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Abstract. Mining association rules is a major technique within data mining and 

has many applications. Most methods for mining association rules from tabular 

data mine simple rules which only represent equality in their items. Limiting 

the operator only to “=” results in many interesting frequent patterns that may 

exist not being identified. It is obvious that where there is an order between 

objects, greater than or less than a value is as important as equality. This 

motivates extension, from simple equality, to a more general set of operators. 

We address the problem of mining general association rules in tabular data 

where rules can have all operators },,,{ =≠>≤  in their antecedent part. The 

proposed algorithm, Mining General Rules (MGR), is applicable to datasets 

with discrete-ordered attributes and on quantitative discretized attributes. The 

proposed algorithm stores candidate general itemsets in a tree structure in such 

a way that supports of complex itemsets can be recursively computed from 

supports of simpler itemsets. The algorithm is shown to have benefits in terms 

of time complexity, memory management and has great potential for 

parallelization. 

Keywords: data mining, general association rules, tabular data, equality 

operators. 

1   Introduction 

Association rule (AR) mining [1] has been traditionally applied to datasets of sales 

transactions (referred to as market basket data). A transaction ‘T’ is a set of items and 

contains an itemset ‘I’ if I ⊆ T. If ‘I’ has k members, then ‘I’ is called a k_itemset. An 

AR is an implication YX →  where X and Y are itemsets with no items in common 

i.e. ∅=∩ YX . The intuitive meaning of such a rule is that the transactions (or 

tuples) that contain X also contain Y. The rule YX → holds with confidence c if 

c% of transactions that contain X also contain Y. The rule YX → has a support s if 

s% of the transactions in the database contain X ∪ Y. Given a database, the problem 

of mining ARs is to generate all rules that have support and confidence greater than 



the user-specified minimum thresholds, min-Support and min-Confidence. There are 

many algorithms to mine association rules from transactional data [6, 7]. The AR 

technique has also been applied to tabular datasets [2, 3, 5, 11]. The notation for an 

item is redefined in tabular datasets. Henceforth an item is a triple (a, Θ, v) where “a” 

is an attribute, “v” is the value of “a” and Θ is the operator between “a” and “v”. An 

example of an AR in tabular data is as follows: 

 

(A1 = 2) and (A2 = 3) and (A4 =5) => A6 =1 support = 10%, Confidence = 60% 

 

where A1,..,A6 are attributes with equality operator “=” and referred to as simple rules 

[2, 9]. In some cases, simple rules are unable to show all hidden patterns of data. In 

situations where there are orders between values of attributes, greater than or less than 

a value is as important as equality. Simple rules have difficulties in extracting such 

patterns, their drawback being in dealing with quantitative attributes. Popularly, 

quantitative attributes can be discretized by partitioning domain values to base 

intervals, where the difficulty is selecting the number of base intervals. Too many 

intervals for a quantitative attribute means low support for single intervals. Hence 

some rules involving these attributes may not be found, on the other hand, partitioning 

values into too few intervals causes information to be lost. Some rules have maximum 

confidence only when some of the items in their antecedent part have small intervals. 

These problems can be solved to some extent by using },,,{ =≠>≤ operators in the 

items. The MinSup problem does not matter for these operators as the number of 

intervals has no effect on operators },,{ ≠>≤ . If the operators of items in a rule 

belong to },,,{ =≠>≤ , then the rule is called a general rule [2, 9]. An example of 

such a rule is as follows: 

 

( ) ( ) ( ) ( )1532 6421 =→=≠> AAandAandA  Support = 10%, Confidence = 60% 

 

In this paper, we propose an algorithm, MGR (Mining General Rules), to mine 

general rules. The number of general itemsets is exponentially higher than the number 

of simple itemsets and it makes mining them too difficult. Thus, MGR mines general 

itemsets from simple itemsets by a recursive computation of simpler itemsets, all 

stored in a tree data structure. This feature systematically enables benefits in terms of 

time complexity, memory management and great potential for parallelization. 

