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Abstract. The power of social values that helps to shape or formulate our behav-
ior patterns is not only inevitable, but also how we have surreptitiously responded
to the hidden curriculum that derives from such social values in our decision mak-
ing can be just as significant. Through a machine learning approach, we are able
to discover the agent dynamics that drives the evolution of the social groups in a
community. By doing so, we set up the problem by introducing an agent-based
hidden Markov model, in which the acts of an agent are determined bymicro-
laws with unknown parameters. To solve the problem, we develop a multistage
learning process for determining themicro-laws of a community based on ob-
served set of communications between actors without the semantic contents. We
present the results of extensive experiments on synthetic data as well as some
results on real communities,e.g., Enron email and movie newsgroups.

1 Introduction

Each day, individuals from all parts of the social ramifications respond and react toward
the values they perceive from the world. In the past decades,high tech has been inte-
grated aggressively into our daily life. The rapid exchanges of communication between
individuals have gone from surfing online for information toproviding information,
building individual Space / Blog as well as getting connected through various instant
messaging communities. It is apparent that online communities have become one of the
influential medium to the journey of social evolution. Yet, regardless of the impact of
the online communities; the role of social value continue toplay an imperative factor on
the dynamics of the online communities as it has been for the offline communities rapid
growth, sudden emergence or hastily dissipated due to changes of demands, needs, and
values of the existing society. Therefore, it is essential to acquire ranges of more com-
prehensive and objective social factors that might have propelled the evolution of the
society.

A social group is a collection of agents, or actors who share some common con-
text [1]. The dynamics of the social groups are governed by the actor dynamics actors
join groups and leave groups. An actors actions are governedby collective values that
are direct or indirect results of the social context: personal attributes, the actions of other
actors, and the social structure in the community. In summary, any reasonable model
for an agent based evolving community must necessarily involve complex interactions
between actors attributes and the social group structure itself. Therefore, the explosion
of online communities provides an ideal pasture on which to groom and test social
science theories, in particular the most natural question is: what are the micro-laws [2]



which govern a particular society? Furthermore, an efficient approach to answering this
question on a given community also yields a powerful tool fora sociologist.

Due to the growing popularity and interests of social network analysis (SNA), re-
searchers have started to use different methods to help themcollect and study the struc-
ture of the social network as well as analyze the ranges / factors of social dynamics,
[3–5]. In this paper, We uses an agent-based hidden Markov model of a social system
to identify the appropriate micro-laws of a community (appropriate parameters in the
model) based on the set of observable communication edges between actors without se-
mantic contexts. Our approach uses a multistage learning process to reduce the learning
complexity and also the noise in the communication data. We identify the appropri-
ate micro-laws by solving a mixed optimization problem because our model combines
discrete and continuous parameters, and to avoid the resulting combinatorial explo-
sion, we appropriately approximate and optimize the objective within an expectation-
maximization setting. To test the quality of our approximations and the feasibility of
the approach, we present the results of extensive experiments on synthetic data as well
as some results on real data about Enron email and movie newsgroups.

Paper Organization. Next, we briefly give an overview of the agent-based hidden
Markov model in Sec. 2. Then, we present our approach to learning the group structure
and evolution from the observed communications and also learning the appropriate pa-
rameters of the model in Sec. 3. We, then, give experimental results on synthetic data
and real data in Sec. 4 and conclude in Sec. 5.

2 Overview of Agent-Based Hidden Markov Model
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We give a overview of the probabilistic evolving so-
cial group modelViSAGE, details of which can be
found in [6], and the communication model. The
foundation ofViSAGE is a Markov process, and the
figure on the right hand side shows the process for
each time step. There are actors, groups, thestate of
the society which is defined by properties of the actors and groups. There are three kinds
of actions –join a group, leave a group, anddo nothing. Based on the currentstate of
the society, each actor decides which action she most likelywants to execute, which is
known as theNormative Action. Nonetheless, under the influence of the present com-
munities, actions of actors are affected. After being influenced, each actor eventually
performs theReal Action. Depending on the feedbacks from actors’Normative Action
andReal Action, properties of actors and groups are updated accordingly. We also de-
velop a communication model to produce communication networks based on thestate
of the society; in which we only consider about the communication edges between ac-
tors without the semantics of the communications. Combining ViSAGE with the com-
munication model, the whole process represents a hidden Markov model (HMM).

