
Clustering with Reinforcement Learning

Wesam Barbakh and Colin Fyfe,
The University of Paisley,

Scotland.
email:wesam.barbakh,colin.fyfe@paisley.ac.uk

Abstract

We show how a previously derived method of using reinforcement
learning for supervised clustering of a data set can lead to a sub-optimal
solution if the cluster prototypes are initialised to poor positions. We
then develop three novel reward functions which show great promise in
overcoming poor initialization. We illustrate the results on several data
sets. We then use the clustering methods with an underlying latent space
which enables us to create topology preserving mappings. We illustrate
this method on both real and artificial data sets.

1 Introduction

We have previously investigated [2, 4] clustering methods which are robust with
respect to poor initialization. In this paper, we investigate using reinforcement
learning with reward functions which are related to our previous clustering meth-
ods in that the reward functions also allow the reinforcement learning algorithms
to overcome the disadvantages of a poor initialization and achieve the globally
optimal clustering.

We begin by reviewing a reinforcement learning algorithm which has previ-
ously [9] been used to perform clustering of data sets.

2 The Bernoulli Model

[12, 11] investigated a particular form of reinforcement learning in which reward
for an action is immediate which is somewhat different from mainstream rein-
forcement learning [10, 7]. Williams [11] considered a stochastic learning unit
in which the probability of any specific output was a parameterised function of
its input, x. For the ith unit, this gives

P (yi = ζ|wi,x) = f(wi,x) (1)

where, for example,

f(wi,x) =
1

1 + exp(− ‖ wi − x ‖2) (2)

1

Williams [11] considers the learning rule

∆wij = αij(ri,ζ − bij)
∂ ln P (yi = ζ|wi,x)

∂wij
(3)

where αij is the learning rate, ri,ζ is the reward for the unit outputting ζ
and bij is a reinforcement baseline which in the following we will take as the
reinforcement comparison, bij = r = 1

K

∑
ri,ζ where K is the number of times

this unit has output ζ. ([11], Theorem 1) shows that the above learning rule
causes weight changes which maximises the expected reward.

[11] gave the example of a Bernoulli unit in which P (yi = 1) = pi and so
P (yi = 0) = 1− pi. Therefore

∂ ln P (yi)
∂pi

=
{ − 1

1−pi
if yi = 0

1
pi

if yi = 1 =
yi − pi

pi(1− pi)
(4)

[9] applies the Bernoulli model to (unsupervised) clustering with

pi = 2(1− f(wi,x)) = 2
(

1− 1
1 + exp(− ‖ wi − x ‖2)

)
(5)

The environment identifies the pk∗ which is maximum over all output units and
yk∗ is then drawn from this distribution. Rewards are given such that

ri =

1 if i = k∗ and yi = 1
−1 if i = k∗ and yi = 0
0 if i 6= k∗

(6)

where k∗ represents the winning node, the node that are most similar to the
input sample. This is used in the update rule

∆wij = αri(yi − pi)(xj − wij) (7)
= α|yi − pi|(xj − wij) for i = k∗ (8)

which is shown to perform clustering of the data set.
Implementation:

1. Randomly select a sample x from the data set.

2. For i = 1, ..., L compute the probability pi

3. Specify the winning unit k∗ with pk∗ = maxpi, and sample the output yk∗
from pk∗

4. Compute the reinforcement rewards rk∗ using equation (6)

5. Update the weight vectors wk∗ using equation (7)

6. Repeat until convergence

2

2.1 Simulation

We applied the Bernoulli algorithm to the artificial data set shown in Figure 1,
left, but the Bernoulli algorithm failed to identify all the clusters successfully as
shown in Figure 1, right.

The Bernoulli algorithm is sensitive to the prototypes’ initialization which
can lead it to finding local optima which often are detectable because of dead
prototypes which are not near any data. The main reason for these problems is
that we update the winner prototypes only, not all of them.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

X dim

Y
 d

im

Data sample − 130 data points (6 clusters) − 6 units (prototypes)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

X dim

Y
 d

im

Bernoulli algorithm failed to identify all the clusters

Figure 1: Left: artificial data set is shown as 6 clusters of red ’*’s, and 6
prototypes of blue ’o’s. Right: Bernoulli algorithm failed to identify all the
clusters successfully.