The paper is organized as follows: background and related work is given in section 

2; section 3 presents needed terminology and notation; section 4 shows calculation of 

supports of general itemsets from simple ones; section 5 presents the MGR algorithm; 

experimental results are given in Section 6; and Section 7 considers further work and 

presents conclusions. 

2   Background and Related Work 

In this paper we are interested in a type of generalization introduced in [2]. This 

type of generalization extends the traditional equality operator used in normal 



association rules to an operator set },,,{ =≠>≤ . Its main characteristic is the high 

number of itemsets generated in regard to normal association rules. Hsu et al. [9] 

proposed an algorithm for mining such general rules from transactional data by 

extending algorithms for mining simple itemsets. This approach has poor performance 

on tabular data because of the high number of general itemsets.  

The main problem of mining association rules when applied to tabular datasets is 

dealing with quantitative attributes, which are usually partitioned into intervals and 

treated as discrete values. However, specifying the number of intervals is difficult in 

this approach. In [11], consideration of the combination of base intervals as new 

intervals and extracting the itemsets for all the intervals was proposed. The approach 

has an acceptable result but in most cases, its time complexity is high. 

There are approaches that do not require discretization of quantitative attributes. 

Some extract types of rules that are different to formal association rules [10, 13]. The 

others do not try to mine all general itemsets but rather focus on finding the best 

intervals for a given rule [4]. The input to these algorithms is a rule that does not have 

any interval for its quantitative items. The outputs are the best intervals for 

quantitative attributes of the given rule. In situations where we are interested in 

optimizing one rule, these approaches are very useful. However, they cannot be 

applied to mine all general rules as they have to scan data for each rule.  

There are some methods that define some criteria for interestingness of the general 

rules and mine just a subset of the rules that satisfy those criteria. The method in [14] 

defines the pc_optimal set as the set of the most interesting general association rules 

and tries to find an approximation of it. Despite the good results of the approach on 

some datasets, it is not guaranteed to find good approximations of the pc_optimal set. 

Further, it is not proved that the pc_optimal set contains the whole set of interesting 

rules. 

3   Terminology and Notation 

The following formal definitions are used to describe our approach and to prove 

related Lemmas. 

 
Definition 1(I): The set of all attributes of a table. 

 

We assume that attribute values are finite and discrete and there is an order between 

them. The finiteness assumption of attribute values is not restrictive because by 

partitioning infinite sets into subsets, we can easily convert infinite domains to finite 

domains. We use ai for the ith attribute in I and Vi,j, for jth value of ith attribute. As 

there is an order between the values of each attribute, Vi,1 < Vi,2,…, < Vi,n. 

 

Definition 2 (Item): An item is a triple (a, Θ, v) where “a” is an attribute, “v” is a 

value of “a” and Θ is an operator between “a” and “v”. An item is a simple item if 

its operator is “=”. An item is a half general item, if the operator Θ is one of },{ =≤ . 

An item is a general item if the operator Θ  is one of },,,{ =≠>≤ .  



Note that the Θ cannot be { }<≥, operators. As items have discrete values, we need 

not contain such operators e.g. ( 1−>⇔≥ jiji ) and ( 1−≤⇔< jiji  ).  

 

Definition 3 (Itemset): An itemset is the set of items (from definition 2). If every item 

in the itemset is a simple item, the itemset is a simple itemset. If every item in the 

itemset is a half general item, the itemset is a half general itemset. If every item in an 

itemset is a general item, the itemset is a general itemset.  

 

Definition 4 (t(X)): t(X) is the set of IDs of records in a dataset which match the 

itemset X. 

4   Finding Supports of General Itemsets  

Before we describe the MGR algorithm for mining general rules and itemsets, we 

first prove that we can obtain the supports of half general and general itemsets from 

simple and half general ones respectively. Lemma 2 explains the fact that the support 

of each half general itemset can be calculated from supports of simpler itemsets. 

