
Static–Dynamic Integration of External Services

into Generic Business Processes

Günter Preuner1, Christian Eichinger1, Michael Schrefl2

1 Institut für Wirtschaftsinformatik – Data & Knowledge Engineering,
Johannes Kepler Universität Linz, A-4040 Linz, Austria

2 Avanced Computing Research Center, University of South Australia, Mawson
Lakes SA 5095, Australia ?

Abstract. Organizations usually handle their business cases by request-
ing external services that are integrated with internal procedures to a
composite business process. External services may be atomic activities
or, more often, arbitrarily complex processes.

In the simplest case, all business cases of a particular kind follow the
same external services and internal procedures. Then, a composite service
can be statically predefined without regarding peculiarities and require-
ments of single business cases. Such compositions ensure that processing
business cases follows exact specifications. Yet in a highly dynamic en-
vironment, the actual processing may involve different services for each
business case depending on its properties, such that appropriate services
must be selected during runtime.

In this paper, the requirements of static and dynamic environments are
naturally combined: Those parts of processing that are known in advance
form the “frame” of processing. This frame comprises services that must
be used in any case and comprises semantic rules that specify which re-
quirements must be fulfilled by the services that are selected dynamically
during processing. Correctness criteria define how static and dynamic
composition can be appropriately integrated.

1 Introduction

Organizations perform their business cases not completely autonomously but
use external services, which are provided by other organizations, together with
intra-organizational procedures. External services may be atomic activities or —
in the general case — complex processes.

An organization that requests services (referred to as service requester) from
another organiation (the service provider) may process business cases in different
ways: First, processes can be defined statically, i.e., completely in advance, which
is suitable only if all parts of processing are known in advance. Second, a business
process may not be defined at all in advance, but all activities may be selected
for a business case dynamically during processing. Yet dynamic composition has

? Research performed at both universities within ARC Discovery Project DP0210654.

severe drawbacks since there is no possibility to pre-define processes in order to
achieve that similar business cases are handled uniformly.

In this work, static and dynamic process definitions are combined to a “static–
dynamic” approach: All parts of processing that are known in advance are in-
tegrated into a business process. Each part of processing that is not specified
in advance is represented by a generic activity, which serves as a “place holder”
for the dynamically selected service. Selection of a service during processing is
considered as a work task of its own (which might be an arbitrarily complex pro-
cess, again, e.g., a tendering procedure for the purchase of technical equipment).
Such work tasks will be referred to as build activities and build processes.

For each generic activity, the pre-defined business process may specify by se-
mantic rules (1) which kind of service is required to implement the generic activ-
ity (e.g., delivery of a computer system with hardware and software), (2) whether
one service must be selected or services from different providers can be com-
bined (hardware and software may be purchased from different suppliers), and
(3) which case-specific constraints influence the selection of services (e.g., the
system must be bought from a supplier who delivers within twelve months).

Static composition has been treated in detail in [1, 2]. In [5], an overall pro-
cess is defined first; this process is split in a top-down fashion into several frag-
ments, each one being assigned to a particular organization, which defines a more
detailed private implementation for the assigned fragment. Similarly, [6] distin-
guishes public and private specifications, yet on a more technical level. In [7],
global applications are defined with state-charts, comprising a set of activities,
which are refined by (legacy) applications. Composition of independent services
in a bottom-up fashion has been discussed in [8–10].

Dynamic specification of processes has been discussed in general in the realm
of dynamic change of workflows, e.g., [3], and, recently, in the health-care domain
[4] where generic processes are made concrete during processing by build activ-
ities. Although our work deals with the dynamic specification in an ontology-
based, inter-organizational setting, concepts of build activities for generic pro-
cesses are appropriate for our approach, as well. In [11, 12], a very dynamic
approach of composition is introduced, where composition is guided by formal
rules, yet without considering static composition aspects.

Our work goes beyond these approaches in that we combine static and dy-
namic composition to a static-dynamic approach as motivated above with precise
correctness criteria. Build activities are first-class activities that select services
according to the given semantic rules. Requested services distinguish activities
(1) that are invoked by the requester and those (2) that are invoked by the
provider, where execution can be observed by the requester.

Services are represented by ontologies, which appear to comprise the most
adequate techniques for semantic composition of web services; cf., e.g., [13]. In
addition, rules expressed upon these ontologies support the selection of services.
Semantic matching of services has been discussed in detail in recent research
[14–16]. We will build upon existing work and restrict our discussion to how
ontologies can support our approach of composition. Hence, we neither enforce

the use of a particular ontology nor introduce “yet another” ontology language;
instead, any ontology that allows to classify services may be used.

