
Evolving Tree Algorithm Modifications

Vincenzo Cannella1, Riccardo Rizzo2, and Roberto Pirrone1

1 DINFO - University of Palermo
Viale delle Scienze, 90128 Palermo, Italy

2 ICAR - Italian National Research Council
Viale delle Scienze, 90128 Palermo, Italy

ricrizzo@pa.icar.cnr.it

Abstract. There are many variants of the original self-organizing neural
map algorithm proposed by Kohonen. One of the most recent is the
Evolving Tree, a tree-shaped self-organizing network which has many in-
teresting characteristics. This network builds a tree structure splitting
the input dataset during learning. This paper presents a speed-up modi-
fication of the original training algorithm useful when the Evolving Tree
network is used with complex data as images or video. After a mea-
surement of the effectiveness an application of the modified algorithm in
image segmentation is presented.

1 Introduction

Growing neural networks are capable to adapt the number of neural units to
the input patterns distribution. Many growing neural nets add new units at
fixed pace during the learning procedure: new units are added near the unit
that accumulates the greater approximation error (as in Growing Neural Gas
[8]) or when there is not a neural unit that matches the input with a sufficient
approximation (as in Growing When Required [2]). The evolving tree [6] is a
hierarchical growing neural network with a tree structure and the neural units
on each node of the tree. This neural network is attractive because it builds a
gross clustering of the input patterns and then go on using a splitting procedure
during the training phase. A neuron of the network is split if it is the best
matching unit too often, meaning that its cluster is too populated. The network
growing is not limited during learning.

This spitting and learning procedure builds a natural hierarchy of clusters
that can be easily exploited. The training procedure of this network requires
more time as the number of neurons increases, a drawback that can be serious
with complex datasets (high dimensional patterns or huge amount of data).

In this paper we present an application of this network to the image seg-
mentation using a faster learning procedure that can overcame the slow training
process. Image segmentation is a natural testbed for the speed-up due to the
large set of data and it highlights also the performances of the network in clus-
tering. The images are segmented by splitting an initial gross segmentation in a
”natural” region splitting procedure.

The paper is organized as follows: the next subsection explains the evolving
tree algorithm, then the algorithm simplification is explained following with some
results using some artificial two dimension input distributions, then the image
segmentation results are shown and commented.

2 The Evolving Tree Algorithm

The neural units of the Evolving Tree network have two parameters: the weights
vector (considered as one parameter) and a counter bi that counts the times
the unit is the winner unit. The learning algorithm is based on a top-down
hierarchical process where the input pattern is passed from the root node of
the tree to the leaf nodes. When an input vector is presented to an unit it first
checks if it is a leaf node or not. If the unit is not a leaf then it calculates the
distance of the input pattern from the weight vectors of its children, finds the
winner unit, and passes the input to it, then the former steps are repeated. If
the node is a leaf of the tree its weights are modified using the formula:

wi(t + 1) = wi(t) + α(t)hci(t) [x(t)− wi(t)] (1)

and the winner unit counter bi is increased.
When the bi parameter reaches a threshold θ the node is split into fixed

number of children units. After the splitting the split neural unit will not learn
anymore, because only the leaf nodes of the tree are corrected, this is a behav-
ior that prevents a unit to learn too much [5] and resembles the ”Conscience”
mechanism [7]. This also means that a tree node is frozen after it was θ times
the winning unit.

In the original algorithm the weight correction is propagated to the unit
neighborhoods on the tree according to the winner take most principle. The
neighborhood function is the usual gaussian neighborhood:

hci(t) = exp

(
−‖rc − ri‖2

2 ∗ σ2

)
(2)

and the distance between unit c and unit i ‖rc − ri‖ is calculated ”on the tree”
counting the number of ”hops” from the winner leaf unit c to the other leaf units
of the tree, as described in the original papers [3], [6], [5].

