
Interface Agents’ Design for a DRT
Transportation System using PASSI

Claudio Cubillos and Sandra Gaete

Pontificia Universidad Católica de Valparáıso
Escuela de Ingenieŕıa Informática
Av. Brasil 2241, Valparáıso, Chile.

claudio.cubillos@ucv.cl, sandra.gaete@gmail.com

Abstract. The present work continues a longer research in the field of
flexible transportation services and the design of an agent system devoted
to the planning, scheduling and control of trips under such a domain.
In particular, this paper focuses in the design and development of the
interface agents present in the system by following an agent development
methodology named PASSI. The interface agent devoted to interaction
with the customers is explained in detail and its prototype is shown.

1 Introduction

In the last two decades, the mobility needs of European citizens have radically
changed. The need to cover more diffuse travel patterns, varying periods of low
demand, city-peripheral journeys, as well as commuting trips has leveraged the
need of Demand-Responsive Transport services (DRTS) in which routes, depar-
ture times, vehicles and even operators, can be matched to the identified demand
allows a more user-oriented and cost effective approach to service provision.

Software agents are defined as autonomous entities capable of flexible be-
havior denoted by reactiveness, pro-activeness and social ability [1]. Multiagent
systems (MAS) consist of diverse agents that communicate and coordinate gen-
erating synergy to pursue a common goal. In this context the present work de-
scribes the design of a multiagent system using the agent development method-
ology called PASSI [2] for modeling a passenger transportation under a flexible
approach. In this way, it gives continuity to our past research [3] [4] on heuris-
tics for solving scheduling of passenger trips. In particular the paper focuses in
describing the design of the interface agents for the main actors; Customer and
Driver, for then detailing the interface agent prototype devoted to Customers.

The paper scope moves toward the design description of interface agents using
PASSI withing the context of a complete system. Although literature is plenty
of agent systems, agent software engineering (AOSE) is less common. In the
particular case of PASSI, finding complete designs in addition to the examples
developed by the own creators is not an easy task. Furthermore, a practical
design with PASSI devoted to interface agents, showing how interface events are
tackled and mapped in terns of tasks, roles, the granularity required, etc. is not



present in literature (at least at the best of our knowledge). Therefore our aim
is to somehow cover this lack.

2 Related Work

The research on Multi-Agent Systems (MAS) has deserved an increasing interest
in the Intelligent Transportation Systems (ITS) domain. One ITS area of MAS
development has been Urban Traffic Control (UTC) systems. In 2000, Ou [6]
presented a UTC, which adopted MAS technology based on recursive modeling
method (RMM) and Bayesian learning. Ferreira et al. [7] presented a multi-agent
decentralized strategy where each agent was in charge of managing the signals
of an intersection and optimized an index based on its local state and ”opinions”
coming from adjacent agents.

In the Advanced Transportation Information System (ATIS) field, Kase and
Hattori [8] proposed the InfoMirror application that provides agent-based infor-
mation assistance to drivers through car navigation systems or on-board PCs.
Adorni [9] presented a distributing route guidance system, which allowed dy-
namic route searching using the coordination capabilities of MAS. Bus-holding
control tackles the coordination of multiple lines of fixed-route buses and the dif-
ferent stops, seeking the global optimality. In 2001, Jiamin et al. [10] proposed a
distributed bus-holding control approach in which a MAS negotiation between a
Bus Agent and a Stop Agent was conducted based on marginal cost calculations.

3 Flexible Public Transport Services

Demand Responsive Transport (DRT) services aim to meet the needs of differ-
ent users for additional transport supply. The use of flexible transport services,
where routes, departure times, vehicles and even operators, can be matched to
the identified demand allows a more user-oriented and cost effective approach
to service provision. The adaptation of the transport services to match actual
demand enables cost savings to the operators, society and passengers.

DRT can be seen as an element of a larger intermodal service chain, providing
local mobility and complementary to other conventional forms of transportation
(e.g. regular buses and trams, regional trains). In this context, DRT provides
a range of Intermediate Transport solutions, filling the gap between traditional
public bus services and individual taxis.

The final DRT service can be offered through a range of vehicles including
regular service bus, mini-bus, maxi-vans, buses and vans adapted for special
needs and regular cars. The use of each vehicle type depends on the transport
service to offer, the covered area and the target users.

4 PASSI Methodology

The Process for Agent Societies Specification and Implementation (PASSI) is
a step-by-step methodology for designing and developing multi-agent societies.



PASSI integrates design models and concepts from both OO software engineering
and artificial intelligence approaches using the UML notation. The design process
with PASSI is supported by PTK (PASSI Toolkit [16]) to be used as an add-in
for Rational Rose.