We use Object/Behavior Diagrams (OBDs) [17] for the design of business
processes. OBDs are considered appropriate for our approach since they have
a proper formal semantics based on Petri Nets and their concept of behavior-
consistent specialization [18] proved to be an adequate foundation for composi-
tion. Nevertheless, our approach can be applied to other models that support
specialization, as well, like UML [19] with specialization as proposed in [20].

The remainder of this paper is structured as follows: Section 2 briefly in-
troduces OBDs. Section 3 presents the service architecture for static-dynamic
composition. Section 4 explains how ontologies and semantic rules support the
dynamic selection of services. Correctness and construction of composed pro-
cesses are presented in Sect. 5. Finally, the work is concluded in Sect. 6.

2 Modeling Services with OBDs

Object/Behavior Diagrams (OBDs) were introduced as a conceptual object-
oriented design notation, where processes are represented by Behavior Diagrams
[18]. Each Behavior Diagram is associated with an object class and defines the
behavior of all instances of this class.

Behavior Diagrams consist of a set of activities, i.e., atomic units of work, a
set of states in which objects may reside, and a set of arcs, which connect ac-
tivities with states. Each activity has at least one pre-state and one post-state.
Initial states have no incoming arcs and represent the virtual processing state of
an object before its creation. Analogously, a state is final if no activity consumes
from it. Further, Behavior Diagrams comprise labels in order to distinguish dif-
ferent aspects of processing. Labels are motivated by the analogy of copies of a
paper form in traditional paper work, where different copies “flow” in a different
way through the workflow. Analogously, labeling properties ensure that every
label has one initial state, at least one final state, and resides in exactly one
state or activity state at each point of time. For brevity, activities, states, and
labels are commonly referred to as elements.

Example 1. Figure 1 shows LBD MOrder (music order), which comprises activi-
ties, e.g., selectCDs, and states, e.g., ordered. Initial state α is depicted by dashed
lines and is usually omitted in the graphical representation. Labels o and r rep-
resent the handling of the order and registering the CDs. Please ignore state
symbol toOrder depicted with dashed borders for the moment.

The life-cycle state (LCS) of an object specifies which of its labels reside in
which states. An activity can be invoked on an object if this object resides in all
pre-states of the activity. After an activity has been completed, the object resides
in all post-states of the activity. Different from Petri Nets, an activity does not
“fire” automatically, but must be explicitly invoked. Further, we assume that
the execution of activities takes time and distinguish starting and completing an
activity. Between starting and completing an activity on an object, the object

o t o O r d e r o r d e r e d

o r d e r
o a r c h i v e d

a r c h i v eO r d e r O r d e rO r d e rs e l e c t C D s
o o o

r t o R e g i s t e r r e g i s t e r e d

r e g i s t e rs e l e c t C D s
r r

o

M O r d e r M O r d e r

o T o B u i l d o r d e r B u i l t

b u i l d O r d e rM O r d e r M O r d e r
o o o r d e r e d

o r d e r M O r d e r
o o

a r c h i v e d

a r c h i v e M O r d e r
r o , r

o

M O r d e r

a o , r

M O r d e r

t o O r d e r

L B D M O r d e r

L B D O r d e r

Fig. 1. LBDs Order and MOrder

resides in an implicit activity state named after the activity. A sequence of LCSs
is called a life-cycle occurrence (LCO).

Example 2. Consider LBD MOrder: Each object resides initially in LCS {(α, o),
(α, r)}. Starting activity selectCDs leads to LCS {(selectCDs, o), (selectCDs, r)}
and completing this activity leads to LCS {(oToBuild, o), (toRegister, r)}.

Specialization of LBDs was presented in [18], distinguishing refinement, i.e.,
elements of B are refined in B′, and extension, i.e., additional elements are
introduced in B′ with new labels. One kind of specialization, namely observation-
consistent specialization, means that the processing of an object in B ′ must be
observable as a correct processing in B in that every possible LCO in B ′ must
be a valid LCO in B if refined elements are considered unrefined and elements
added by extension are ignored.

Example 3. LBD MOrder is an observation-consistent specialization of LBD Or-
der (cf. Fig. 1): MOrder refines Order in that state toOrder is refined to oToBuild,
buildOrder, and orderBuilt. Further, MOrder extends Order by the aspect of regis-
tering, represented by label r and several activities and states labeled with r. The
generalization of LCS {(buildOrder, o), (toRegister, r)} in MOrder to {(toOrder,
o)} is a valid LCS in Order.

