzy regression, initially produces some negative coefficients. However, three
coefficients, which initially have negative values, reach positive values.

If we suppose that the λ coefficients are constant, varying from 0 to 55, we
have the trajectory for the coefficients’ centers depicted in figure 4. As can be
observed, one of the coefficient remains negative while the other two become
positive.

In any case, the availability of more reliable coefficients permits a better
knowledge of the function we are looking for, and, consequently, better conditions
for the use with predictive aims.

In order to end this section, let us compare our model with the model of
Hong and Hwang[5, 6]. These authors do a dual estimation of the coefficients,
with the relation:

βdual = Y ′(XX ′ + Iλ)−1X (14)

where I is the identity matrix of range n and λ is a constant, the Ridge
coefficient, whose values increase in value from 0.

If we take the same data, and make λ increase from 0 to 1.5 (with increments
of 0.1) we obtain the results depicted in figure 5.

These results must be contrasted with those of figure 4, where the ridge pa-
rameter is also constant. As can be observed, central coefficients have a similar
behavior in both graphics: there is a positive coefficient which converges to (ap-
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Fig. 4. Ridge central coefficients, ai, as λ increases
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proximately) 1300 and a negative coefficient which converges to (approximately)
-600. The other coefficients are close to zero.

However, the main difference is in the central coefficient a1. With the method
of Hong and Hwang, this coefficient has a high value when λ = 0 and is -600
when λ = 0.1. This fact does not occurs with our method.

Let us now present a second example with a higher amount of variables. We
have ten demographic groups as input data and the output is the saving (positive
or negative) of the whole population. For the sake of space we omit the table
with numerical data.

Results with model EFRR(1,1), normalizing data according to the maximum
value, have been computed with lambda varying from 0 to 1 and are shown in
figure 6.

Fig. 6. Ridge tracing, example 2

As we can see, the step from 0 to 0.1 produces the best coefficients ad-
justment, which, on the other hand, have a quite stable behavior. Notice that
coefficients of variables x3 and x10 increase their value from aprox. 0 and 0.1 to
the highest values among the coefficients.

4 Conclusions

In this paper we have tried to validate the use of quadratic programming in
order to obtain a good fitness in fuzzy linear regression.

To accomplish this task, we have adapted one existing model (ETM) and we
have proposed two new models (QPM and QNP). Method QPM is a good choice
when possibilistic restrictions are important in the problem. If we do not want
to pay special attention to the possibilistic restriccions, QNP is an appropriate
alternative.
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We have proposed a special version of Fuzzy Ridge Regression based on our
previous study on quadratic methods in order to cope with the multicollinearity
problem.
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