Lemmas 3 and 4 explain the calculation of supports of general itemsets from half 

general ones.  

 

Lemma 1: Let X be a half general itemset where its ith item has “ ≤ ” as an 

operator and Vi,1 as a value. The support of X does not change if we convert the 

operator of the ith item to “=” and vice versa. 

 

Proof: Because Vi,1 is the smallest value for the ith attribute, there are no records 

in the dataset with a smaller value than it, therefore all records in t(X) must have the 

value Vi,1 for the ith attribute. So changing operator “ ≤ ” to “=” and vice versa does 

not change the support of the itemset. 

 

Lemma 2: Let X, Y and Z be half general itemsets that differ only in their ith item. 

They have the same attribute for the ith item but the operator of the ith item of X and 

Y is “ ≤ ” and the operator of the ith item of Z is “=”. The value of the ith item of X 

and Z is Vi,j  and the value of the ith item of Y is Vi,j-1 , so the ith item in X and Z has 

one higher value than the ith item in Y. Then the supports of these itemsets have the 

following relationship: 

Sup(X) = Sup(Y) + Sup(Z) 

 

Proof:  Let ai be the attribute of the ith item of X, Y and Z. As the ith item of X 

is )( , jii Va ≤ , so for each )(Xtr ∈ , we have jii Var ,)( =  or jii Var ,)( <  where 

r(ai) is the value of r for attribute ai. Then t(X) can be partitioned into two subsets 

t(X1) and t(X2) according to the value of ai such that the itemset X1 contains ai=Vi,j, 

and the itemset X2 contains ai ≤ Vi,j-1 where the Vi,j-1 is the value before Vi,j. Therefore 

t(X) = t(X1) ∪ t(X2). As the operator of the ith item of Z is “=”, then the itemset Z is 



equal to X1. We can prove the same for itemsets Y and X2. Therefore we have t(X) = 

t(Y) ∪ t(Z), φ=∩ )()( ZtYt  and consequently we have sup(X) = sup(Y) + sup(Z).  

Table 1. A simple dataset with four Attributes {A1, A2, A3, A4} 

Record Id A1 A2 A3 A4 

1 1 1 1 1 

2 1 1 2 1 

3 1 1 2 0 

4 2 2 1 0 

5 2 3 2 1 

6 2 2 3 1 

7 3 2 3 1 

8 3 2 4 0 

9 2 3 2 0 

10 4 3 4 1 

11 4 4 5 1 

            

Example 1: Suppose we have a dataset as in Table 1, and the itemsets X, Y and Z 

have the following definitions: 

)2()3()2( 321 ≤≤≤= AandAandAX  

)2()2()2( 321 ≤≤≤= AandAandAY  

)2()3()2( 321 ≤=≤= AandAandAZ  

Lemma 2 proves that Sup(X) = Sup(Y) + Sup(Z). As can be seen, the three itemsets 

differ in their second items. According to Lemma 2, we can partition X into the 

following itemsets: 

)2()2()2( 3211 ≤≤≤= AandAandAX  

)2()3()2( 3212 ≤=≤= AandAandAX  

Hence }4,3,2,1{)( 1 =Xt , Sup(X1) =4, }9,5{)( 2 =Xt ,and Sup(X2)=2.  

As )()()( 21 XtXtXt ∪=  then t(X) = {1,2,3,4,5,9} and Sup(X)=Sup(X1) + 

Sup(X2). As a result, Y=X1 and Z=X2, therefore Sup(X) =Sup(Y) + Sup(Z). 

 

By using Lemma 1 and Lemma 2, the support of each half general itemset can be 

calculated from supports of simpler itemsets. In other words, if X is a half general 

itemset, then by applying Lemma 1 and Lemma 2 recursively, t(X) can be partitioned 

into t(X1) ,.., t(Xn) where each Xi is a simple itemset. 

