
Hyper: A Framework for Peer-to-Peer Data
Integration on Grids

Diego Calvanese1, Giuseppe De Giacomo2,
Maurizio Lenzerini2, Riccardo Rosati2, and Guido Vetere3

1 Faculty of Computer Science, Free University of Bolzano/Bozen,
calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
lastname @dis.uniroma1.it

3 IBM Italia
gvetere@it.ibm.com

Abstract. Data Grids allow for seeing heterogeneous, distributed, and
dynamic informational resources as if they were a uniform, stable, secure,
and reliable database. According to this view, current proposals for data
integration on Grids are based on the notion of global schema built over
a collection of autonomous information sources. On the other hand, in
dynamic and distributed environments, such a hierarchical and central-
ized architecture is not well suited for effective information integration.
Peer-to-peer data integration aims at overcoming these drawbacks by
modeling autonomous information systems as peers, and establishing
mappings among peers without resorting to any hierarchical structure.
In this paper, we present Hyper, a joint research initiative of Università di
Roma “La Sapienza” and IBM Italia, which aims at developing principles
and techniques for peer-to-peer data integration on a Grid infrastructure.
The main contributions presented are a semantic characterization of P2P
data integration, the deployment of our P2P framework on a Grid archi-
tecture, and the design of a query answering algorithm that is coherent
both with the semantics and with the Grid infrastructure.

1 Introduction

Integrating heterogeneous computational resources and databases, which are dis-
tributed over highly dynamic computer networks, is the crucial challenge at the
current evolutionary stage of IT infrastructures. Large enterprises, business or-
ganizations, e-government systems, and, in short, any kind of internetworking
community, need today an integrated and virtualized access to distributed in-
formation resources, which grow in number, kind, and complexity. The notion
of Virtual Organization denotes a set of individuals and/or institutions sharing
data and computing resources by a range of collaborative strategies [10].

Grids aim at providing a suitable infrastructure for Virtual Organiza-
tions [14], based on standardized services that implement well-established and
largely supported models. This kind of infrastructure hides the complexity of



heterogeneous and distributed data sources, and handles the dynamics of the
underlying networking environment. This motivates the current trend of model-
ing complex business infrastructures as Grids, and this is why Grid technologies,
which have been developed in the research community, attract today so much in-
terest in the industry. In fact, the Open Grid Services Architecture (OGSA) [13]
is part of the foundational layer of IBM’s on demand operating environment.

In particular, Data Grids allow for seeing heterogeneous, distributed, and dy-
namic informational resources as if they were a uniform, stable, secure, and reli-
able database, with the aim of facilitating the application development, speeding
up business integration, and ultimately for the users’ sake. Grid extensions, such
as OGSA’s Data Access and Integration Services (DAIS) [3], specifically address
the issue of modeling Data Services over a Grid, and supply a homogeneous in-
terface to a variety of data sources, such as relational DBMS or XML documents.
Basically, these services wrap the access to physical data, so that Grid-enabled
applications can easily locate, connect, and query virtual data sources by means
of uniform interfaces, can transparently elaborate their data, and finally provide
results to either users or other applications.

Grid-based Virtual Databases [21, 20] are essentially loosely-coupled database
federations, which integrate heterogeneous sources, with the purpose of respond-
ing to business demands in a flexible manner. The integration logic is generally
contained in specific applications (called “analysts”), that achieve integration at
“functional” level. In fact, “analysts” build the integrated virtual schema based
on views over the source schemas, and the integration semantics they implement
is usually enmeshed in their ’ad-hoc’ internal code. As a consequence, a change
in data sources (i.e. adding a new node, or changing metadata) would require re-
programming “analyst” applications. Researchers in the field of Semantic Grids
(see e.g. [5]) claim that this is a threat in the implementation of many real
interesting application scenarios, and their effort is aimed at overcoming this
limitation. Indeed, “analyst-based” Grid Databases suffer of a certain rigidity,
which limits the exploitation of Data Grids in many real situations.

Current proposals for data integration on Grids are based on a traditional
architecture relying on the notion of global schema built over a collection of au-
tonomous information sources. In this paper, we present a framework for data
integration in peer-to-peer (P2P) systems built on a Grid infrastructure. In our
framework, each peer represents an autonomous information system, and infor-
mation integration is achieved by establishing mappings among the various peers
without resorting to any hierarchical structure. Queries are posed to one peer,
and the role of query processing is to exploit both the data that are internal to
the peer, and the mappings with other peers in the system.

The main contributions presented in this paper are the following: (i) a se-
mantic characterization of P2P data integration (described in Section 2); (ii)
the deployment of our P2P framework on a Grid architecture (presented in Sec-
tion 4); (iii) the design of a query answering algorithm that is coherent both
with the semantics and with the Grid infrastructure (reported in Section 3).