3 Service Architecture for Static-Dynamic Composition

The composition approach is characterized by the following service architecture,
summarized in Fig. 2. Schemes of services and ontological rules are depicted as
rectangles, whereas arrows depict which schemes are derived from others.

Generic service. First, the generic service is defined, which comprises all aspects
of processing that are independent of the properties of business cases being
processed. Further, it specifies at which points of processing another service or

S t a t i c c o m p o s i t i o n
G e n e r i c s e r v i c e

P r o v i d e d s e r v i c e

P r o v i d e d s e r v i c e
. . .

R u l e s f o r s e r v i c e
p o o l d e c l a r a t i o n

D y n a m i c c o m p o s i t i o n

C o n c r e t e s e r v i c e
S y n c h r o n i z a t i o n

I n t e r n a l p r o c e d u r e sC o m p o s e d
d y n a m i c s e r v i c e

D e f i n i t i o n o f r u l e s
C o n c r e t i z a t i o n

C o n c r e t i z a t i o n

S e r v i c e p o o l R u l e e v a l u a t i o n

C o m p o s i t i o n

R u l e s f o r s e r v i c e
i n s t a n c e f i l t e r i n g

S e r v i c e
i n s t a n c e p o o l

R u l e e v a l u a t i o n

S e r v i c e
s e l e c t i o n

Fig. 2. Static-dynamic composition

combination of services can be dynamically introduced. The generic service is
an LBD that comprises three kinds of activities:

1. Regular activities represent work tasks that are performed on business cases.
They are either observable or invocable: Observable activities are executed by
the provider, who allows the requester to observe their execution. Invocable
activities are defined by the provider, but their invocation is delegated to the
requester. Activities from internal procedures and synchronization activities
(see below) are invocable since they must be invoked by the requester.

2. Generic activities cannot be executed but are “place holders” for services
that are dynamically selected for a business case during processing.

3. Build activities are invoked by the service requester to replace generic ac-
tivities by actual services. They are included in the process as first-class
activities in order to enable the modeler of a process to predefine at which
point of processing a service must be selected for a generic activity.

The generic service may be defined from scratch by the service requester or
may result from integrating several external services with internal procedures.
Such a static integration is useful if a particular set of services must be used for
every business case and, thus, is not case-specific. For example, the service of a
music trader could be integrated into the generic service if a library must buy
all its CDs from this trader. The definition of a generic service by integrating
services makes use of the approach presented in [1, 2]. Since the way how the
generic service has been defined does not influence static-dynamic composition
as presented in this paper, we will take the generic service as given.

Example 4. Suppose that a music library frequently buys music CDs from dif-
ferent music traders. Therefore it defines a (very simple) service that comprises
activities that are executed internally (like selecting and registering music CDs)
and a generic activity for ordering. The process is depicted by LBD MOrder in
Fig. 3. Regular invocable activities are marked with tag Inv, the generic activity
order is represented by a shaded activity symbol and is marked with tag G, ac-
tivity buildOrder for building a concrete service for order is marked with B and
annotated with the generic activity to be built.

r t o R e g i s t e r r e g i s t e r e d

r e g i s t e r I n vs e l e c t C D s I n v
r r

o

M O r d e r M O r d e r

o T o B u i l d o r d e r B u i l t

b u i l d O r d e r BM O r d e r M O r d e r
o o o r d e r e d

o r d e r G M O r d e r
o o

a r c h i v e d

a r c h i v e I n v M O r d e r
r o , r

o

b u i l d s o r d e r G

Fig. 3. Generic service of a library

Composed dynamic service. The composed dynamic service is a service that can
be used to replace a particular generic activity. In the following, we use the
phrase that a service or a combination of services fulfills a generic activity if
the service or the combination of services provides all the functionality that is
needed to realize the work task that the generic activity stands for. There are
three possibilities of replacement, each one requiring a different set of services:

1. Single service replacement: There is one service selected that fulfills a par-
ticular generic activity.

2. Coordinated service replacement: There is a set of independent services that,
when combined, fulfill the generic activity. The service requester coordinates
the services by introducing synchronization elements, i.e., further activities,
states, and labels.

3. Coordinated service replacement with internal processing: The service re-
quester might complement external services with internal procedures if the
former do not fully fulfill the generic activity since particular aspects of pro-
cessing are missing. Synchronization elements coordinate the external ser-
vices and the internal processes. Internal processes may include generic and
build activities again, such that replacement can be performed recursively.

Figure 2 depicts the (most complex) third case. For more details on com-
posing external services with internal processes, see Sect. 5. The build activity
searches adequate services, decides on which kind of replacement is used, which
services are selected, and — if necessary — coordinates the set of services with
or without further internal processing.