2.1 State of the Society

Many parameters govern how actors decide whether to join or leave a group, or do
nothing, and also which group the actor desires to join or leave; i.e., parameters such



as the group memberships, how long each actor has been in a group, the ranks of the
actors and the amount of resources available to an actor (in excess of what is currently
being used to maintain the actor’s current group memberships). Thus, the state of the
society at timet can be defined as

St = {typei, ri
t, Ri

E

t
, {Gi

l

t
}l}

N
i=1, (1)

where includesN actors,i = 1 · · ·N , a set of groups{Gi
l

t
}l actori joined at timet,

and the properties of actors and groups describing as follow:

Type Each actor has a private set of attributes, which we refer to as its type. In the
model, an actor’s type simply controls the actor’s group size preferences and her
“ambition” (how quickly her rank increases in a group). There are 3 kinds of type
in the model;Leader who prefers small groups and is the most ambitious,Follower
preferring large groups and the least ambitious, andSocialite in the middle.

Rank Each actor has a rank in each group to present the actor’s position in the group.
As actors spend more time in a group, their position in the group changes. There is
a tendency for more senior members to have a higher position than junior members.
ri

t is the set of ranks of actori in all groups at timet.
Qualification Each actor has a qualification to represent an actor’s prestige. It is de-

termined as the average rank of the actor among all the groups, and the rank is
weighted to give a stronger weight to ranks from larger groups. The qualification of
an actor is used for an actor to determine which group she morelikely join or leave.
Similarly, each group has itsqualification defined as the average qualification of
actors currently participating in the group. The higher a group’s qualification, the
more attractive it will appear to other actors looking for a group to join.

ResourcesWe useRi
E as the available resources for actori , andRi

E depends on how
many resources an actor needs to maintain a membership in a group. In addition,
the actors’ ranks and the number of groups the actor is in influences how many
resources an actor needs to maintain a membership in a group.And Ri

E also influ-
ences what kind of action an actor can complete at next time step.

2.2 State Transitions

At each time step, every actor needs to decide on leaving one group, joining one group,
or remaining in the same groups. The decision depends on an actor’s available resources
(Ri

E). The actor will tend to join another group when she has moreRi
E ; otherwise,

the actor will tend to leave a group in order to lessen the costneeded. We call this
action asNormative action. Ideally, the actor would always choose to perform the
Normative action, since this creates a state of stability. However, weassume that the
actors sometimes make non-rational decisions, regardlessof the amount of available
resources they have. An actor chooses an action she is going to perform based on a
stochastic process. After an actor has chosen which action she would like to perform,
she needs to decide which group to join or leave. The actor takes into account the
size and qualification of the group during decision making. The group can accept or
reject the actor’s application based a stochastic process,which is related to the group’s
qualification and the actor’s qualification.



The final step of the process at each time step is to update the properties of actors and
groups. To update properties of actors and groups is based onall actors’Normative
actions and real actions and the society reward/penalty parametersθreward. The re-
ward/penalty parametersθreward determine how to update an actor’s resources, and it
is summarized heuristically byReward

(

action, Ri
E , θaction, θreward

)

, whereθaction

indicates some parameters related to actors’ actions.

2.3 Communications

We have developed a social networks model to produce the communication links be-
tween actors without considering the semantics of the messages. The basic idea is that
the more joined groups two actors have in common, the higher probability these two
actors should communicate with each other; however, if two actors have no any joined
group in common, they still have a chance to communicate witheach other. A more
general model also consider actors’ friends; if two actors are not in a same group but
they have a common friend, then there is another probabilityfor this kind of communi-
cation. We can also consider how many levels of the friendship, e.g., friend’s friends in
common or friend’s friends’ friends in common, etc.

3 Learning Process

The common learning algorithms for solving the problems in ahidden Markov model
are like forward-backard algorithm [7], Viterbi algorithm [8], andBaum-Welch algo-
rithm [9]. The complexities of these three algorithms are the same, O(TM2), where
T is the total time steps, andM is the number of states. In our model, if there areN
actors andK groups in a society, then, in each time step, there are (2(NK)/K!) possi-
ble actors’ combinations for group structure, the term{{Gi

l

t
}l}

N
i=1 in (1). If we have

data forT time steps, the complexity of using the above algorithms isΩ(T × 2NK

K! ) ≈

Ω(T × 2K(N−logK)), which is exponential computation time and is very time consum-
ing. Therefore, we develop a multistage learning process. In the first stage, we find the
group structures at each time step based on the communication networks, and then we
discover the group evolution using the group structures. Inthe last stage, we learn from
the group evolution to identify the appreciate parameters in ViSAGE.