 

Lemma 3: If X is a general itemset that does not have any item with an attribute ai, 

then 

Sup(X ∪ (ai > Vi,j)) = Sup(X) – Sup(X ∪ (ai ≤  Vi,j)) 

Proof: Records of t(X) can be partitioned into two subsets such that t(X) = t(X1) ∪ 

t(X2), where t(X1) is the set of all records that have a value greater than Vi,j. (t(X1) = 

t(X ∪ (ai > Vi,j)) ) and t(X2) is the set of all records that has a value equal to or 

smaller than Vi,j, (t(X2) = t(X ∪ (ai ≤  Vi,j))). Then we have 

t(X) = t(X ∪ (ai ≤  Vi,j)) ∪ t(X ∪ (ai > Vi,j)) or 

Sup(X) = sup(X ∪ (ai > Vi,j)) + Sup(X ∪ (ai ≤  Vi,j)) or 



Sup(X ∪ (ai > Vi,j)) = Sup(X) – Sup(X ∪ (ai ≤  Vi,j)) 

 

Lemma 4: If X is a general itemset that does not have any item with the attribute ai, 

then  

Sup(X ∪ (ai <> Vi,j)) = Sup(X) – Sup(X ∪ (ai = Vi,j)) 

 

Proof: The proof is similar to that of Lemma 3. 

 

Example 2 If we extract itemsets X, Y and Z from Table 1, with the following 

definitions:  

)2()3()2( 321 >≤≤= AandAandAX  

)2()3()2( 321 ≤≤≤= AandAandAY  

)3()2( 21 ≤≤= AandAZ  

then Lemma 3 proves that Sup(X) = Sup(Z) - Sup(Y). According to Table 1, we have: 

 

t(X)={6}, t(Y)={12,3,4,5,9}, t(Z)={1,2,3,4,5,6,9} 

t(X)=t(Z)-t(Y), so  )()()( YSupZSupXSup −= . 

5   The MGR Algorithm 

Although the number of general itemsets is exponentially higher than the number 

of simple itemsets, by applying the Lemmas of the previous section on itemsets in a 

systematic way, this enables the MGR algorithm to divide the problem into smaller 

ones and solve them more quickly. The main steps of the algorithm are as follows: 

i. Mining simple itemsets using one of the existing algorithms. 

ii. Mining half general itemsets from simple itemsets. 

iii. Mining general itemsets from half general itemsets. 

iv. Mining general rules from general itemsets. 

The first step is achieved by using one of the existing methods for mining simple 

itemsets. The last step is similar to other association rule algorithms and we do not 

focus on it here. The main steps of the algorithm are steps 2 and 3. The MGR 

algorithm does these steps by applying Lemmas 1, 2, 3 and 4 on itemsets in a tree data 

structure called an MGR tree.  

The MGR tree brings two benefits in mining general itemsets. Firstly, it facilitates 

finding itemsets in such a way that the Lemmas of section 4 can be applied more 

easily. Secondly, it breaks the problem of mining general itemsets from simpler 

problems. Before describing the MGR algorithm, we first explain the structure of the 

MGR tree.  

The root of the MGR tree contains no data. The nodes of the first level of the tree 

are called signatures. All itemsets inside a signature have the same attributes. It is 

designed so in order to facilitate applying Lemma 2, as itemsets in Lemma 2 have the 

same attributes. Nodes of the second level of the tree are called Half General Itemsets 

(HGI) nodes. Itemsets inside an HGI node have the same values for corresponding 

items, so each HGI node has just one simple itemset. Nodes of the last level of the 



tree are called GI (General Itemset) nodes. Each GI node has just one half general 

itemset. Itemsets inside each GI node can be created from its half general itemset by 

converting operators “=” and “≤” to operators “≠” and “>” respectively. 