Example 5. Suppose that the service of a music trader MT1-Order shown in
Fig. 4 is selected for generic activity order: The music trader’s service performs
both payment and delivery. Hence, it fulfills generic activity order without any
need for internal processing or synchronization.

Alternatively, another music trader with process MT2-Order could be selected
whose service offers creation of an order and delivery. The service requester has
to combine this service with a bank’s service BT1-Transfer for money transfers.
The services and their composition with internal activities are depicted in the
bottom section of Fig. 4.

t o D e l i v e r

t o P a yp
c r e a t e -O r d e r I n v

p a i d

p a y B y C r e d i t C a r d
p p

f i n i s h e d

f i n i s h I n v

d

p

M T 1 - O r d e r : M O r d e r . o r d e r

d , p

d e l i v e r e d

d e l i v e r
d dd

t o P r e p a r e p r e p a r e d

p r e p a r e S h i p m e n t
d d

M T 2 - O r d e r

t o S u b m i t

p p s u b m i t t e d

s u b m i t I n v

B a n k 1 - T f
p

c r e a t e M o n e y -T r a n s f e r I n v
B a n k 1 - T r a n s f e r

t o S e n d

c r e a t e O r d e r B y W e b I n v M T r a d e r 2 s e n d
d d

p , s p p
s u b m i t I n vc r e a t e M o n e y -T r a n s f e r I n v

s p

s C r e a t e d s p

f i n i s h I n v
o r d e r W i t h M u s i c T r a d e r 2 : M O r d e r . o r d e r i n t e g r a t e s (M T 2 - O r d e r , B a n k 1 - M T)

s S e n t
s S u b m i t t e d

s d s d

s p
s p f i n i s h e ds d , s p

s e n t

M T r a d e r 2

s u b m i t t e d

M T r a d e r 2

t o S u b m i t

M T r a d e r 2

c o m p o s e d t o

s e n t

s e n d
d d , i

t o S e n d

i n v T o P r i n t i n v P r i n t e di i
p r i n t I n v o i c e

i

d

p , s p
M O r d e rM O r d e rM O r d e r

M O r d e r M O r d e r M O r d e r
M O r d e r M O r d e r

c r e a t e O r d e r B y M a i l I n v
d

s p

c r e a t e O r d e rB y W e b I n v

i
d

c r e a t e O r d e rB y M a i l I n v
d

i
B a n k 1 - T f

M T 2 - O r d e r M T 2 - O r d e r
M T 2 - O r d e r

M T 2 - O r d e rM T 2 - O r d e rM T 2 - O r d e r

M T 1 - O r d e r

M T 1 - O r d e r M T 1 - O r d e r

M T 1 - O r d e r
M T 1 - O r d e r

Fig. 4. LBDs MT1-Order and orderWithMusicTrader2

Concrete service. The concrete service is defined by replacing a generic activity
by the dynamic service that has been defined by the build activity. Making
services concrete is an iterative procedure since a composed service may include
an arbitrary number of generic activities, which are not made concrete at the
same time, and since a selected service may include generic activities again. For
details on concretization see Sect. 5.

Rules for service pool declaration and service instance filtering. These rules re-
fer to an ontology of services and define which functionality must be offered by
the service to be selected dynamically and how a service is actually selected by
matching the services’ properties and the business cases’ requirements. Seman-
tic rules are defined for each generic activity in a twofold manner: Services that
fulfill a generic activity fully or partially are determined by rules for service pool
declaration and are stored in a service pool. Given a set of services in a service
pool, rules for service instance filtering specify how all services or combinations
of services are determined that comply with a business case’s requirements. The
appropriate services or combinations thereof are stored in the service instance

pool. From there, one service or service combination is actually selected for re-
placing the generic activity. See Sect. 4 for details.

4 Semantic Service Discovery

Service instances capable of fulfilling a generic activity are identified in a two-
step approach consisting of (1) Service Pool Declaration and (2) Service Instance
Filtering which are backed by ontologies as described in this sections.

4.1 Service Pool Declaration

The service pool ontology underlying the service pool declaration classifies all
external services needed to fulfill generic activities and specifies service-specific
properties, the service profile. Furthermore, each service is described by an OBD.
As ontology integration is not within the scope of this paper, we refer to existing
approaches in the fields of ontology integration, ontology matching and service
integration [14, 21, 15]. In our ontology, services are represented as instances of
service classes and will be referred to as service instances.