3 Algorithm RL1

A first new algorithm, RL1, has the following reward function:

ri =

{ ‖x−mk∗‖3
‖x−mi‖3 if yi = 1

−‖x−mk∗‖3
‖x−mi‖3 if yi = 0

∀i (9)

where

k∗ = arg
K

min
k=1

(‖ x−mk ‖)
This new reward function has the following features:

1. We apply this equation to all prototypes, not only the winners and thus
all prototypes can find the clusters even if they are initialized badly.

2. This reward function allows the prototypes to respond differently to each
other, and each prototype before moving to any new location responds to
all the other prototypes’ position, and hence it is possible for it to identify
the free clusters that are not recognized by the other prototypes.

3

3. This reward function gives the highest value, 1, for highest similarity be-
tween the data point and the node (prototype).

3.1 Simulation

Figure 2 shows the result after applying RL1 algorithm to the artificial data set,
but with very poor prototypes’ initialization.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

X dim

Y
 d

im

RL1 after many iterations

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X dim

Y
 d

im

RL1 identified all the clusters successfully

Figure 2: Left: RL1 result after many iterations but before convergence. Right:
RL1 result after convergence.

Figure 2, left shows the prototypes after many iterations but before conver-
gence; in this Figure we can see one prototype still far from the data points
while others have spread into data; this distant prototype still has the ability to
learn even if it is very far from data, and this is an advantage for this algorithm
over the previous algorithms.

4 New algorithm RL2

A second new algorithm, RL2, has the following reward function:

ri =

1 if i = k∗ and yi = 1

1−exp(−β‖x−mk∗‖3)
‖x−mi‖3 if i 6= k∗ and yi = 1

−1 if i = k∗ and yi = 0

exp(−β‖x−mk∗‖3)−1
‖x−mi‖3 if i 6= k∗ and yi = 0

(10)

where again k∗ = arg minj ‖ x−mj ‖.
The reward function (10) has values ranged between 0 and 1. We update

the closest prototype (or most similar one) by giving it directly a maximum

4

possible reward value, 1, to allow it to learn more than others and also to a void
any division by zero which may happen using the second equation in (10). The
second equation in (10) is used for all the other prototypes. Prototypes closer
(or more similar) to the input data sample will learn more than others by taking
higher reward value, and so on for all prototypes.

5 Algorithm RL3

A third new algorithm, RL3, has the following reward function:

ri =

1
‖x−mi‖4{

PK
l=1

1
‖x−ml‖2

}2 if yi = 1

−1
‖x−mi‖4{

PK
l=1

1
‖x−ml‖2

}2 if yi = 0
(11)

The reward function in (11) has similar principles like the previous new reward
functions. It has values ranged between 0 and 1. All the prototypes can learn in
an effective way. The prototype that is more similar to the input data sample
takes higher reward value. In implementation, to avoid any division by zero we
can rewrite (11) as follows:

ri =

‖x−mk∗‖4
‖x−mi‖4n

1+
PK

l 6=k∗
‖x−mk∗‖2
‖x−ml‖2

o2 if yi = 1

− ‖x−mk∗‖4
‖x−mi‖4n

1+
PK

l 6=k∗
‖x−mk∗‖2
‖x−ml‖2

o2 if yi = 0

(12)

where k∗ = arg minj ‖ x−mj ‖. Note that ‖x−mk∗‖4
‖x−mk∗‖4 is always set to 1.

5.1 Simulation

Figure 3 shows the results after applying Bernoulli algorithm, top right, RL2,
bottom left, and RL3, bottom right, to the artificial data set shown in Figure
3, top left. RL2 and RL3 succeeded to identify the clusters successfully while
Bernoulli model failed.

6 A Topology Preserving Mapping

In this section, we show how we can extend RL1 and RL2 to provide new
algorithms for visualisation and topology-preserving mappings.

