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Abstract. This paper presents a novel approach to solve multiclass clas-
sification problems using pure evolutionary techniques. The proposed ap-
proach is called Evolution of Geometric Structures algorithm, and con-
sists in the evolution of several geometric structures such as hypercubes,
hyperspheres, hyperoctahedrons, etc. to obtain a first division of the
samples space, which will be re-evolved in a second step in order to solve
samples belonging to two or more structures. We have applied the EGS
algorithm to a well known multiclass classification problem, where our
approach will be compared with several existing classification algorithms.

1 Introduction

Genetic algorithms have been widely used for solving very different problems,
the majority of times related to optimization. In this field the research work has
been massive in the last years and powerful algorithms based on evolutionary
computation have been developed.

However, there are other fields in artificial intelligence in which the genetic
approach has not been so successful. In classification problems for example,
the different evolutionary computing techniques have always played a secondary
role: training of neural networks [2]-[7], or generation of fuzzy rules [8], but it is
difficult to find a pure evolutionary technique applied to the complete resolution
of the problem. The Genetic Programming technique [9] has been applied to
some classification problems with some success, though its results in multiclass
classification have not been so promising.

The idea behind this paper is to propose a pure evolutionary technique to
tackle multiclass classification problems. We have called this technique “Evolu-
tion of Geometric Structures Algorithm” (EGS), since it is based on evolving
a set of geometric structures (hypercubes, hyperspheres, hyperoctahedrons, etc)
to cover the samples space, and then using another evolutionary algorithm to
combine them into a single classifier. As will be shown, the idea is to run a
genetic algorithm encoding a set of geometric structures for each class, in such
a way that the position and size of the geometric structure is evolved. A fitness



function counting the number of correct classification of samples for each class
is used to guide the search. In a second step, another evolutionary algorithm is
used to decide the classification of the samples within two or more geometric
structures. As can be seen, only evolutionary techniques are used to solve the
problem. Also, the EGS algorithm is adequate to be implemented in a paral-
lel way, since several genetic populations must be run in the first step of the
algorithm.

In this paper we apply the presented technique to the automatic classifi-
cation of high range resolution radar (HRR) targets, which is a hard problem
of classification solved previously in the literature [11]. This kind of radar uses
broad-band linear frequency modulation or step frequency waveforms to measure
range profiles (signatures) of targets [11], [12]. HRR radar profiles are essentially
one-dimensional images of radar targets. A range profile is defined as the abso-
lute magnitude of the coherent complex radar returns, and all phase information
is usually discarded. If a range profile is measured with sufficient resolution, the
parts of the aircraft that strongly reflect the radar energy, are resolved. There-
fore, range profiles provide information about the geometry and structure of the
aircraft, and so they are suitable features for automatic aircraft classification.
Figure 1 shows an example of the generation of a HRR signal associated to a
target in two different orientations. The number of samples with information
is related to the maximum size of the target. Data sets of HRR radar profiles
can be generated by recording measurements of each target over the values of
azimuth and elevation considered.

Fig. 1. HRR radar signal example for two different orientations of the target.



In the literature, this task is called “Automatic Target Recognition” (ATR)
[12]. The ATR problem can be formulated as a multiclass classification problem.
The objective is to be able to classify an arbitrary target, based on knowledge
derived from previous samples. The Probability Density Functions (PDFs) of the
classes are usually unknown, and only a finite set of well defined cases (training
set) is available. Several techniques based on different approaches to the problem
and its solution have been developed, all of them having some disadvantages
either in terms of accuracy or complexity.

The structure of the rest of the paper is the following: next Section presents
the EGS algorithm, describing its different steps and possible modifications for
a better performance. Section 3 shows an example of application of the EGS to
the ATR problem. Section 4 closes the paper with some final remarks.

2 An evolution of geometric structures algorithm for

classification

Definitions:

1. Hyper-structures: the set of points x ∈ S (S features space of dimension w)
such that

ai · pi · |ci − xi| ≤ R, ∀ i, (1)

this equation defines a hypercube.

w
∑

i=1

ai · pi · (ci − xi)
2
≤ R, (2)

this equation defines a hypersphere.

w
∑

i=1

ai · pi · |ci − xi| ≤ R, (3)

this equation defines a hyperoctahedron.
In all the structures presented, the parameters ci, i = 1, · · · , w stands for
the coordinates of the center of the geometric structure, pi, i = 1, · · · , w is a
positive scale factor and ai ∈ {0, 1}, i = 1, · · · , w, are binary numbers which
reduce the dimensionality of the geometric structure.

2. Genetic Individual: A set of N hyperstructures. Each hyperstructure is de-
fined by the equations shown above, with parameters R, c, a and p.

3. Genetic Population: A set of M genetic individuals focussed in a given class
C. An point x is decided to belong to class C if this point is inside the
structure defined for this class.

