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Abstract. In multi-agent systems, complex and dynamic interactions often 
emerge among individual agents. The ability of each agent to learn adaptively is 
therefore important for them to survive in such changing environment. In this 
paper, we consider the effects of neighbourhood structure on the evolution of 
cooperative behaviour in the N-Player Iterated Prisoner’s Dilemma (NIPD). We 
simulate the NIPD as a bidding game on a two dimensional grid-world, where 
each agent has to bid against its neighbours based on a chosen game strategy. 
We conduct experiments with three different types of neighbourhood structures, 
namely the triangular neighbourhood structure, the rectangular neighbourhood 
structure and the random pairing structure. Our results show that cooperation 
does emerge under the triangular neighbourhood structure, but defection 
prevails under the rectangular neighbourhood structure as well as the random 
pairing structure. 

Keywords: N-player iterated prisoner’s dilemma, bidding game, game 
strategies, neighbourhood structure. 

1   Introduction 

The Iterated Prisoner’s Dilemma (IPD) game has been used extensively to study the 
evolution of cooperative behaviour over the last two decades [1-4]. However, the 
game is somewhat limited as it is only between two players. Many real world 
problems, especially the social and economic ones, often require interactions among 
various parties. As such, an extension to the IPD game which is more realistic can be 
found in the multiplayer version game called N-Player IPD (NIPD) [5-6]. 

NIPD is a collective game that involves more than two players. Each player can 
either cooperate or defect against other players, getting a reward which increases 
when there are more players cooperating. This allows the simulations of many aspects 
of the real world societies, where one can choose to help the population as a whole or 
help himself at the expense of others. 

In this paper, we consider the effects of neighbourhood structure on the evolution 
of cooperative behaviour in the NIPD game. Previous works have studied the impact 
of the number of players [6], payoff function [7], neighbourhood size [7], history 



length [8], localisation issue [8], population structure [9], generalisation ability [6, 
10], forgiveness [11], trust [12], cultural learning [13], noise [14], etc but none has 
investigated the influence of the neighbourhood structure on the evolution of 
cooperation among players in the context of NIPD. We simulate the NIPD as a multi-
agent bidding game using a two dimensional grid-world, where each agent is required 
to bid either high or low against its neighbours based on a chosen game strategy. 
Every agent on the grid-world competes with its neighbours iteratively and gets its 
scores from their interactions. During the process, the agent looks at its neighbours’ 
scores. If no neighbour has a higher score, the agent retains its original strategy. If the 
agent has a neighbour or neighbours with higher scores, it will learn to adopt the 
strategy of the most successful neighbour. With such arrangement, an agent may 
benefit from actions of other agents whom it interacts with, and it may also take 
actions that benefit the other agents. The willingness of an agent to take actions which 
are beneficial to another agent depends strongly on its previous interactions with that 
agent. 

We introduce three different types of neighbourhood structures in which the agents 
play the bidding game, namely the triangular neighbourhood structure, the rectangular 
neighbourhood structure and the random pairing structure. We examine these 
neighbourhood structures with four agents (i.e. N = 4) playing in a group each time. 
We expect different neighbourhood structures to affect the outcome of the game 
differently. 

The rest of this paper is organised as follows: Section 2 introduces the background 
of NIPD. In Section 3, we present the methodology we use for this work. Section 4 
describes the experimental setting and results. Finally, we draw conclusion in Section 
5 and highlight potential future work. 

2   Background 

The NIPD is an extension of the conventional IPD game in which a group of N 
players, where N is greater than 2, will continuously interact with each other rather 
than only two playing against one another. According to Davis et al. [15], NIPD has 
greater generality and applicability to real life situations than IPD, as many of the real 
life problems can be represented with the NIPD paradigm in a much realistic way. 

In an NIPD game, N players make decision independently on two actions, either 
cooperate or defect, without knowing other players’ choices. Let cooperate be C and 
defect be D, each player attains the score based on the payoff functions C(c) = c/N for 
cooperation and D(c) = (c + k)/N for defection, where c is the number of cooperators 
and k is the total cost for cooperation (1 < k < N) [9]. Players are normally engaged 
with each other iteratively, competing for higher average scores. 

NIPD is also different from the IPD in the kind of strategies that players can adopt 
successfully. Various strategies that thrive in punishing the defectors in an IPD game, 
for example Tit For Tat (TFT), a very simple strategy and overall winner of both 
Axelrod’s IPD tournaments [1-2], would not necessarily be so successful in an NIPD 
game. Punishment handed out to defectors would result in unintentional punishment 
of other cooperators in the group as well, thus rendering cooperation meaningless to a 



certain extent. This makes the NIPD game more complex and interesting than the IPD 
game. 