Example 6. Figure 5 depicts the service pool ontology for services needed in our
running example. For the sake of simplicity, the example ontology shows only
service providers and omits the specification of products and services, which is
usually part of any real world ontology. Furthermore, the range of properties has
been omitted. Service instances are identified by a grey header.

Service

OBD

Order

del_within
pay_method

subclass of

Deliver

del_within
accepted_payment

subclass of

Pay

pay_method

subclass of

Bank 1

OBD=Bank1-Transfer
pay_method=money
transfer
pay_method=credit card

instance of

Music Trader 1

OBD=MT1-Order
del_within=5
pay_method=credit
card

instance of

Music Trader 2

OBD=MT2-Order
del_within=4
accepted_payment=
money transfer

instance of

Fig. 5. Sample service pool ontology

Three different service pools are distinguished with respect to their contri-
bution to the fulfillment of a generic activity:

1. Full service pool: The full service pool comprises service instances that fulfill
the generic activity as a whole. These instances are candidates for a single
service replacement.

2. Partial service pool: The partial service pool comprises service instances
capable of fulfilling a specific part of the generic activity. These instances are
candidates for a coordinated service replacement with internal processing.

3. Compound service pool: The compound service pool specifies combinations
of service instances which are capable of fulfilling the generic activity as a
whole. These instances are candidates for a coordinated service replacement.

Service pool members are specified by queries over the service pool ontology.
These queries are attached to generic activities; their results are instances of the
service pool ontology.

Executing queries over the service pool ontology requires an inference mech-
anism over ontologies. [22] gives an overview of ontology tools supporting in-
ferencing and ontology building. But, as the definition of selection criteria for
inferencing tools is not within the scope of this paper, we use Prolog syntax for
describing rules and assume that service pool instances are expressed as facts, e.g.
the rule order(X) specifies all instances of class Order and the rule del within(X,Y)
returns in Y the value of property “del within” of instance X.

Example 7. Figure 6 extends the generic activity order introduced in Fig. 3
with service pool declarations. The service pools full, partial and compound
are expressed as rules over the service pool ontology: full(X) retrieves all or-
der services, partial(X) retrieves services that provide delivery or payment, and
compound(X,Y) retrieves combinations of order and payment services where the
payment service is accepted by the delivery service. The execution of the service
pool computation is ordered as follows: (1) the full service pool, (2) the partial
service pool, and (3) the compound service pool.

Applied to our example, these rules would return “Music Trader 1” as mem-
ber of the full service pool, “Music Trader 2” and “Bank 1” as members of the
partial service pool and “Music Trader 2, Bank 1” as member of the compound
service pool as their payment methods match.

4.2 Service Instance Filtering

The service pool instances for building a concrete service of a generic activity
are filtered according to business case’s requirements. The requirements of a case
are again captured by an ontology, the process instance ontology. Figure 7 shows
the process instance ontology for our example order service.

Specific requirements are passed as parameters to parameterized queries op-
erating on the service pools. These queries are attached to the build activities

o r d e r B u i l t
M O r d e r

o r d e r e d

o r d e r G M O r d e r
o o

f u l l (X) : - o r d e r (X) .
p a r t i a l (X) : - d e l i v e r (X) ; p a y (X) .
c o m p o u n d (X , Y) : - d e l i v e r (X) , p a y (Y) ,
p a y _ m e t h o d (Y , M) , a c c e p t e d _ p a y m e n t (X , M) .

F u l lP a r t i a l
C o m p o u n d

Fig. 6. Service pool declaration for generic activ-
ity order

Order

no
until
payment method
max. price

Order 4711

no=4711
until=5th April 2004
payment method=
money transfer
max. price= 5000

instance of

Fig. 7. Sample process instance
ontology

o T o B u i l d o r d e r B u i l t

b u i l d O r d e r BM O r d e r M O r d e r
o o
b u i l d s o r d e r G

t i m e l y (X) : - (d e l _ w i t h i n (X , Y) , Y < t i m e f r a m e) .
s i n g l e (X) : - (f u l l (X) , t i m e l y (X)) .
i n t _ c o o r d i n a t e d (X) : - (d e l i v e r (X) , t i m e l y (X)) ; p a y (X) .
c o o r d i n a t e d (X , Y) : - c o m p o u n d (X , Y) , t i m e l y (X) .

S i n g l e
C o o r d i n a t e dI n t e r n a l l y C o o r d i n a t e d

Fig. 8. Service instance filtering for generic activity order

of the respective generic activity. Upon rule evaluation, the parameters are sub-
stituted with property values of the actual business case. These rules are again
divided into three pools, which comply with the replacement alternatives of
composed dynamic services: single instance pool for single service replacement,
coordinated instance pool for coordinated service replacement and internally co-
ordinated instance pool for the coordinated service replacement with internal
processing.