With these definitions, the EGS algorithm is constructed in two different
steps:



Step 1:

In this step, C genetic algorithms (one per class) are launched. Each genetic
algorithm is formed by M individuals representing geometric structures in the
way defined above. The fitness function of the genetic algorithm is defined as:

f(x) = ν1 · A + ν2 · B (4)

where A stands for the percentage of correct answers when classifying a point x

as belonging to the corresponding class of the geometric structure, and B is the
percentage of correct answers when classifying a point x as not belonging to the
corresponding class of the geometric structure. Parameters ν1 and ν2 weight the
importance of classifying correctly the points belonging and not belonging to
the class of the geometric structure. It is important to note that we are evolving
a number N ∗ C of structures (N structures per class), but, at this stage, each
class is evolved in a different genetic population.
Evolutionary Algorithm dynamics: Once each individual of the population
has assigned its fitness value, the mean value for the population is calculated.
The individuals with associated fitness values over this value are maintained,
whereas the individuals with fitness values under the mean are substituted by
new individuals obtained from the crossover of maintained individuals.

The crossover operation is implemented in the following way: Starting from
two parents P1 and P2, a single offspring individual will be generated. To do
this, for each of the N geometric structures encoded in the individuals we can
do the following actions:

– Copy the structure of P1, with probability 0.25.

– Copy the structure of P2, with probability 0.25.

– Form a new individual as follows: the new radio is the mean value of the
P1 and P2 radios. The same operation is carried out to obtain the centers
and scale factors of the individual. Regarding the parameter a, it is calcu-
lated using the logical operation “or” between vectors a of P1 and P2, with a
probability of 0.5, and the logical operation “and” with the same probability.

The mutation operator is applied to all the individuals of the population
after the crossover operator, with a low probability:

– The radio is modified using a small noise from a uniform distribution [−0.1, 0.1].
Choosing randomly a direction, the center is moved towards this direction
using a uniform noise in the range [−1.0, 1.0].

– The scale factor of each geometric structure is modified adding an noise from
a uniform distribution [−1.0, 1.0].

– Finally, the vector a is modified applying a flip operation to some of its
components.



Step 2:

After evolving the set of geometric structures for each class, we have to merge
them into a single classifier. This is problematic, since structures may overlap,
and thus a sample may be into structures belonging to different classes. In this
second step we use a genetic algorithm for assigning a real weight (ω) to each
structure, in such a way that the number of correct classifications to be maximum
(we consider the real numbers in the interval ω ∈ [−1, 1]). A voting scheme is
carried out, and the samples belonging to two or more geometric structures
are assigned to the structure with largest weight (if a sample belongs to two
structures of the same class, their values are added). As mentioned, the fitness
value of each individual is the total number of correct classifications.

This process can be done in a soft way, by defining variable weights, in such
a way that the value of the weight is ω in the center of the hyperstructure, and
it has a lower value near the border of the hyperstructure. To do this we define
the following weight:

ω∗ = (ω − d · Q) · h(x), (5)

where Q is a value in (0, 1), d is the distance from the center of the geometric
structure and h(x) is a binary value which indicates if the point x is inside
the structure (h(x) = 1) or out of the structure (h(x) = 0). An example in a
two-dimensional structure (octahedron) is given in Figure 2.

Fig. 2. Example of the soft version in the case of samples shared by two or more struc-
tures. In this case an octahedron with a different value in its weight (linear variation
following Equation (5)) is considered. The value of the weight is related with the inten-
sity of the hyperstructure: the closer the sample is to the center of the hyperoctahedron,
the largest is the associated weight.

If we use this soft version of the weights, the genetic algorithm must search
for values ω and Q for each structure, instead of only for ω as in the former case.



3 Experiments and results

As we mentioned before, we test the propose EGS algorithm in the ATR prob-
lem. The term ATR “Automatic Target Recognition” was originated in the early
1980s within the Low Altitude Navigation and Targeting Infra-Red for Night
(LANTIRN) program belonging to the U.S. Defense Agency. One of its objec-
tives was to develop a system capable of distinguishing tanks from trucks, jeeps,
and other less important targets. In 1988, the United States Defense Advanced
Research Projects Agency (DARPA) conducted a study of neural networks and
selected ATR as one of the four areas for which application of neural network
technology was to be evaluated [13].

A database containing HRR radar profiles of six types of aircrafts (six classes)
is used. These signals have been generated using a ray tracing algorithm, and
they are the same signals used to generate the results presented in [14]. The
assumed target position is head-on with an azimuth range of ±25o and elevations
of −20o to 0o in one degree increments totaling 1071 radar profiles per class. The
length of each profile is 128. These profiles have been aligned using the position
of the maximum sample in each vector, and they have been energy normalized
and Box-Cox transformed with α = 0.65. Once the profiles have been aligned,
most of the information is concentred in the central part of the vector, so only
L = 53 central samples are selected to classify each pattern. Figure 3 shows
radar profiles of two different targets, illustrating the magnitude of variation of
the radar signature caused by changes in orientation.