3   Methodology 

The main goal of our work is to examine the effects of neighbourhood structure on the 
evolution of cooperative behaviour in the NIPD game. In doing so, we construct a two 
dimensional grid-world in the form of cellular automata to simulate a multi-agent 
bidding game. Each agent has two actions of either to bid high or to bid low. Every 
agent will play the bidding game against its neighbours in a group of four (i.e. N = 4), 
and their actions will be determined by the strategy they choose. The outcome of the 
game is decided by the payoff shown in Table 1 below. 

Table 1.  The payoff for our bidding game with N = 4. 

Bid Results Payoff 
4 high -1 
3 high 
1 low 

1 
-3 

2 high 
2 low 

3 
-1 

1 high 
3 low 

5 
1 

4 low 3 
 

From Table 1 we see that bidding high is dominant for each agent, because bidding 
high always yields a better payoff than bidding low no matter how many of the other 
agents bid low. However, should all agents choose the non-dominant low bids, the 
outcome would be much better for the group as it yields a total payoff of 12, the 
highest total payoff among the overall bid results. 

3.1   The Cellular Automata Model 

Our world is implemented in the form of cellular automata on a 20 x 20 grid, within a 
C++ program to simulate agents with different strategies. The grid is formed by a two 
dimensional array with overlapping edges, which means every cell on the grid has 
eight immediate neighbouring cells, including those at the edges of the grid. Each 
agent occupies one cell on the grid, thus there are 400 agents in total in the grid-
world. Different colours are used for the cells to represent different strategies adopted 
by the agents. Each agent is designed to compete against its three immediate 
neighbours with its initial strategy. Scores are calculated continuously while the game 
is in progress, and the agents with less successful strategies will start learning the 
more successful strategies adopted by the neighbouring agents. 

We introduced three different neighbourhood structures in our experiments, 
namely the triangular neighbourhood structure, the rectangular neighbourhood 



structure and the random pairing structure. Figure 1 shows the spatial interactions 
among agents with the three different types of neighbourhood structures. It is 
necessary to note that for random pairing structure, the interactions among agents in a 
group are not confined to the eight immediate neighbours only, but any two agents 
throughout the grid-world can be paired at random. 
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Fig. 1. Three different types of neighbourhood structures. 

3.2   Strategy Representation 

The game strategies that determine the agents’ moves can be represented in many 
different ways. A good representation is always important for this kind of study to 
ensure the accuracy of results. After much consideration, we have decided to adopt 
the representation developed by Yao and Darwen [6] as it is exponentially much 
shorter and easier to implement. 

Under this representation, a history of l rounds for an agent can be represented as 
the combination of the following: 

 l bits to represent the agent’s l previous bids. Here, a ‘1’ indicates a high bid, 
and a ‘0’ indicates a low bid. 

 l * log2N bits to represent the number of low bidders in the previous l rounds 
among the agent’s N-1 group members. Here, N is the group size. 

In this paper, our group size is 4. We have limited the number of previous bids in 
memory to 3 (i.e. l = 3). Therefore, based on the above representation scheme, the 
history for an agent would be 3 + 3 log24 = 9 bits long. 

For example, an agent in our bidding game could have a history as follows: 
110 11 01 10 

Here, the first 3 bits are the agent’s previous three moves. This means that the 
agent bid high in the last 2 rounds, and bid low three rounds before. The subsequent 6 
bits indicate that all its group members, i.e. N-1 = 3, bid low in the last round, one 
group member bid low in the round before last round, and two group members bid 
low three rounds ago. 

Since each history bit string is 9 bits long, there are 29 = 512 possible histories in 
our game. Due to the fact that there is no memory of previous rounds at the beginning 
of the game, the agents’ history would not be 9 bits long for the first three rounds. 
They would normally be 3 and 6 bits long at the beginning of the 2nd and 3rd rounds 
respectively. 

   



As each strategy we employ in the game needs to have a response for every 
possible history, each strategy is at least 512 bits long. Depending on different 
strategies, some strategies would require a maximum of three predefined bids when 
the history is less than the required 9 bits in length. Hence, our strategies generally 
range from 512 to 515 bits in length. 

3.3   Strategy Choice 

After devising a way for the strategy representation, an initial population of agents 
with different strategies needs to be determined. It is impossible for us to include all 
the game strategies from the entire history of the IPD literature in our simulation 
experiments, therefore only twelve strategies are being chosen, some of which are 
distinctive, and some are intelligent. We present these twelve strategies in the N-
player versions. For example, an N-player version of TFT will bid low on the first 
move and then bid whatever the majority of its group members bid in the previous 
round. Table 2 summarises all the twelve strategies in N-player versions. 