3.1 Learning From Communications

The challenge with real data is that the groups structure andtheir evolution are not
known, especially in online communities. Instead, one observes the communication
dynamics. However, the communication dynamics are indicative of the group dynamics,
since a pair of actors who are in many groups together are likely to communicate often.
One could place one more probabilistic layer on the model linking the group structure
to the communications, however, the state space for this hidden Markov model would
be prohibitive. We thus opt for a simpler approach. The first step in learning is to use
the communication dynamics to construct the set of groups.



In our communication model, for instance, letPg be the probability that two actors
in each same joined group would like to communicate, andPb be the probability that
two actors having no any same joined group would like to communicate. Leti, j refer
to actors, andxij be a boolean value presenting the communication between actor i and
j. Then the problem can be define as maximizing

Prob =
∏

i,j

Pe(i, j)
xij (1 − Pe)

(1−xij), (2)

wherePe(i, j) =

{

Pb , if i, j /∈ same group.
1 − (1 − Pg)

kij , if i, j havekij groups in common, andkij > 0.

We need to findPb, Pg, andxij for all i, j, but any reasonable formulation of this
problem is NP-hard, and so we need some efficient heuristic for finding the clusters in
a graph that correspond to the social groups. In particular,the clusters should be al-
lowed to overlap, as is natural for social groups. This excludes most of the traditional
clustering algorithms, which partition the graph. We use the algorithms developed by
Baumes et al. [4], which efficiently find overlapping communities in a communication
graph. We consider time periodsτ1, τ2, . . . , τT+1 and the corresponding communica-
tion graphsGτ1

, . . . , Gτ2
. The time periods need not be disjoint, and infact choosing

them to overlap is preferable since there is considerable noise in the communications –
aggregation, together with ovelap smoothens the time series of communication graphs.
Given a single graphGτt

, the algorithms in [4] output a set of overlapping clusters,Dt

(a set of groups at time stept). After knowing the group structure, we getxij for all i, j,
and then we can solve thePb andPg maximizing (2). In this way, we can verify how
good the overlapping algorithm works with the communication model.

3.2 Learning From Group Structure

From the previous stage, we have a set of group structuresDt, t = 1 · · ·T . However,
in order to use the learning method in next stage, one needs toconstruct the paths of
each actor. This means we need the correspondence between groups of time stept and
t + 1, in order to determine actors’ actions. Formally, we need a matching between the
groups inDt andDt+1 for t = 1, . . . , T −1: for each group inDt, we must identify the
corresponding group inDt+1 to which it evolved. If there are more groups inDt+1, then
some new groups arose. If there are fewer groups inDt+1, then some of the existing
groups disappeared. In order to find this matching, we use a standard greedy algorithm.

Finding Matchings. Let X = {X1, . . . , Xn} andY = {Y1, . . . , Yn} be two collec-
tions of sets, and we allow some of the sets inX orY to be empty. We use the symmetric
set differenced(x, y) = 1 − |x ∩ y|/|x ∪ y| as a measure of error between two sets.
Then, we consider the complete bipartite graph on(X ,Y) and would like to construct a
matching of minimum total weight, where the weight on the edge(Xi, Yj) is d(Xi, Yj).
This problem can be solved in cubic time using max-flow techniques [10]. However, for
our purposes, this is too slow, so we use a simple greedy heuristic. First find the best
match, i.e. the pair(i∗, j∗) which minimizesd(Xi, Yj) over all pairs(i, j). This pair is
removed from the sets and the process continues. An efficientimplementation of this
greedy approach can be done inO(n2 log n), afterd(Xi, Yj) has been computed for
each pair(i, j).



3.3 Learning From Group Evolution

We first introduce some notation. The set of actors isA; we usei, j, k to refer to ac-
tors. The dataD = {Dt}

T+1
t=1 is the set of social groups at each time step, where each

Dt is a set of groups,Dt = {Gt
l}l, Gt

l ⊆ A; we usel, m, n to refer to groups. Col-
lect all the parameters which specify the model asΘM , which includes all the pa-
rameters specific to an actor (e.g., type) and all the global parameters in the model
(e.g., θaction, θreward, θgroup). We would like to maximize the likelihood,L(ΘM ) =
Prob(D|ΘM ). We define the path of actori, p

T
i = (pi(1), . . . , pi(T )), as the set of

actions it took over the time stepst = 1, . . . , T . The actions at timet, pi(t), constitute
deciding to join, leave or stay in groups, as well as which groups were left or joined.
GivenD, we can constructpT

i for every actori, and conversely, given{pT
i }

|A|
i=1, we can

reconstructD. Therefore, we can alternatively maximize
L(ΘM ) = Prob(pT

1 , . . . ,p
T

|A|‖ΘM ). (3)