Fig. 3. Radar signatures of two different targets for an elevation angle of −20o and
different azimuth angles
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The performance of the classifier will be specified by both the error rate and
the computational cost after training. The error rate is defined as the percentage
of overall classification errors, and the computational cost after training is defined
as the average number of simple operations (sums, products, comparisons, etc)
needed to classify each test pattern.

For each experiment carried out, two subsets are used: a training set com-
posed of 960 profiles (160 per class), randomly selected from the original data set
(the poses could be different for different targets), and a test set, composed of
1710 profiles. The test set is used to assess the classifier’s quality after training.
Both sets of data correspond to a value of Signal to Noise Ratio of 20 dB. Recall
that the SNR is defined using the peak energy of the signal, given by equation

SNR(dB) = 10 log

(

max{|x|}2

σ2

)

(6)

The proposed algorithm is going to be tested in this problem, using three
different geometric structures, hypercubes, hyperspheres and hyperoctahedrons.
We will compare the results obtained with the results of several different algo-
rithms applied to the problem: Diagonal Linear Discriminant Analysis (DLDA),
Diagonal Quadratic Discriminant Analysis (DQDA), 1-nearest neighbor (1NN),
3-nearest neighbor (3NN),5-nearest neighbor (5NN), a Multi Layer Perceptron
with gradient descent momentum and adaptive learning rate (MLP) and finally
a RBF network (RBFN).

Table 1. Comparison of the results (error rate) obtained by the EGS algorithm and
other classification algorithms in the ATR problem tackled.

Algorithm DLDA DQDA 1NN 2NN 3NN MLP RBF EGS-HC EGS-HS EGS-HO

Error rate 24.62% 21.11 % 21.99% 19.53% 19.42% 19.88% 14.97% 31.77% 27.12% 17.87%

Table 2. Computational complexity of the algorithms in terms of the number of basic
operations needed to classify a single pattern.

Algorithm DLDA DQDA 1NN 2NN 3NN MLP RBF EGS-HC EGS-HS EGS-HO

# of Operations 953 1271 152645 153604 154562 10959 110085 4229 3457 4230

Tables 1 and 2 sumarize the results obtained by the EGS algorithm proposed,
with different geometric structures implemented, and the comparison with sev-
eral other classification techniques in the tackled ATR problem. The first result



that can be extracted from the tables refers to the behavior of the different type
of structures involved in the EGS algorithm. Note that the hyperoctahedron
structure is the one which obtains a best result in terms of error rate of classi-
fication. Other structures such as hyperspheres or hyperplanes do not provide
such a good results as the hyperoctahedrons, as can be seen in Table 1. All the
tested EGS algorithms obtained a similar computational cost, measured as the
number of basic operation needed to classify a single pattern.

Regarding the comparison with other techniques, it is interesting to check
that the EGS algorithm using hyperoctahedrons (EGS-HO) improves the results
of the compared classification methods. In the case of discriminant analysis algo-
rithms, our EGS-HO approach obtains better error rates than DLDA and DQDA
algorithms (24.62% and 21.11% versus 17.87% obtained with the EGS-HO). The
computational cost of the DLDA and DQDA approaches, is, on the other hand,
slightly smaller than the EGS-HO’s: 953 and 1271 operations versus 4230 of
the EGS-HO. Our EGS-HO algorithm also improves the results of the nearest
neighbors classifiers tested, both in error rate and in computational cost of the
algorithm. The MLP approach obtains a good error rate, comparable with those
from the NN algorithms, but worse than the EGS-HO approach. The computa-
tional cost of this algorithm is also worse than the EGS-HO (10959 operations
versus 4230 with the EGS-HO). Finally, the RBF network is the only compared
approach which have obtained a slightly better result than the EGS-HO in terms
of error rate in classification (14.97% versus 17.87% with the EGS-HO), on the
other hand, the RBF network shows a much worse computational cost (110085
operations versus 4230 of the EGS-HO).

4 Conclusions

In this paper we have presented a novel evolutionary-type algorithm for multi-
class classification problems, called Evolution of Geometric Structures algorithm.
We have analyzed the main characteristics of the algorithm and applied it to the
resolution of a well known multiclass classification problem, the Automatic clas-
sification of High Range Resolution radar targets, ATR problem. We have shown
that our approach is able to obtain results which improves the results of other
different classification techniques such as discriminant analysis, k-neares neight-
bours or a multilayer perceptron. As a final conclusion, the proposed method
presents an interesting trade off between error rate and computational cost after
training, which might be very beneficial in those applications in which embedded
real time implementation is required.
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