We distribute the twelve strategies throughout the grid-world, with each agent 
acquiring its own initial strategy to play the bidding game. Based on the selection of 
strategies, every agent starts bidding either high or low during each interaction. 
Various colours are used to represent different strategies selected by different agents. 
When an agent learns and adopts another strategy from a more successful agent in 
order to win the game, the colour of the cell where the agent resides will change, 
reflecting the new strategy of its choice. 

Table 2.  The twelve strategies in N-player versions. 

Strategies Description 
All_High Bids high all the time. 
All_Low Bids low all the time. 
High_Low Takes turns to bid high and low. Bids high the first time. 
Low_High Takes turns to bid high and low. Bids low the first time. 
Per_hhl Bids in the sequence [high, high, low]. 
Per_llh Bids in the sequence [low, low, high]. 
Tit For Tat (TFT) Bids low on the first move and then bids what the majority of its 

neighbours bid in the previous round. 
Prober Begins by bidding [low, high, high]. Continues to bid high if the 

majority of the opponents bid low in the previous two rounds. 
Otherwise, plays TFT. 

Mistrust Bids high on the first move and then bids what the majority of its 
neighbours bid in the previous round. 

Pavlov Bids high on the first move and then bids low only if the 
majority of its neighbours bid the same as itself. 

TF2T Bids low from the beginning. Bids high only if the majority of 
its neighbours bid high for two consecutive rounds. 

Spiteful Bids low until the majority of its neighbours bid high, then bids 
high all the time. 



4   Experiments and Results 

In this section, we present experiments undertaken and discuss the corresponding 
results based on the twelve strategies described in the previous section. As our 
objective is to examine the effects of the neighbourhood structure on the evolution of 
cooperative behaviour in the bidding game, three separate sets of experiments are 
conducted on the different types of neighbourhood structures. For all our experiments, 
we use the population size of 400 agents in which all the agents are inhibited on a 20 
x 20 grid-world. The twelve strategies selected are randomly distributed among the 
agents, as evenly as possible, in the beginning of the experiments (see Figure 2). All 
the experiments are designed for all agents to play against one another iteratively with 
a group size of four for 200 generations. In every generation, each agent evaluates its 
neighbours’ average scores. If no neighbour has a higher average score, the agent 
retains its original strategy. If the agent has a neighbour or neighbours with higher 
average scores, it will learn to adopt the strategy of the most successful neighbour. 
Scoring in the game is based on the payoff mentioned in Table 1. 

It is necessary to highlight here that the average scores are used to evaluate the 
agents’ performance rather than individual scores. This is because individual score 
only tells us how well an agent is doing as an individual, but average score tells us 
how well it is doing in its group. Individual scores may be used in an IPD game but 
are not so suitable for an NIPD game. 

 

 
Fig. 2. Initial distribution of the twelve strategies in the beginning of the experiment. 

4.1   Experimental Results on Triangular Neighbourhood Structure 

We have shown earlier in Figure 1 that in the triangular neighbourhood structure, 
each agent has three group members with whom it interacts, one immediately above 
itself, one to its left and another to its right. Meanwhile, the agent’s group members 
will also have other different groups associating to them. This allows overlapping 
between different groups of agents during the game. 



In our first experiment with the triangular neighbourhood structure, we saw that 
All_Low and strategies that reciprocate against the opponents were dominant. Non-
cooperative strategies like All_High, Per_hhl, etc disappeared early in the game. This 
means that the agents are preferring cooperation over defection under this 
neighbourhood structure. From Figure 3 we observed that even though there were 
equal or near equal amount of cooperators and defectors in the beginning, almost all 
the agents were cooperating after 20-30 generations. In most cases, there would be no 
defectors left at that point. 

We believe that the emergence of cooperation via the triangular neighbourhood 
structure is due to the ability of the agents to reciprocate cooperation and retaliate 
against defection. Owing to the overlapping nature of the structure, every agent who 
is interacting with its own group members is also a member of the groups of its 
neighbours to the left and the right. This means that the agent can indirectly influence 
the average group scores of two of its neighbours, thus significantly increases the 
agent’s bargaining power against its group members, thereby leading to cooperation. 

 

 
Fig. 3. The number of cooperators (green) vs. defectors (red) in triangular 

neighbourhood structure. 