It is this form of the likelihood that we manipulate. Typicalways to break up this op-
timization is to iteratively first improve the continuous parameters and then the com-
binatorial (discrete) parameters. The continuous parameters can be optimized using a
gradient based approach, which involves taking derivatives ofL(ΘM ). This is gener-
ally straightforward, though tedious, and we do not dwell onthe technical details. The
main problem we face is an algorithmic one, namely that typically, the number of ac-
tors,|A| is very large (thousands or tens of thousands), as is the number of time steps,
T , (hundreds). From the viewpoint of actori, we break downΘM into three types of
parameters:θi, the parameters specific to actori, in particular its type and initial cap-
ital; θī, the parameters specific to other actors; and,θG, the parameters of the society,
global to all the actors. The optimization style is iterative in the following sense. Fix-
ing parameters specific to actors, one can optimize with respect toθG. Since this is a
fixed number of parameters, this process is algorithmicallyfeasible. We now consider
optimization with respect toθi, fixing θī, θG. This is the task which is algorithmically
non-trivial, since there areΩ(|A|) such parameters.

In our model, the actors at each time step take independent actions. At timet, the
state of the societyIt can be summarized by the group structure, the actor ranks in each
group and the actor surplus resources. GivenIt, each actor acts independently at time
t. Thus, we can write

L(ΘM ) = Prob(pT−1

1 , . . . , p
T−1

|A| |ΘM )×

|A|
Y

i=1

Prob(pi(T )|ΘM , IT ). (4)

Continuing in this way, by induction,

L(ΘM ) =
Y

i

Y

t

Prob(pi(t)|ΘM , It). (5)

The actions of̄i 6= i depends onθi only throughIt, which is a second order dependence,
therefore we ignore the second term in optimizing the parameters specific to actori, and
take logarithm,

θ
∗
i ← argmax

X

t

log Prob(pi(t)|ΘM , It). (6)

Thus the maximization over a single actor’s parameters onlyinvolves that actors path
and is a factor of|A| more efficient to compute than if we looked at all the actor paths.
Therefore, the entire learning process can be summarized bymaximizing over each



parameter successively, where to maximize over the parameters specific to an actor, we
use only that actor’s path.

4 Experiments

In our model, there are a lot of parameters which can be learned, however, here we
show the results about learning communication probabilities and actors’ type from the
synthetic data and also from real data, such as Enron email and movie newsgroups.

4.1 Results on Synthetic data

To evaluate performance, we use an instance of the model to generate synthetic data
for training and testing. Since we know the values of parameters in the model, we can
compare the true type with the learned type to compute the accuracy. We simulate 50,
100, 150, 200 and 250 time steps of training data (averaged over 20 data sets). Each data
set was created by randomly assigning about 1/3 of the actorsto each class. All others
parameters except types and distributions of group size preference were held fixed.
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Learning Communication Probabilities. The
figures at right show the results of learning com-
munication probabilities. When the group struc-
tures are known, the algorithm can learn the
Pb andPg very well (dot lines). Meanwhile, as
we apply the overlapping clustering algorithms
in [4] to get the group structures, the upper figure
show the learnedPb’s are not influenced by dif-
ferentPg ’s. However, differentPb’s have an im-
pact on the learnedPg ’s (shown at the lower fig-
ure) because some outsiders have been included
in the group. The bottom line of learning com-
munication probabilities is finding the monotonic
relationship.

Learning Actors’ Type. We evaluate the learn-
ing results from the following 3 different algo-
rithms (details can be found in [6]):

– Learn: The learning algorithm described in Section 3.3 with true distributions for
group size preference.

– Cluster: For each actori, let sizei be the average size of groups actori joined.
We cluster{sizei}

|A|
i=1 into 3 groups using the standard 3-means algorithm. This

is a simple heuristic based on the observation that leaders join small groups and
followers large groups.