6.1 RL1 Topology-preserving Mapping (RL1ToM)

A topographic mapping (or topology preserving mapping) is a transformation
which captures some structure in the data so that points which are mapped close

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

X dim

Y
 d

im

Artificial data set − 190 data points (9 clusters) − 9 prototypes

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

X dim

Y
 d

im

Bernoulli model algorithm result

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

X dim

Y
 d

im

RL2 algorithm result

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

X dim

Y
 d

im

RL3 algorithm result

Figure 3: Top left: Artificial data set with poor prototypes’ initialization. Top
right: Bernoulli algorithm result. Bottom left: RL2 algorithm result. Bottom
right: RL3 algorithm result.

to one another share some common feature while points which are mapped far
from one another do not share this feature. The Self-organizing Map (SOM)
was introduced as a data quantisation method but has found at least as much
use as a visualisation tool.

Topology-preserving mappings such as the Self-organizing Map (SOM) [8]
and the Generative Topographic Mapping(GTM) [5] have been very popular for
data visualization: we project the data onto the map which is usually two
dimensional and look for structure in the projected map by eye. We have
recently investigated a family of topology preserving mappings [6] which are
based on the same underlying structure as the GTM.

The basis of our model is K latent points, t1, t2, · · · , tK , which are going to
generate the K prototypes, mk. To allow local and non-linear modeling, we map
those latent points through a set of M basis functions, f1(), f2(), · · · , fM (). This
gives us a matrix Φ where φkj = fj(tk). Thus each row of Φ is the response of
the basis functions to one latent point, or alternatively we may state that each
column of Φ is the response of one of the basis functions to the set of latent

6

points. One of the functions, fj(), acts as a bias term and is set to one for every
input. Typically the others are gaussians centered in the latent space. The
output of these functions are then mapped by a set of weights, W , into data
space. W is M ×D, where D is the dimensionality of the data space, and is the
sole parameter which we change during training. We will use wi to represent
the ith column of W and Φj to represent the row vector of the mapping of the
jth latent point. Thus each basis point is mapped to a point in data space,
mj = (ΦjW)T .

We may update W either in batch mode or with online learning: with the
Topographic Product of Experts [6], we used a weighted mean squared error;
with the Inverse Exponential Topology Preserving Mapping [1], we used Inverse
Exponential K-means, with the Inverse-weighted K-means Topology-preserving
Mapping (IKToM) [3, 2], we used Inverse Weighted K-means (IWK). We now
apply the RL1 algorithm to the same underlying structure to create a new
topology preserving algorithm.

Each data point is visualized as residing at the prototype on the map which
would win the competition for that data point. However we can do rather better
by defining the responsibility that the jth prototype has for the ith data point
as

rji =
exp(−γ ‖ xi −wj ‖2)∑
k exp(−γ ‖ xi −wk ‖2) (13)

We then project points taking into account these responsibilities: let yij be the
projection of the ith data point onto the jth dimension of the latent space; then

yij =
∑

k

tkjrki (14)

where tkj is the jth coordinate of the kth latent point.

6.2 RL2 Topology-preserving Mapping (RL2ToM)

RL2ToM algorithm like RL1ToM has the same structure as the GTM, with a
number of latent points that are mapped to a feature space by M Gaussian func-
tions, and then into the data space by a matrix W . Each latent point t indexed
by k is mapped, through a set of M fixed basis functions φ1(), φ2(),...,φM () to
a prototype in data space mk = Wφ(tk) . But the similarity ends there because
the objective function is not a probabilistic function like the GTM neither it
is optimised with the Expectation-Maximization (EM) algorithm. Instead, the
RL2ToM uses the well proved clustering abilities of the K-means algorithm,
improved by using RL2 to make it insensitive to initialisation.