2 The Hyper Framework for Data Integration

In this section, we set up a general framework for P2P data integration in a
Grid operating environment. We base our proposal on the work reported in [9].
We refer to a fixed, infinite, denumerable, set Γ of constants. Such constants are
shared by all peers, and are the constants that can appear in the P2P system.
Moreover, given a relational alphabet A, we denote with LA the set of function-
free first-order logic (FOL) formulas whose relation symbols are in A and whose
constants are in Γ .

A conjunctive query (CQ) of arity n over an alphabet A is written in the
form

{x | ∃y bodycq(x,y)}
where bodycq(x,y) is a conjunction of atoms of LA involving the free variables
(also called the distinguished variables of the query) x = x1, . . . , xn, the exis-
tentially quantified variables (also called the non-distinguished variables of the
query) y = y1, . . . , ym, and constants from Γ .

A P2P system P is constituted by a set of datapeers and a set of hyperpeers.
Each datapeer D ∈ P is a system that exports data (possibly coming from
different sources) in terms of an exported schema.

Hyperpeers instead do not have access to local data but are interconnected
with both hyperpeers and datapeers from which they extract data. Formally, a
hyperpeer H ∈ P is a tuple HP = (G,M), where:

– G is the schema of HP , which is a relational schema over a relational al-
phabet AG (disjoint from the other alphabets in P) called the alphabet of
HP .

– M is a set of P2P mapping assertions, each of which is an expression of the
form

cq ′ ; cq

The query cq , called the head of the assertion, is a conjunctive query over
the peer (schema of) HP , while the query cq ′, called the tail of the assertion,
is a conjunctive query of the same arity as cq , over (the schema of) one of
the other peers in P.

In a hyperpeer HP ∈ P, a P2P mapping assertion cq ′ ; cq , where cq is a
query over the schema of the peer HP , expresses the fact that HP can use data
retrieved by cq ′ from the peer P ′ over (the schema of) which cq ′ is expressed.
Such data are mapped to the schema of HP according to what is specified by the
query cq . This form of mapping is one of the most expressive among those studied
in the P2P and data integration literature. Indeed, in terms of the terminology
used in data integration, a hyperpeer connected to datapeers only corresponds
to a GLAV data integration system [15, 18] managing a set of sound data sources
defined in terms of a (virtual) global schema.

Observe that no limitation is imposed on the topology of the whole set of
P2P mapping assertions in the peer system P, and hence the set of all P2P
mappings may be cyclic.



Finally, we assume that queries that are posed to the P2P system P are in
fact posed to one of the peers (datapeer or hyperpeer) P of P. Such queries are
expressed in a certain relational query language LP (which must include con-
junctive queries) over the schema of P . For now, we make no specific assumption
on the query language LP , except that the peer P can indeed process queries
belonging to LP , and we say that the queries in LP are those accepted by P .

We assume that the peers are interpreted over a fixed infinite domain ∆. We
also fix the interpretation of the constants in Γ (cf. previous section) so that:
(i) each c ∈ Γ denotes an element d ∈ ∆; (ii) different constants in Γ denote
different elements of ∆; (iii) each element in ∆ is denoted by a constant in Γ .4 It
follows that Γ is actually isomorphic to ∆, so that we can use (with some abuse
of notation) constants in Γ whenever we want to denote domain elements.

We focus first on the semantics of a datapeer DP . We call database for DP
a finite relational interpretation D of the relation symbols in schema of DP . Let
q be a query of arity n, expressed in the query language LDP accepted by DP ,
and let D be a database for DP . We denote by ans(q,DP, D) the set of n-tuples
of constants in Γ obtained by evaluating q in the database D, according to the
semantics of LDP .

To define the semantics of hyperpeers we resort to epistemic logic5. The
advantages of using epistemic logic instead of First Order Logic (FOL) are illus-
trated in [9]. In synthesis:

– While in the traditional FOL interpretation the whole is modeled as a flat
theory, in our setting peers are modeled as autonomous sites that exchange
information and the modular structure of the system is explicitly reflected
in the definition of its semantics.

– The new semantic characterization leads to a setting where query answering
is decidable, and polynomially tractable in the size of the data.

– The topology of the mapping assertions among the peers in the system is
not limited in any way. In particular, while in FOL acyclicity of mapping
assertions is often adopted in order to ensure decidability of query answering,
in our setting we do not need to impose such a limitation.

It should be noted that the resulting semantics is weaker than the one based on
FOL, but we argue that this is exactly the price to pay in order to get all the
above advantages.

The use of epistemic logic is based on the idea that P2P mappings are for-
malized as axioms of an epistemic logic theory. More precisely, a P2P system P
is formalized as an epistemic theory MP formed by one axiom of the form

∀x (K(∃y (bodycq1
(x,y))) ⊃ ∃z bodycq2

(x, z))

for each P2P mapping assertion cq1 ; cq2 in the peers of P. Intuitively, this
formalization of the P2P mapping assertions reflects the idea that only what is
4 In other words the constants in Γ act as standard names [19].
5 Technically we resort to epistemic FOL with standard names, and therefore with a

fixed domain, and rigid interpretation of constants [19].



known by the peers (denoted by the K operator) mentioned in the tail of the
assertion is transferred to the peer mentioned in the head.