– EM: With unknown distributions for group size preference, we use expectation-
maximization (EM) algorithm cooperating withLearn and Cluster to learn the
actors’ type as well as the distributions for group size preference.
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The figure on the right hand side shows
the accuracy (%) ofLearn, Cluster andEM
algorithms with different time steps of train-
ing data set, and for comparison, the accu-
racy of randomly assigning type is 0.33. The
results tell that the accuracy forLearn algo-
rithm is the best because it uses the true dis-
tribution of group size preference and only
need to learn the actors’ type. TheClus-
ter algorithm has the worst result because it
only considers the group size preference and
omits the interactions with other actors. TheEM algorithm learn actors’ type also the
distribution of group size preference. The figure tell that the EM algorithm does im-
prove the results from theCluster algorithm. TheCluster algorithm is only based on
the average size of groups the actor joined which can be detected fromobservable group
evolution data. On the other hand, theLearn andEM algorithms learn actors’hidden
curriculum based on the interactions with other actors and the influences of the environ-
ment, which cannot be observed from the data. From the results, we also can tell when
the length of the time period of training data set increases,we obtain better results from
all algorithms. The reason is that more data points we can learn from, more accuracy of
the results we can achieve.

4.2 Results on Real Data

Our results on real data are based on communications becauseit is difficult to collect
data that includes the group evolution from the real world. Hence, we use the multistage
learning process and algorithms in Section 3 to learn the parameters.

Movie Newsgroup. We collected the communication data from a movie newsgroup,
which includes 1528 active actors. We apply bothEM andCluster algorithms on the
data set, and the results are shown in the table below. Based on Cluster algorithms, the

Learned Actors’ Types
Leader Socialite Follower

Number of Actor 822 550 156
Percentage 53.8% 36.0% 10.2%

Learned Actors’ Types
Leader Socialite Follower

Number of Actor 532 368 628
Percentage 34.8% 24.1% 41.1%

(a) Cluster algorithm (b)EM algorithm

majority of actors are leaders whichonly meant that they joined the small groups – yet,
this does not represent these actors’ preferences in group size. This result ofCluster
algorithm in which group size that actors joined proves to match the finding that was
done by hands in Butler’s social analysis in the newsgroups data [11]. However, the
result ofEM algorithm shows that the number ofFollower increases 30.9%, the number
of Leader decreases 19%, and the number ofSocialite decreases 11.9%.

According to the research data shown as above, there is a significant difference be-
tween both results: in Butler’s finding (Cluster algorithms), it is easily for one to locate
which size of the groups an actor joined manually but it is difficult for one to detect the



actor’s actual group size preferences,i.e., social interactions between actors can play
an influential role in the actors’ decision making. By applyingEM algorithm approach,
one can not only consider the observable groups size that an actor joined but also the
social interactions between the actors. As can be seen from above data, the approach in
usingEM algorithm yields similar result that shows the majority of actors would more
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likely to read news (Follower) than to post news
(Leader) in a movie newsgroup community.

The figures at the right show the learned
the communication probabilities at different time
step,Pg andPb. A comparison from both figures
show that people in the same group communi-
cate more frequently than people in the different
group (Pb is much smaller thanPg). In addition,
from the upper figure, we see two ranges of obvi-
ous activities - more active communications and
much reduced communications.

Enron Email. By using the strategies in [12] to cleaning Enron email data set from
November 13th, 1998 to June 21st, 2002 and obtain the communication network for
154 active actors, we are able to obtain learning results ofEM andCluster. Both of
the EM and Cluster results are very similar (table shown below). The reason being

Learned Actors’ Types
Leader Socialite Follower

Number of Actor 28 50 76
Percentage 18.2% 32.5% 49.3%

Learned Actors’ Types
Leader Socialite Follower

Number of Actor 24 62 68
Percentage 15.6% 40.2% 44.2%

(a) Cluster algorithm (b)EM algorithm

that in a company, an individual’s preference is usually masked because the employees
cannot change their “jobs” as freely as their responsibilities will change accordingly.
Yet, in the movie newsgroups, actors can change groups anytime according to one’s
desire. Therefore, the communications within Enron email network are based upon the
need of work, and employees (Socialite or Follower) cannot just join a group due to the
attraction of the manager (Leader) of that group.

5 Conclusions

We have presented a parameterized agent-based hidden Markov model for learning ac-
tors’ dynamics and the micro-laws governing the society’s social group dynamics. The
benefits of the multistage learning process are to extracting different information about
the actor and the society dynamics, to reduce the learning noise, and to setup the check-
ing point for evaluating the performance of algorithms, at each learning stage. Our main
contributions are the application of efficient algorithms and heuristics toward learning
the parameters in the specific application of modeling social groups and communica-
tions. Our results on synthetic data indicate that when the model is well specified, the
learning is accurate. Since the model is sufficiently general and grounded in social sci-
ence theory, any given instance of the model can be appropriate for a given society.



Therefore, under this stance, almost any general model of this form which is founded in
social science theory will yield outputs that can serve as productive reference to one’s
decision making or stimulating triggers to new research studies.
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