The PASSI methodology is made up of five models containing twelve steps
in the process of building multi-agent. The models are: System Requirements
Model, Agent Society Model, Agent Implementation Model, Code Model and
Deployment Model. Because of space restrictions, the present work will focus in
the first model. Please refer to [2] for a more detailed description on the whole
PASSI methodology.

The System Requirements Model corresponds to an anthropomorphic model
of the system requirements in terms of agency and purpose. It involves 4 steps:
1) a Domain Description (D.D.), which provides a functional description of the
system using conventional use-case diagrams, 2) an Agent Identification (A.Id.),
leveraging the separation of responsibility concerns into agents, represented as
UML packages, 3) a Role Identification (R.Id.), consisting in use of sequence
diagrams to explore each agent’s responsibilities through role-specific scenarios
and 4) a Task Specification (T.Sp.), detailing through activity diagrams the
capabilities of each agent.

5 The Agent-based Transportation System

As stated before, the agent system was designed following the PASSI methodol-
ogy, making use the PTK (Passi Toolkit) add-on for Rational Rose to develop the
different models. The system prototype was implemented over the Jade Agent
Platform[11], which provides a full environment for agents to work. In the fol-
lowing the general architecture will be explained for then detailing the interface
agents in the next sections. For a more detailed description on the agent archi-
tecture and the planning & scheduling mechanism please refer to [5] and [3].

As outlined in the PASSI section, the methodology starts capturing the sys-
tem’s requirements through use cases, for then grouping them together to con-
form the agents. The diagram in Figure 1 shows part of the use cases and agents
involved in the system. Due to space restrictions some of the supporting agents
are expressed as actors.

The Client is an interface agent with a GUI. Providing the connection be-
tween the end user (Customer) and the transportation system. Through it, the
Customer can request a trip by giving a description of the desired transporta-
tion service through a Trip Request Profile. In addition, through a Client Profile
it is possible to create and manage personalized services profiles with diverse
characteristics and preferences common to the different trips requested by the
user.

After a service has been contracted, the Customer can also communicate
events to the system (e.g. a delay, a change on the agreed service, or simply can-
cel). In a similar way, the system can communicate with the Customer, informing
him about any eventuality that may happen (e.g. a traffic jam or vehicle break



down) which may imply a delay or change in the service to be provided. This
agent will be further detailed in the next section. The Trip-Request agent acts as

Fig. 1. Portion of the Agents’ Identification Diagram

a proxy, representing the Customer in the process of contracting a transporta-
tion service. In fact, the trip-request agent is involved in all the interaction of
the Customer (through the interface agent) with the transportation system. Its
activities regard the management of the client transportation requests, including
any negotiation or selection of proposals coming from the Planner, together with
processing any events generated by the Customer or by the system. As residing
on a device with more processing power (such as a PC), this agent may have



diverse degrees of autonomy for taking decisions on the trip proposal to choose
and how to react when faced to eventualities.

The Vehicle is also an interface agent (with a GUI) in charge of providing
a monitoring of the route-schedule planned for the vehicle. In addition, it can
inform the Driver about any changes to the initial schedule and can be used by
him to inform any eventuality (e.g client no show, delay, detour, etc) that may
happen regarding the trip and the customers. In particular its interface has been
designed to work on-board the vehicle through a touch screen.

The Schedule agent is the one in charge of managing the trip plan (work-
schedule) of the vehicle. In addition, the agent is also responsible of making
trip proposals upon Planner request and in case of winning will have to update
its actual plan to include the new trip. Upon changes (due to vehicle or client
events) informed either by the Vehicle or the Planner agent, the Schedule agent
will update the plan and reschedule the remaining requests.

Finally, the Planner agent processes all the customers’ requests coming through
their Trip-request agents. It initiates a contract-net (CNP) [17] with the Sched-
ule agents and manages all the arrived proposals. It is also in charge of managing
events that may affect the trip services already contracted and scheduled.

The rest of the actors correspond to supporting-service agents or systems that
interact with the diverse agents already detailed, such as the broker, responsible
for the initial service matching, the map, providing times and distances, and
the payment, responsible for a secure and reliable payment transaction, among
others.

5.1 The Agent Interaction

In PASSI the agent interaction is modeled through sequence diagrams that show
the diverse scenarios in which agents communicate. The following Figure 2 shows
part of the scenario in which a Customer requests a trip service. Each object
in the diagram is described following the 〈role〉 : 〈agent〉 convention. Therefore,
this scenario involves the Customer, Map and Broker actors plus the Client,
Trip-request, Planner and Schedule agents.