5.1   Mining Half General itemsets 

At this step of the algorithm, the extracted simple itemsets are partitioned into 

signatures. By defining a lexographical order between attributes and using the order 

between values of each attribute, the simple itemsets in each signature can be sorted, 

which is very important in finding itemsets. In the second level of the tree, there are 

HGI nodes which contain half general itemsets. Each simple itemset corresponds to 

an HGI node at this level of the tree. Half general itemsets of an HGI node have the 

same values for corresponding items, the only difference being the item operators. 

Mining half general itemsets in each signature begins from the first HGI node and up 

to the last one. The crucial issue here is that HGI node itemsets must be created in 

order according to figure 2. This enables the MGR algorithm to have random access 

to itemsets of an HGI node. Figure 1 shows the process of mining half general 

itemsets in each signature. 

5.1.1 Illustrative Example of Mining Half General Itemsets 

In this section, we illustrate the process of calculating the supports of half general 

itemsets. Suppose that itemsets of figure 3 are simple itemsets that belong to the 

signature {A1, A2} and we want to calculate the supports of the half general itemsets 

of the signature. Figure 4 shows the HGI node of the first simple itemset. This HGI 

node is the first one that must be taken into account. The first itemset of this node is a 

simple itemset and its support is known. The supports of the other itemsets of the 

node are calculated by applying Lemma 1. Now let’s consider the next HGI node 

which is shown in figure 5. The support of the first itemset is given (simple itemset). 

Support of itemset K2 is calculated from the supports of itemsets K1 and I2 by 

applying Lemma 1. Support of itemset K3 is calculated by applying Lemma 1. The 

same process can be done for other HGI nodes. In fact, we use the itemsets of the 

previous HGI nodes to calculate supports of an HGI node. If one of the required 

itemset does not exist, the process will be repeated to calculate its support. We 

suppose that absent simple itemsets have zero supports. 

 

 

 



 

MineHalfGeneralItemsets (Signature) 

1)Sort Simple Itemsets of the Signature; 

2) For each simple itemset 

         Create corresponding HGI node; 

3) For each HGI node 

        Create the half general itemsets in 

        order using the method of figure 2; 

4) For each half general itemset  

Calculate support using Lemmas 1, 2 

 

Fig. 1. Procedure: Mining half general 

itemsets inside a signature 

 
Fig. 2. Half general itemsets inside an 

HGI node 

 

 
 

Fig. 3. Simple itemsets of the Signature 

{A1, A2}  

 

 
 

 Fig. 4. Itemsets of the first HGI node 

 
 

Fig. 5. Itemsets of the second HGI node 

5.2   Mining General Itemsets 

The process of mining general itemsets from half general itemsets is similar to the 

process of mining half general itemsets from simple ones. For each extracted half 

general itemset, a GI node (General Itemset node) will be created. These GI nodes 

will contain general itemsets that can be created from the half general itemsets by 

converting operators (=, <=) to operators (!=, >) respectively. Similar to the process 

of creating half general itemsets, we can generate general itemsets inside GI nodes in 

such a way that we can have random access to them. This process is done by 

considering operators (=, <=) as low rank and by assuming that items of itemsets are 

sorted based on the attribute ranking. Figure 7 illustrates the process of creating 

general itemsets inside a GI node. The corresponding half general itemset of the node 



in the figure is ‘(A1=3) and (A2≤ 4) and (A3≤ 2)’. It is the first itemset of the GI node. 

As this itemset has operators {=, ≤, ≤} (low rank operators), its address in the GI node 

will be 0. The next itemset will be generated from the above itemset by converting the 

operator of the last item from ≤ to >. The created itemset has operators {=, ≤, >} for 

corresponding items (high rank operator for the last item), so its address in the GI 

node will be 001 or 1. The next itemset will have operators {=, >, ≤}, so its address in 

the GI node will be 010 or 2 (high rank operator for the middle item). The fourth 

generated itemset is ‘(A1=3) and (A2>4) and (A3>2)’ which has operators {=, >, >} 

and is located at address (011) (high rank operators for the last two items). The other 

itemsets will be created in the same manner.  