Each network unit is trained for θ steps at most, and considering the usual
time decay of α(t) learning parameter reported in eq.3, units that are deep in
the hierarchy receive a minor correction:

α(t) = αmax

(
αmin

αmax

) t
tmax

(3)

.
In eq.3 tmax is the total number of learning steps.

3 Considerations about the E-Tree algorithm

There are two considerations about the evolving tree that are worthwhile. The
first one is related to the role of the neighborhood function, the second one is
related to the learning parameter α and its time dependency.

As in all self–organizing networks the neighborhood function in eq. 2 is used
to train the neural units that are near the winner unit. Units that are near each
other on the tree can be children of different nodes, for example, according to the
original paper, if B1 is the winner unit then also A1 and A2 are updated using
the neighborhood function. This means that A1 and A2 are ”moved” toward B1

in the input space (see fig 3), and this movement can move A1 and A2 outside
the Voronoi region VA of unit A, and toward the Voronoi region VB of B. Due
to this mechanism the winner unit obtained using the top-down search on the
tree structure can bring to a unit that is not the global best matching unit as
defined in:

bmu = arg
{

min
i∈N

{‖x− wi‖}
}

(4)

Fig. 1. Correction of the neighborhood units in Evolving Tree network: x is the input
pattern. Weight vectors of the neural units are vectors in the input space but, in order
to highlight the tree structure another dimension z, orthogonal to the input space, was
added.

This problem was highlighted in [5] where the comparison between global best
matching unit calculated with the formula above and the winner unit obtained
using the top-down search on the Evolving Tree are compared.

In self–organizing networks the neighborhood function has many purposes,
the main two of them are: allowing the spread of the lattice in fixed topology
networks, as in the SOM network [1], and ease the unit distribution in a network
with a fixed number of neural units, as in Neural Gas [9]. Neighborhood function
allows to have more neural units where the input patterns are more frequent.

In Evolving Tree network there is not a structure to organize and, from this
point of view, it resembles the Neural Gas.

Moreover the learning algorithm of the Evolving Tree is organized in a ”learn–
then–split(if necessary)” sequence so that all the units are trained before split-
ting. The splitting procedure generates new units where input patterns are dense.
For this reason there are not ”dead units” and correction propagation has a lit-
tle influence on the efficiency of the network. According to this observation,
neighborhood function can be neglected reducing the algorithm complexity.

The learning parameter α in eq. 1 decays during the training session as
indicated in eq. 3. Due to the nature of the algorithm that creates new units
where there is an high input density, we thought that there is not need to have a
learning parameter variable with time. Adding more units in areas where there
are many input patterns the unit correction will automatically decay because
there will be more neurons in the same input space area.

4 Evolving Tree Algorithm Modifications

Due to the considerations of the preceding section, the neighborhood function
hci(t) seems not to be necessary, so that it can be reduced to the following:

hci(t) =
{

1 if i = c (i.e. unit i is the winning)
0 otherwise (5)

and the algorithm became similar to the hard competitive learning; moreover
even the learning parameter α can be a fixed value, αconst.

The proposed algorithm modifications, training with constant learning para-
meter α and /or without neighborhood function hci(t), are tested using the four
non uniform distributions in fig. 2, and the four combinations are summarized
in table 1

Table 1. Algorithm modifications

Condition label α hci(t)

original algorithm eq. 3 eq. 2
hard competitive learning eq. 3 eq. 5
soft competitive learning, constant learning rate αconst eq. 2
hard competitive learning, constant learning rate αconst eq. 5

We implemented the learning algorithm in [6], not the version in [5]; for
all the experiments the topology is a binary tree and the splitting threshold is
θ = 400. If α is variable the values are αmax = 0.5, αmin = 0.05, where α is
constant is αconst = 0.3.

For each distribution 10 training session are performed: the first training
session is made of tmax = 50.000 learning steps, the second is made of tmax =
100.000 training steps and so on to tmax = 500.000. It should be noticed that
due to the growing nature of the algorithm the number of neurons is slightly
different from a training session to another but the differences can be neglected.