6.3 Simulation

6.3.1 Artificial data set

We create a simulation with 20 latent points deemed to be equally spaced in
a one dimensional latent space, passed through 5 Gaussian basis functions and

7

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

X dim

Y
 d

im

1 DIM manifold

Figure 4: The resulting prototypes’ positions after applying RL1ToM. Proto-
types are shown as blue ’o’s.

then mapped to the data space by the linear mapping W which is the only
parameter we adjust. We generated 500 two dimensional data points, (x1, x2),
from the function x2 = x1 + 1.25 sin(x1) + µ where µ is noise from a uniform
distribution in [0,1]. Final result from the RL1ToM is shown in Figure 4.

6.3.2 Real data set

Iris data set: 150 samples with 4 dimensions and 3 types.

Algae data set: 72 samples with 18 dimensions and 9 types

Genes data set: 40 samples with 3036 dimensions and 3 types

Glass data set: 214 samples with 10 dimensions and 6 types

We show in Figure 5, left and right, the projections of the real data sets onto a
two dimensional grid of latent points using RL1ToM and RL2ToM, respectively.
The results are comparable with others we have with these data sets from a
variety of different algorithms.

7 Conclusion

We have shown how reinforcement learning of cluster prototypes can be per-
formed robustly by altering the reward function associated with finding the
clusters. We have illustrated three different reward functions which clearly have
a family resemblance. Most importantly all three overcome the disadvantages of
poor initialization in that they do not succumb to local minima as the existing
Bernoulli algorithm does.

We have also illustrated how a topology preserving mapping can be created
by using these algorithms with an underlying fixed latent space. Future work

8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X dim

Y
 d

im

Iris data set − 3 types

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

X dim

Y
 d

im

iris data set − 3 types

−6 −5 −4 −3 −2 −1 0 1 2 3 4

x 10
−3

−10

−8

−6

−4

−2

0

2

4

6
x 10

−3

X dim

Y
 d

im

Algae data set − 9 types

0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185
0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

X dim

Y
 d

im

algae data set − 9 types

0.0444 0.0445 0.0446 0.0447 0.0448 0.0449 0.045 0.0451
0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

X dim

Y
 d

im

RL1ToM − Genes dara set

0.626 0.628 0.63 0.632 0.634 0.636 0.638 0.64
0.17

0.175

0.18

0.185

0.19

0.195

X dim

Y
 d

im

Genes data set − 3 types

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X dim

Y
 d

im

RL1ToM − Glass data set

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X dim

Y
 d

im

glass data set − 6 types

Figure 5: The first column shows the results of using RL1ToM; the second
column shows the results of using RL2ToM. The top line is the projection of
the iris data set; the second line shows the algae data set; the third line shows
the genes data set; the bottom line shows the glass data set.

9

will compare these methods with our existing methods of creating robust optimal
clusters.

References

[1] W. Barbakh. The family of inverse exponential k-means algorithms. Com-
puting and Information Systems, 11(1):1–10, February 2007. ISSN 1352-
9404.

[2] W. Barbakh, M. Crowe, and C. Fyfe. A family of novel clustering algo-
rithms. In 7th international conference on intelligent data engineering and
automated learning, IDEAL2006, pages 283–290, September 2006. ISSN
0302-9743 ISBN-13 978-3-540-45485-4.

[3] W. Barbakh and C. Fyfe. Performance functions and clustering algorithms.
Computing and Information Systems, 10(2):2–8, May 2006. ISSN 1352-
9404.

[4] W. Barbakh and C. Fyfe. Tailoring local and global interactions in clus-
tering algorithms. Technical Report 40, School of Computing, University
of Paisley, March 2007. ISSN 1461-6122.

[5] C. M. Bishop, M. Svensen, and C. K. I. Williams. Gtm: The generative
topographic mapping. Neural Computation, 1997.

[6] C. Fyfe. Two topographic maps for data visualization. Data Mining and
Knowledge Discovery, 14:207–224, 2007. ISSN 1384-5810.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[8] Tuevo Kohonen. Self-Organising Maps. Springer, 1995.

[9] A. Likas. A reinforcement learning approach to on-line clustering. Neural
Computation, 2000.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: an Introduction.
MIT Press, 1998.

[11] R Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[12] R. J. Williams and J. Pong. Function optimization using connectionist
reinforcement learning networks. Connection Science, 3:241–268, 1991.

10