After generating itemsets inside GI nodes, the next step is to calculate the supports 

of itemsets. The main difference between calculating supports of half general itemsets 

and general itemsets is the fact that each GI node must have addresses of its parents. 

The parents of a k-itemset are the k-1 subsets. For example, (A1=3) is a parent of the 

itemset (A1=3) and (A2=2). Having addresses of the parents facilitates the application 

of Lemmas 3 and 4. Figure 6 shows an algorithm to extract general itemsets.                                      

 
 

MineGeneralItemset (Signature)  

1) for each half general Itemset:  

• Create Corresponding GI 

node 

• Find the address of its 

parents 

2) For each HGI node : 

• For each GI node: 

� Create general itemsets 

according to figure 4; 

� Calculate the support of 

each general itemset using 

Lemmas 3 and 4 

�  

 Fig. 6. The procedure of mining 

general itemsets of a signature 

 

 
 

Fig. 7. General itemsets inside a GI node 

5.3 Time Complexity and Memory Management of the MGR Algorithm  

Mining half general itemsets from simple itemsets is approximately of linear 

complexity with regard to the number of simple itemsets. For each simple k_itemset, 

there are 
k2  half general itemsets. According to Lemma 2, in order to compute the 

support of each half general itemset we need to search two half general itemsets. The 

complexity of searching one of them is log(s) where s is the average number of 

itemsets in signatures. The other itemset is located in the same HGI node as we have 

random access to half general itemsets of an HGI node, so its time complexity is 

negligible. Hence the overall time complexity of mining half general itemsets is equal 



to )(log2 2 sn
k

 where n is the number of simple itemsets and k is a constant with its 

maximum value equal to the number of attributes. Here n
k2 is the average number of 

half general itemsets.  

The average number of half general itemsets in signatures can be calculated from 

the following relation: 

 

s= (total number of half general itemsets)/ (number of signatures)  

where (number of signatures) = 12 −
I

,(number of half general itemsets) ≤
I

n 2.  

To generate general itemsets, we should first sort the signatures 

( )12log()12( −−
II ). Then according to the section 5.2, we should find all the k-

1_itemsets for each half general k_itemset ( skn
k

2log..2 ), finally the algorithm 

must calculate the supports of all half general itemsets ( )1(24 1
kn

kk +−
).  

So, the overall time complexity of the MGR algorithm is equal to  

)()log()log( 22 nnnsn Θ+Θ+Θ  or by substituting s, 

)()log()log( 22 nnnnn Θ+Θ+Θ  or in fact )log.( nnΘ . 

 

The other advantage of using an MGR tree is partitioning the problem into smaller 

ones. As seen in previous sections, mining itemsets in each signature can be done 

independently to the other signatures. It means that in each phase of mining itemsets, 

only holding one signature and its ancestors in main memory is sufficient. From the 

memory management point of view, it means that the MGR algorithm can be applied 

to large datasets without the need to hold all itemsets in main memory. From a 

parallel processing point of view, it means that mining itemsets in signatures can be 

done by different processors without any deadlock. 

6 Experimental Results 

6.1 Requirements of the Algorithm 

The first step of the MGR algorithm, which is about mining simple itemsets, has 

great effect on the output of the algorithm. If there is no restriction on the supports of 

simple itemsets, the MGR algorithm can extract all general itemsets. If we set a non-

zero value for support-threshold of simple itemsets, some infrequent itemsets will not 

be presented to the MGR algorithm. Absence of these itemsets has two effects on the 

output of the algorithm. Firstly, the algorithm ignores constructing HGI nodes 

corresponding to those simple itemsets which leads to the loss of all general itemsets 

belonging to those HGI nodes. Secondly, it causes errors in calculating the supports of 

general itemsets because the absent itemsets have an effect on supports of general 

itemsets. In order to achieve high quality rules, the support-threshold of simple 

itemsets must be low. In the experimental results of the following sections, the 

support threshold of simple itemsets is set to zero. 