Example 8. Figure 8 visualizes the filtering rules that specify service instance
pools for generic activity order (which has been introduced in Fig. 3). Rule
single(X) retrieves all order services that can deliver in time, i.e., whose property
“del within” is less than the number of days left until “5th April 2004”. Rule
int coordinated(X) retrieves all payment services as well as all delivery services
that satisfy the time constraint. Finally, coordinated(X,Y) retrieves all service
combinations where the delivery service can deliver in time.

The evaluation of these rules on 2nd April 2004 would return the following
service instance pools: single(X) containing no members as service “Music Trader
1” cannot fulfill the time constraint imposed by “Order 4711”, int coordinated(X)
containing “Bank 1” as it is member of class pay and “Music Trader 2” as it
can fulfill the time constraint, and coordinated(X,Y) containing “Music Trader
2, Bank 1”.

When a build activity is activated for a particular business case, rules for
service instance filtering are evaluated. The user then builds a sub-process ful-
filling the generic activity for this business case with some or all of the returned
service instances as described in the next section.

5 Correctness and Construction of Composed Services

This section presents the correctness criteria for composed dynamic services and
concrete services (cf. Sect. 5.1). The construction of correct services is presented
in Sect. 5.2. Hence, this section covers two steps in our architecture:

1. Composition: The definition of the composed dynamic service depends on
the replacement strategy: There is no composition necessary for single ser-
vice replacement. For coordinated service replacement, a set of external ser-
vices must be composed; for coordinated service replacement with internal
processing, external services and internal procedures must be integrated.
Composition follows the approach of [2].

Example 9. For fulfilling generic activity order, services MT2-Order from
“Music Trader 2” and Bank1-Transfer from “Bank 1” are composed to service
orderWithMusicTrader2 (cf. Example 8).

2. Concretization: Concretization of a service C to C ′ is considered a special
case of composition: C resulted from an internal procedure and, possibly, a
set of external service that have been statically integrated or integrated in
previous concretization steps. During concretization from C to C ′, another
service S is integrated with the services that have been integrated to C

before. Hence, the concrete service is a composition of all services that are
represented by C and S and the correctness criteria from [2] should hold
again. Yet construction is different than in the first case since services are
not composed in one step, but continuously during concretization.

Example 10. In the running example, the generic service MOrder must be
made concrete by integrating service orderWithMusicTrader2.

5.1 Correctness Criteria for Composition

During static composition, external services are composed together with internal
procedures. Synchronization elements (i.e., activities, states, and labels) reflect
data and control dependencies between activities from different services. In order
to condense the presentation, the correctness criteria will be presented here in a
simplified form; for details, the reader is referred to [2].

The composite service shall include all information that is — from the view-
point of the requester — necessary for successful processing. Hence, all invocable
activities are included, whereas observable details may be abstracted in order
to reduce the complexity of the composite service. The composite service must
obey the following correctness criteria with respect to the services:

1. Well-formed synchronization and internal service: Internal procedures and
synchronization elements that are embedded in the composite service are
conceptually considered as a “service”, as well, which is embedded in the
composite service with new, internal labels. Synchronization and internal
services are well-formed if the restriction of the composite service to internal
labels and all elements with at least one internal label is a correct LBD.

2. Observability and invocability compliance: An activity is invocable (observ-
able) in the composite service if the related activities in the services are
invocable (or observable, respectively). Invocable activities are neither ab-
stracted nor omitted in the composite service.

3. Observability consistency: The processing of business cases in the services
should be observable as a correct processing according to the composite
service.

4. Invocability consistency: Invocability consistency requires that at any time
when an invocable activity can be started in the composite service, i.e.,
whenever a business case resides in all pre-states of this activity, it must be
possible to start the related activities in the external services, as well.

Example 11. Consider the services depicted in Fig. 4: Services MT2-Order and
Bank1-Transfer define the processing of orders and of money transfers, respec-
tively. These services are integrated to a composite service orderWithMusic-
Trader2, which comprises all aspects of order processing. Elements in the com-
posite service that are related to elements in the services are indicated by a grey
background shading. All activities and states in orderWithMusicTrader2 that are
labeled with sd or sp have been introduced as synchronization elements. They
constitute a correct LBD. Elements toPrepare, prepareShipment, and prepared
have been abstracted to state toSend (as indicated by the state symbol with
dotted borders); the aspect of invoicing (cf. label i), has been omitted.