(a) (b) (c) (d)

Fig. 2. Input distributions used for the algorithm evaluation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(m

s)

Number of Learning Steps

Original Algorithm
Variable Alpha - Without Neighborhood function

Constant Alpha - With Neighborhood Function
Constant Alpha - Without Neighborhood Function

Fig. 3. Mean results for the distributions in fig. 2: the graphs show the processing time
values obtained.

Fig. 3 shows that without the neighborhood function the network implemen-
tation is faster than the original one and the processing time is linear with the
number of units.

In order to compare the results obtained from the algorithms two parameters
were used: the entropy and the winning unit calculation.

If each unit is considered as a code vector of a codebook, the entropy max-
imization ensures that the quantization intervals are used with the same fre-
quency during the quantification of the input signal. If the Evolving Tree net-
work has N neural leaf units the input manifold is divided into Vi i = 1, 2, . . . N
regions. After the learning phase, the probability that the input pattern v falls
in the interval Vi should be p(Vi) = 1

N , the entropy is calculated as

H = −
N∑

i=1

p (Vi) ∗ log [p (Vi)] (6)

and the maximum theoretical value will be:

Hmax = log(N). (7)

So using the entropy value, calculated at the end of the learning phase, it is
possible to evaluate the distribution of the leaf node of the Evolving Tree in the
input space.

Fig. 4. Mean results for the distributions in fig. 2: the graphs show the comparison of
the entropy values obtained.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

(W
in

ni
ng

 U
ni

t=
 B

.M
.U

.)
/tm

ax

Number of Learning Steps

Original Algorithm

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

(W
in

ni
ng

 U
ni

t=
 B

.M
.U

.)
/tm

ax

Number of Learning Steps

Original Algorithm
Constant Alpha - With Neighborhood Function

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

(W
in

ni
ng

 U
ni

t=
 B

.M
.U

.)
/tm

ax

Number of Learning Steps

Original Algorithm
Constant Alpha - With Neighborhood Function

Constant Alpha - Without Neighborhood Function

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

(W
in

ni
ng

 U
ni

t=
 B

.M
.U

.)
/tm

ax

Number of Learning Steps

Original Algorithm
Constant Alpha - With Neighborhood Function

Constant Alpha - Without Neighborhood Function
Variable Alpha - Without Neighborhood function

 0.02

 0.021

 0.022

 0.023

 0.024

 0.025

 0.026

 0.027

 0.028

 0.029

 150000 160000 170000 180000 190000 200000
 0.02

 0.021

 0.022

 0.023

 0.024

 0.025

 0.026

 0.027

 0.028

 0.029

 150000 160000 170000 180000 190000 200000
 0.02

 0.021

 0.022

 0.023

 0.024

 0.025

 0.026

 0.027

 0.028

 0.029

 150000 160000 170000 180000 190000 200000
 0.02

 0.021

 0.022

 0.023

 0.024

 0.025

 0.026

 0.027

 0.028

 0.029

 150000 160000 170000 180000 190000 200000

Fig. 5. Mean results for the distributions in fig. 2: the graphs show the number of times
the winner unit obtained using the top-down research in Evolving Tree algorithm is
the same of the global best matching unit.

Using the different learning algorithm reported in table 1 gives different num-
ber of neurons N and different values of theoretical entropy (e.g. eq. 7). The
difference on number of neural units is below 4% and leads to a difference in
entropy values of 0.8%. So that we consider the theoretical entropy value of the
original algorithm as a reference for all the learning algorithm variations in table
1.

The comparison between the winning unit and the b.m.u was used in [5]
because the winning unit calculation using the top-down search on the Evolving
Tree may not indicate the true best match unit obtained with the global search
in the set of neural units. This method was already used in the same paper to
evaluate the impact of some perturbations on the learning algorithm.