6.2  Experimental Results  

In order to present the efficiency of the MGR algorithm, we compare it with an 

extension of the Apriori algorithm which mines general itemsets over combinations of 

base intervals similar to [11]. The Apriori algorithm is implemented using the Trie 

data structure and has better performance than many known algorithms [4]. It is 

designed so that its output is similar to the output of the MGR algorithm. This helps 

effective comparison of the algorithms. Extending the FP-growth algorithm [7] to 

mine general itemsets has difficulties because each branch of the FP-tree will contain 

items with similar attributes. For example, a record that has value 1 for attribute “A1” 

can cover items {(A1=1), (A1<=1), (A1<=2), (A1<=3), (A1<=4), (A1<>2), (A1<>3),..} 

etc.  

 

 

 

Fig. 8. MGR Vs Extended Apriori on 

synthetic dataset 

Table 2.  Properties of the synthetic dataset 
 

Number of non class 

attributes 
Domain values of non-

class attributes 

Number of classes 
Number of records 

Error ratio 

Missing values ratio 

4 

 
{0,1,2,3,4} 

 

3 
100,000 

0.1 

0 

 

All such items will exist in each branch of the FP-tree which causes trouble, as each 

itemset must have just one item with A1 attribute. In order to avoid such difficulties, 

we do not use the FP-growth algorithm. We apply the algorithms on a synthetic 

dataset which is created using the DataGen tool [12]. Table 2 contains the details of 

the dataset. Figure 8 represents the execution time when applying both the extended 

Apriori and MGR algorithms to extract general itemsets from the synthetic dataset. 

The support threshold of simple itemsets using the MGR algorithm was set to zero.  

As can be seen, the execution time of the MGR algorithm on the synthetic dataset 

is more than an order of magnitude lower than for extended Apriori. The total 

execution time of MGR is less than 120 seconds, while the execution time of 

extended Apriori with supports higher than 5% is about 21167 seconds. It can be 

inferred that the performance of the MGR algorithm is independent of the number of 

records or the size of the dataset (see figures 9 and 10). Figures 9 and 10 represent the 

execution time of the MGR algorithm with respect to the number of records. Figure 9 

shows the total execution time of the MGR algorithm, which consists of mining 

simple itemsets and mining general itemsets. Figure 10 only shows the execution time 



for mining general itemsets from simple ones. As can be seen, the total execution time 

of the algorithm is almost linear irrespective of the number of records. It is easily 

inferred from figures 9 and 10 that mining general itemsets from simple itemsets is 

approximately constant and in fact, it is mining simple itemsets that is linear with 

regards to the number of records.  

 

 

 

 

 

Fig. 9. Total MGR execution time  Fig. 10. Mining general items 

7 Conclusions 

In this paper, we proposed a time and space-efficient new algorithm for mining 

general association rules from tabular data. Decomposing the problem into several 

sub problems and employing the MGR tree makes the algorithm efficient in terms of 

time-complexity and memory requirements. The possibility of holding most of the 

MGR tree in secondary memory (hard disk) also makes the algorithm more space-

efficient. In particular, it was shown that the algorithm stores candidate general 

itemsets in a tree structure in such a way that supports of complex itemsets can be 

recursively computed from supports of simpler itemsets. 

As general rules can have equality and other comparison operators 

like },,,,,{ =≠><≥≤ , we can discover more sophisticated patterns in data. As 

general rules have higher support and confidence than simple ones, they can represent 

more powerful patterns. In this paper, we have shown the power of general 

association rules to describe data, however we have not yet offered an approach to 

prune unnecessary general rules. More experiments will be done to compare the 

general and simple rules extracted from the Balance dataset [8]. In addition, further 

work will address ways for pruning insignificant rules as well as the potential for 

parallelizing the algorithm. 
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