5.2 Construction of Correct Composite Services

The definition of a composed dynamic service from services in a bottom-up
fashion is summarized first; then, construction of concrete services is introduced.

Construction of Composed Dynamic Services Construction follows the
correctness criteria presented in Sect. 5.1. While conditions 1 and 2 are easy
to check, checking criteria were introduced in [2] for conditions 3 and 4. Briefly,
observability consistency is checked by the concept of observation-consistent spe-
cialization (cf. Sect. 2): Each external service must be an observation-consistent
specialization of the composite service, when the latter is restricted to labels
that correspond to labels of the external service. Further, no additional pre-
states must be introduced for observable activities in the composite service since
these pre-states are not considered by the service provider who starts the cor-
responding activities in his/her service. Invocability consistency is fulfilled if
all pre-states of an invocable activity in an external service are represented as
pre-states of this activity in the composite service.

Example 12. Consider once more the example in Fig. 4: Service MT2-Order is
an observation-consistent specialization of orderWithMusicTrader2 if the latter
is restricted to label d. orderWithMusicTrader2 introduces no new pre-states for
observable activities and comprises all pre-states of invocable activities.

Construction of Concrete Services During concretization, a generic activity
is replaced by a composed dynamic service. This replacement should not have
any side effects, i.e., the behavior “outside” the generic activity should not be
affected by the replacement. The concrete service Cnew is constructed from a
generic or another concrete service Cold as follows: Begin and end activities are
determined in the composed dynamic service S. Begin activities are executed
as the first activities in S, i.e., no other activity therein is executed before;
analogously, end activities are executed last in S. A composed dynamic service
S replaces a generic activity in that the begin and end activities are synchronized
with Cold. The construction comprises the following steps:

1. Determination of begin and end activities: An activity of the composed dy-
namic service S is called a begin activity if all its pre-states are initial states.
Analogously, an activity is an end activity if all its post-states are final states.
Begin and end activities must be invocable since the requester must invoke
them in order to initiate and finish a selected service.

Example 13. Service orderWithMusicTrader2 in Fig. 4 comprises begin activ-
ities createOrderByWeb and createOrderByMail and end activity finish.

2. Local refinement of generic activity: The generic activity in Cold is refined
(1) to one alternative generic begin (or end) activity for each begin (or
end, respectively) activity from the composed dynamic service and (2) to
one state, which is post-state of all generic begin activities and pre-state
of all generic end activities. The resulting LBD is an observation-consistent
refinement of the original one by mapping the new activities and state to
the original generic activity. The resulting service is referred to as ColdRef .

Example 14. The local refinement of the generic activity order is depicted in
Fig. 9 with two alternative generic begin activities, one generic end activity,
and a state in between. Generic begin and end activities carry the same
name as the respective activities in orderWithMusicTrader2.

o r d e r G

o r d e r B u i l t
M O r d e r

d c s R u n n i n g
M O r d e ro o

o o o o o r d e r e d

M O r d e r

t o S e n d
M T r a d e r 2

s C r e a t e d
s S e n t

s S u b m i t t e d

s d s p
f i n i s h e d

s d , s p
M O r d e r

M O r d e r
M O r d e r

M O r d e r
M O r d e r

s p

c r e a t e O r d e r B y W e b I n v

c r e a t e O r d e r B y M a i l I n v
f i n i s h I n v

d

d

s p

. . .
Fig. 9. Replacement of order

3. Embedding of composed dynamic service: The concrete service Cnew results
from ColdRef and S in that each begin and end activity of S is synchronized
with the corresponding generic begin and end activity of ColdRef . Pairs of
synchronized activities are represented by the same activity in Cnew. All
other elements of S are added in Cnew. The set of labels of S is considered
disjoint with the labels in ColdRef .

Example 15. Fig. 9 depicts the refinement of order for embedding service
orderWithMusicTrader2. The embedded service is not depicted in detail as
the figure spots on the begin and end activities.

The resulting concrete service Cnew is an observation-consistent specializa-
tion of ColdRef and fulfills the correctness criteria for composition (cf. Sect. 5.1):
Assume that Cold and S are correct LBDs and are correctly combined, then
internal aspects of processing and synchronization elements form correct LBDs
in Cnew. Observability and invocability compliance are fulfilled since invoca-
bility of activities is not changed. Observability consistency is fulfilled since S

is embedded without change (which is a special case of specialization) and no
new pre-states are introduced for observable activities. Invocability consistency
is fulfilled since all pre-states of invocable activities are integrated.