4.2   Experimental Results on Rectangular Neighbourhood Structure 

In the case of the rectangular neighbourhood structure, each agent has one group 
member to its right, one below itself and another one diagonally below it to the right. 
As with the triangular structure, the group of the agent and the groups of its 
neighbours are overlapping. However, unlike the triangular structure, the agent itself 
does not belong to any of the groups of its neighbours. 

In our second experiment with the rectangular neighbourhood structure, we noticed 
that Per_hhl and strategies that tend to follow their opponents did significantly well. 
Cooperative strategies mostly disappeared early in the game, and even All_High was 
not doing so well. Although most of the agents were bidding high regularly, they 
occasionally bid low as well. Only at a few instances was All_High more dominant 
than other strategies. Even in those instances there was always a strong presence of 
strategies which would bid low occasionally like Per_hhl, high_low, etc. The graph in 
Figure 4 evidenced this fact that even though most of the agents were bidding high 



customarily, there were always some agents who were bidding low. In a few cases, 
the population of cooperators was as high as one fourth of the entire population. 
 

 
Fig. 4. The number of cooperators (green) vs. defectors (red) in rectangular 

neighbourhood structure. 
 

The result with rectangular neighbourhood structure is rather sluggish as compared 
to the triangular neighbourhood structure. Nevertheless, defective behaviour is 
favoured as the agents do not have much chance of retaliating against defectors. This 
minimises the impact of the significance given to the group rationality, allowing 
agents to promote their own interests. Still, the emphasis given to group interests in 
the game ensures that a small percentage of cooperators always existed. The 
cooperators, though their individual scoring is being hurt by the defectors, would not 
look to defect because their groups are doing as well as others in most cases. They 
cannot induce cooperation, though, because they lack the power to retaliate. The 
defectors, on the other hand, keep on defecting, without any fear of retaliation. 

4.3   Experimental Results on Random Pairing Structure 

In random pairing structure, each agent’s group members are selected randomly from 
the population. The groups would change dynamically after each generation is played. 
In comparison with the triangular and rectangular structures, where each agent is a 
member of four overlapping groups, the random pairing allows an agent to be selected 
in a maximum of four groups. Due to the random pairing nature, the chances that 
there is overlap between the agent’s group and the groups of its group members are 
minimal. 

In our third experiment with the random pairing structure, we observed that 
defection was rampant among the population from very early in the game. The grid 
would normally show no changes in the agents’ strategies after about 20-30 
generations. All the cooperative strategies vanished before they could reach the 30th 
generation. All_High was quite dominant along with the likes of TFT, Mistrust, 
Spiteful, etc. All the latter strategies were second best to All_High in no particular 
order. The strength of their performance was also arbitrary. Figure 5 shows the result 
where, by around 30 generations onwards, there were literally no more cooperators 



left in the game. Since all the agents were defecting and getting similar scores, there 
was no need for a strategy change. 

 

 
Fig. 5. The number of cooperators (green) vs. defectors (red) in random pairing 

structure. 
 

It is easy to see why defection is so dominant in the case of random pairing. Due to 
the randomly pitted interactions, anonymity is often guaranteed as the chances of the 
same group members meeting one another again are extremely small. As there is no 
fear of reciprocation or retaliation, there is little pressure for cooperative behaviour. 
This result concurs with Ishibuchi and Namikawa [16] who used a similar random 
pairing scheme in their studies on evolving IPD game strategies under structured 
demes. They demonstrated that the evolution of reciprocal strategies is very difficult 
to achieve when opponents are selected randomly. 

5   Conclusion 

In this paper, we investigated the effects of three different neighbourhood structures 
on the emergence of cooperation in a multi-agent bidding game. Our experimental 
results demonstrated that agents need to have the ability to punish defection in order 
to induce cooperation from a population with numerous defectors. This occurs in 
overlapping neighbourhoods in which one agent is at a center of one neighbourhood, 
and at a fringe of another. In this way the behaviour of each agent influences more 
than one neighbourhood, and results in higher memory of the system and higher 
cooperation. That is why cooperation emerges in the triangular neighbourhood 
structure but not in the rectangular and the random pairing neighbourhood structures. 
We also showed that without the fear of being retaliated against, defectors and players 
with opportunistic strategies would make use of the cooperators around them only to 
forward their self-interests. 

In our current work the agents are limited to choosing only from a fixed set of 
strategies and they lack the ability to alter their strategies. However, alteration rather 
than complete abandonment of their strategies would be closer to the rules of nature 
and reality. Therefore, the future work will involve the use of co-evolutionary 



learning within the population. This would enable us to see whether or not co-
evolution can induce the emergence of cooperation in less favourable neighbourhood 
structures such as the rectangular or random pairing. 
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