The scenario starts with the Customer initiating the request of a trip through
the client interface by clicking in the top menu. The Customer fills-in the infor-
mation requested in the form and the interface stores a corresponding Request
Profile. Then, the Trip Request Generator role of the Client generates the Trip-
request agent providing the Request Profile as argument. This agent initiates the
request with the Planner through its Client Requests Manager role. The Planner
receives the request and queries the Broker for registered vehicles fulfilling the
Request Profile. The Broker returns a list of possible vehicles and the Planner
starts analyzing the alternatives through its Proposals Manager role. In fact,
this role performs the Manager activities of the Contract-Net protocol. Then, it
initiates a call for proposals to the corresponding Schedule agents according to
the vehicles’ list.

The Schedule agent encapsulates the underlying optimization algorithm for
scheduling the trips of the vehicle. In our implementation Schedule agents im-



Fig. 2. Roles Identification: Part of the ”Customer Requests a Trip Service” scenario



plement a distributed version of a well known greedy insertion algorithm called
ADARTW (Please refer to [3] for further details).

The Proposals Generator role of the Schedule agent analyzes the Request
Profile, first by requesting the Map for the coordinates of the pickup and delivery
addresses and some paths and distances to evaluate incorporation alternatives to
the actual schedule of the vehicle. The Schedule agent turns back a valid proposal
or a refuse performative. The Planner waits for proposals until a deadline or until
receiving all answers back, asking the Trip-request to evaluate the proposals. The
Proposals Negotiator role of the Trip-request will process the alternatives and
depending on its degree of autonomy, can decide on behalf of the Customer or
can report the list of proposals to the Client agent for the Customer to choose.

6 The Client Agent

As stated before, the Client is an interface agent devoted to the Customer-System
interaction. In principle, this trip-client assistant may reside on diverse devices
(e.g PC, PDA, mobile phone) in order to allow a more flexible and pervasive
access to the transportation system. In our prototype, has been developed a
Client agent for PC, remaining the versions for more restricted devices as future
work. In this sense, it is important to highlight that all the complex processing
or decision-making (if delegated by the Customer) has been attached to the
Trip-request agent in order to lightweight the Client (the interface agent).

In the following Figure 3 a screenshot of the Client agent GUI is shown,
detailing the tab that appears when initiating the request of a trip. In the ”Re-
quest Data” area, on the left, is asked all the information necessary to detail
a transport service request under the demand-responsive considered scenario.
This regards the date, the pickup and delivery points (addresses), the corre-
sponding times and other specific information such as the required seats and
diverse vehicle characteristics.

It is important to mention that all the concepts involved in the specification
of the services make part of a Domain Ontology specific for this transportation
domain (for further details on the ontology please refer to [5]).

On the right hand, the available transport services are deployed, showing
for each selected service the covered area in terms of street intersections. The
services’ list can be imported from the system (on line) or from a local file. At
the bottom, the Customer can send the trip request and save the services’ list.

The PASSI methodology used for the modeling considers a Task Specification
step. In this activity the scope is to focus on each agents behavior, decomposing it
into tasks which usually capture some functionality that conforms a logical unit
of work. Therefore for each agent an activity diagram is developed, containing
what that agent is capable of along the diverse roles it performs. In general terms,
an agent will be requiring one task for handling each incoming and outgoing
message.

In the following Figure 4 a portion of the Task Specification Model for the
Client Agent is depicted. The diagram shows six tasks that constitute the main



Fig. 3. Client agent GUI showing the ”Request Data” tab in the ”Request Trip” menu

Client agent capabilities devoted to the process of requesting a transportation
service. The SendQueryAvailableService task handles the request from the Cus-
tomer to search for available services and triggers the ManageClientQuery task
of the Trip-Request agent which is in charge of requesting the Broker for possible
transportations services available. These are returned by the SendActualAvail-
ableService task of the Trip-request and is received by the ReceivingAvailable-
Service task of the Client which processes and decodes the ACL message and
forwards the services’ list to the ShowAvailableService task responsible for dis-
playing the list in the proper form.

The Customer, when making a trip Request Profile (see Figure 3), can browse
on the available services (after loading them) in the right-hand area calling to
the ShowAvailableService task or can send the request (by pressing the button)
after filling the left-hand information, calling the SendTripRequest task. This
Client’s task is responsible for sending the Request Profile to the Trip-Request,
being handled by its ManageClientQuery task, which on its turn will forward
the request to the Planner.

As explained in the ”Customer Requests a Trip Service” scenario of sec-
tion 5.1, the Trip-request agent will receive from the Planner the trip proposals
coming from the different vehicles’ Schedule agents and its SendTripProposals
task will send them to the Client. On its turn, the Client will receive and handle
the proposals through its ShowTripProposals task, also responsible for display-
ing them on an appropriate form. Finally, the Customer will be able to select
the best alternative calling to the SendChosenProposal task of the Client.