6 Conclusion

We presented static-dynamic integration of services that naturally combines
and extends existing approaches on service integration. The distinction between
static and dynamic aspects both leaves enough flexibility for selecting appro-
priate services for a particular business case in a dynamic environment and
guarantees at the same time that behavioral aspects known in advance are ex-
plicitly specified and are obeyed for each case. The distinction of static and
dynamic aspects is appropriately complemented by semantic rules for service
pool declaration and service instance filtering.

Future work will extend the approach in that generic processes may be in-
troduced instead of generic activities. These generic processes might specify a
frame for actual processing, which the actually selected service must fit into. For
example, a generic process may specify that a music trader must deliver before
it requests payment. This constraint can be specified by a generic activity for
delivery followed by a generic activity for payment.

References

1. Preuner, G., Schrefl, M.: Behavior-Consistent Composition of Business Processes
From Internal and External Services. In Proc. ER 2002 Workshops, Revised Papers.
Springer LNCS 2784 (2003)

2. Preuner, G., Schrefl, M.: Requester-centered Composition of Business Processes
from Internal and External Services. To appear in: Data & Knowledge Engineering
(2004)

3. van der Aalst, W.: Generic Workflow Models: How to Handle Dynamic Change and
Capture Management Information? In: Proc. 4th IFCIS Int. Conf. on Cooperative
Information Systems (CoopIS), IEEE Computer Society Press (1999)

4. Browne, E., Schrefl, M., Warren, J.: Goal-Focused Self-Modifying Workflow in the
Healthcare Domain. In: Proc. 37th Hawaii Int. Conf. on System Sciences (HICSS)
– Track 6, IEEE Computer Society (2004)

5. van der Aalst, W.: Inheritance of interorganizational workflows to enable business-
to-business e-commerce. Electronic Commerce Research 2 (2002) 195–231

6. Bussler, C.: The Application of Workflow Technology in Semantic B2B Integration.
Distributed and Parallel Databases 12 (2002) 163–191

7. Eyal, A., Milo, T.: Integrating and customizing heterogeneous e-commerce appli-
cations. VLDB Journal 10 (2001) 16–38

8. Chiu, D., Karlapalem, K., Li, Q., Kafeza, E.: Workflow View Based E-Contracts
in a Cross-Organizational E-Services Environment. Distributed and Parallel
Databases 12 (2002) 193–216

9. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind
the Curtain. In: Proc. 22nd ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), ACM Press (2003)

10. Kafeza, E., Chiu, D., Kafeza, I.: View-based Contracts in an E-service Cross-
Organizational Workflow Environment. In Proc. 2nd Int. Workshop on Technolo-
gies for E-Services (TES). Springer LNCS 2193 (2001)

11. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing Web services on the
Semantic Web. VLDB Journal 12 (2003) 333–351

12. Zeng, L., Flaxer, D., Chang, H., Jeng, J.J.: PLMflow — Dynamic Business Process
Composition and Execution by Rule Inference. In Proc. 3rd Int. Workshop on
Technologies for E-Services (TES). Springer LNCS 2444 (2002)

13. Fensel, D., Hendler, J., Lieberman, H., Wahlster, W., eds.: Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential. MIT Press (2003)

14. Cardoso, J., Sheth, A.: Semantic E-Workflow Composition. Journal of Intelligent
Information Systems 21 (2003) 191–225

15. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web
Services Capabilities. In Proc. 1st Int. Semantic Web Conf. (ISWA). Springer
LNCS 2342 (2002)

16. Sheshagiri, M., des Jardins, M., Finin, T.: A Planner for Composing Services
Describes in DAML-S. In: Proc. Workshop on Web Services and Agent-based
Engineering (WSABE). (2003)

17. Kappel, G., Schrefl, M.: Object/Behavior Diagrams. In: Proc. 7th Int. Conf. on
Data Engineering (ICDE). (1991)

18. Schrefl, M., Stumptner, M.: Behavior Consistent Specialization of Object Life
Cycles. ACM Trans. Software Engineering and Methodology 11 (2002) 92–148

19. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley Object Technology Series. Addison Wesley (1999)

20. Stumptner, M., Schrefl, M.: Behavior Consistent Inheritance in UML. In Proc.
19th Int. Conf. on Conceptual Modeling (ER). Springer LNCS 1920 (2000)

21. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to
match ontologies on the Semantic Web. VLDB Journal 12 (2003) 303–319

22. Corcho, O., Fernáandez-López, M., Gómez-Pérez, A.: Methodologies, tools and
languages for building ontologies. Where is their meeting point? Data & Knowledge
Engineering 46 (2003) 41–64