We report the number of times the global b.m.u. obtained using the eq. 4
is coincident with the winning unit, compared to the total number of learning
steps:

b.m.u. ≡ winning unit

tmax
(8)

the theoretical value should be 1 in all conditions.
The results obtained for different algorithms are compared in fig. 5 and in

fig.4. Fig. 5 shows how many times the winning units is the global best matching
unit. Fig. 4 shows the entropy values obtained for the original algorithm and the
simplified algorithms. Differences due to the different neurons number can be
neglected as said above.

Figures show that with a constant alpha the performances of the network are
slightly worse.

5 Image Segmentation Application

In order to obtain the image segmentation the network is trained using a set of
pattern X where each pattern x ∈ Xis one for each pixel of the image. The input
pattern x is obtained using the pixel position (i, j) and the color parameters H
and S as shown below

x = [c1 ∗ i, c1 ∗ j, c2 ∗H, c2 ∗ S]T (9)

where c1 = 0.1 and c2 = 0.8 are two constants used to weight the pixel position
and the color information.

Fig. 6. The segmentation procedure.

After the learning on an image for segmentation the Evolving Tree builds a
hierarchy as in fig. 6. The root of the network receives the image as input, the

unit is split in n children (n = 5 in fig. 6) and each children unit clusters the
image pixels as shown in level 1 image. This is repeated for each unit at all the
levels. In figs ?? and ?? on the left is shown the original image and on the right
the segmentation results. The four segmented images are obtained on different
levels of the network, as fig. 6 shows. The segmentation results in fig. 6 were
obtained using the following parameters values : θ = 200, α = 0.3, 5 children for
each node when splitting, and a learning time tmax = 30000. For the image Lena
in fig. 6 where used the same parameters. The results of the image segmentation
are on the left side of fig. 6.

6 Conclusions

The evolving Tree algorithm is an interesting and flexible growing algorithm
inspired by the self–organizing map. The results presented demonstrates that it is
possible to modify the algorithm with a small or null loss of performances. So the
Evolving Tree can be adapted to the specific problem: for example neighborhood
function can be neglected in order obtain a speed-up and the learning parameter
can be a fixed value in order to use the network with non-stationary input
distributions. The faster algorithm is useful when learning with complex data
as images or videos. The image segmentation is a natural region splitting and
hierarchy structure of the results obtained needs further investigations.

References

1. Kohonen, T. Self Organizing Maps. Springer Verlag (1997).
2. Marsland, S. and Shapiro, J. and Nehmzow, U. A Self-Organizing Network that

Grows When Required. Neural Networks 15 (2002) 1041-1058.
3. Pakkanen, J. The Evolving Tree, a new kind of self-organizing neural network.

Proceedings of the Workshop on Self-Organizing Maps ’03 (2003) 311–316.
4. Pakkanen, J. and Iivarinen, J.: A Novel Self-Organizing Neural Network for Defect

Image Classification. Proceedings of IJCNN (2004) 2553–2556.
5. Pakkanen, J. and Iivarinen, J. and Oja, E.: The Evolving Tree, a Hierarchical Tool

for Unsupervised Data Analysis. Proceedings of IJCNN (2005) 1395–1399.
6. Pakkanen, J. and Iivarinen, J. and Oja, E. : The Evolving Tree — A Novel Self-

Organizing Network for Data Analysis. Neural Processing Letters 20 (2004) 199-
211.

7. DeSieno D.: Adding a conscience to competitive learning. Proc. ICNN’88, Inter-
national Conference on Neural Networks, IEEE Service Center, Piscataway, N J,
(1988) 117-124.

8. Fritzke B.: A growing neural gas network learns topologies. Advances in Neural In-
formation Processing Systems, MIT Press, editors G. Tesauro and D. S. Touretzky
and T. K. Leen, (1995) 625–632. .

9. T. M. Martinetz, S. G. Berkovich, K. J. Schulten: Neural Gas Network for Vector
Quantization and its Application to Time-Series Prediction. IEEE Trans. on Neural
Networks 4 (4) (1993) 558–569.