Fig. 4. Part of the Task Specification for the Client Agent, showing the flow of tasks
involved in the trip request processing

7 Conclusions

The design of an agent system devoted to passenger transportation under a
demand-responsive approach was described. The PASSI methodology used al-
lowed an appropriate level of specification along its diverse phases. The present
work focused in the specification of the interface agents for the main actors
involved with the system: Customers and Drivers. The Client interface Agent
prototype was detailed providing an in-depth example of agent design & im-
plementation using the AOSE PASSI. Future work considers enable the system
openness with the implementation of a high-level communication mechanism in
order to provide a dynamic participation in such a system.

8 Acknowledgement

This work is part of Project No. 209.746/2007 entitled ”Coordinación en una so-
ciedad multiagente dedicada a la programación y control bajo ambiente dinámico”,
funded by the Pontifical Catholic University of Valparáiso (www.pucv.cl).

References

1. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, Massachusetts, USA. 1999.

2. Burrafato, P., and Cossentino, M.: Designing a multiagent solution for a bookstore
with the passi methodology. In Fourth International Bi-Conference Workshop on
AgentOriented Information Systems (AOIS-2002).



3. Cubillos, C., Crawford, B., Rodŕiguez, N.: Distributed Planning for the On-Line
Dial-a-Ride Problem. F.P. Preparata and Q. Fang (Eds.): FAW 2007. Springer Hei-
delberg LNCS, vol. 4613,2007, pp. 124-135.

4. Cubillos, C., Rodŕiguez, N., Crawford, B.: A Study on Genetic Algorithms for the
DARP Problem. Mira, J., Alvarez, J.R. (eds.) IWINAC 2007, Part I. Springer Hei-
delberg LNCS, Vol. 4527,2007. pp. 498-507.

5. Cubillos, C., Gaete, S.: Design of an Agent-Based System for Passenger Transporta-
tion using PASSI. Mira, J., Alvarez, J.R. (eds.) IWINAC 2007, Part II. Springer
Heidelberg LNCS, Vol. 4528,2007. pp. 531-540.

6. Ou, H. T.: Urban Traffic Multi-Agent System based on RMM and Bayesian Learn-
ing. Proc. American Control Conference 2000, pp. 2782-2783.

7. Ferreira, E. D.; Subrahmanian E.: Intelligent Agents in Decentralized Traffic Con-
trol. IEEE Intelligent Transportation Systems Conference Proceedings, August
2001, USA, pp. 705 -709.

8. Kase N.; Hattori M.: InfoMirror - Agent-based Information Assistance to Drivers.
IEEE\IEEJ\JSAI Intelligent Transportation Systems Conference Proceedings.
1999, pp. 734 -739.

9. Adorni G. ”Route Guidance as a Just-In-Time Multiagent Task”. Journal of Applied
Artificial Intelligence, 1996, 10(2), pp. 95-120.

10. Jiamin Zhao; Dessouky, M.; Bukkapatnam, S.: Distributed Holding Control of Bus
Transit Operations. IEEE Intelligent Transportation Systems Conference Proceed-
ings, Oakland - USA, August 2001, pp. 976 - 981.

11. Bellifemine, F. et al: JADE - A FIPA Compliant Agent Framework. C SELT In-
ternal Technical Report, 1999.

12. Brckert, H; Fischer, K.; et al.: TeleTruck: A Holonic Fleet Management System.
14th European Meeting on Cybernetics and Systems Research, 1998, pp. 695–700.

13. Fischer, K.; Mller, J.P.; Pischel, M.: Cooperative Transportation Scheduling: An
application Domain for DAI. Journal of Applied Artificial Intelligence, Vol. 10, 1996.

14. Kohout, R; Erol, K. Robert C. In-Time Agent-Based Vehicle Routing with a
Stochastic Improvement Heuristic. In Proc. Of the AAAI/IAAI Int. Conf. Orlando,
Florida, 1999, pp. 864–869.

15. Perugini, D.; Lambert, D.; et al.: A distributed agent approach to global trans-
portation scheduling. IEEE/ WIC Int. Conf. on Intelligent Agent Technology, 2003,
pp 18–24.

16. PASSI Toolkit (PTK) Available at http://sourceforge.net/projects/ptk
17. Smith, R. G. and R. Davis: Distributed Problem Solving: The Contract Net Ap-

proach. Proceedings of the 2nd National Conference of the Canadian Society for
Computational Studies of Intelligence. 1978.