Then, let a system database for P be a database formed by the disjoint union
of the various databases of the datapeers in P. Let a FOL model of P based on
a system database D be any FOL model for the disjoint union of the schema of
the peers in P, such that the extensions of the relations in the schemas of the
datapeers are those sanctioned by D. An epistemic model of P based on D is a
pair (I,W) such that W is a set of FOL models of P based on D, I ∈ W, and
(I,W) satisfies all the axioms of MP . In particular, the axiom

∀x (K(∃y (bodycq1
(x,y))) ⊃ ∃z bodycq2

(x, z))

in MP is satisfied by (I,W) if for every tuple t of objects in Γ , the fact
that ∃y bodycq1

(t,y) is satisfied in every FOL model in W implies that also
∃z bodycq2

(t, z) is satisfied in every FOL model in W.
Finally, given a query q over one of the peers P in P and a system database

D for P, we define the certain answers ansk(q,P,D) to q in P based on D, as the
set of tuples t of constants in Γ such that for every epistemic model (I,W) of
P based on D, we have that t ∈ ans(q, P, I), where we consider P as a datapeer
and I as a database for P .

3 Query answering in Hyper

In order to address query processing in Hyper, we start by defining a preliminary
transformation of a P2P system. Given a hyperpeer HP = (G, M), we break
each P2P mapping assertion cq ′ ; cq in M between a peer P ′ and HP in
two halves, introducing an auxiliary predicate r of the same arity as cq ′. We
then denote as qr the query cq ′ in the tail of the corresponding P2P mapping
assertion, and denote as Pr the peer P ′, i.e., the peer over which the query qr is
expressed. Then, we replace the mapping cq ′ ; cq by a local mapping assertion
{x | r(x)} ; cq (that has the form of a LAV mapping [18]) and a simplified
P2P mapping cq ′ ; {x | r(x)} (that has the form of a GAV mapping [18]). For
each peer HP , we call auxiliary alphabet of HP , denoted as AuxAlph(HP ), the
set of new predicate symbols thus defined.

Such a system modification transforms each hyperpeer HP = (G, M) in a
LAV data integration system (G,S,M) [18], where the global schema G is the
original schema G of the peer HP , the schema of the local sources S is constituted
of the set of auxiliary predicate symbols AuxAlph(HP ), and the mapping from
the local to the global elements is provided by the local mapping assertions
introduced above.

From the semantic point of view, the local mapping assertion is interpreted
(without involving the knowledge operator) simply as:

∀x r(x) ⊃ ∃y bodycq(x,y))

Informally, in each peer the local sources corresponding to the predicates in
the auxiliary alphabet are used to “simulate” the effect of the P2P mapping



assertions with respect to contributing to the data of the peer. It is possible to
show that this new formulation of a hyperpeer is semantically equivalent to the
original one.

We then define a distributed algorithm for answering queries in LU . Again
the algorithm proposed is a version of that in [9], suitably specialized for the
Hyper Framework. More specifically, we define the two main functionalities that
each peer must provide in order to answer a user query to any peer in the
system. Such functionalities are executed over a given source database D, which
represents the state of the datapeers when the query is issued by the user.

Each user query q to the peer P is the input of the extensionalQueryAnswering
of P . If P is a datapeer, this module simply activates the query answering service
of the datapeer to answer q. Therefore, in the following we assume that the
query q is posed to a hyperpeer P . In such a case, this module first initiates
a transaction, that is identified in the system by a unique transaction id, then
passes the query q to its own intensionalQueryAnswering. Such a functionality
returns a Datalog program DP (which involves queries to the datapeers of P).
The evaluation Eval(DP ) of such a program DP constitutes the answer set of
the query q.

The intensionalQueryAnswering computes the Datalog program corresponding
to the query q as follows:

1. first, a module computes the perfect reformulation of the query q with respect
to the local mapping assertions in the peer. This step consists of expressing
the query q over the schema of P in terms of an “equivalent” query q′ over
the local sources of P , i.e., in terms of the auxiliary alphabet AuxAlph(P ),
which corresponds to the well-known problem of query rewriting using views
[16, 18].

2. then, for each predicate r in AuxAlph(P ) occurring in such a reformulation:
(i) if the predicate r is generated by a mapping to a datapeer Pr, then a
special rule r ← qr : address(Pr) is added to the Datalog program. In such
a special rule, address(Pr) represents the URL of the node corresponding
to the datapeer Pr and qr is the query to Pr associated with the auxiliary
predicate r; (ii) if r is generated by a mapping to a hyperpeer Pr, then the
Pr.intensionalQueryAnswering(qr) is called and the resulting Datalog rules are
added to the Datalog program.

As concerns Eval(DP ), such a procedure executes the following steps: (i) the
procedure first retrieves the data corresponding to the extensional predicates of
the program DP as follows. For each extensional predicate r there is a special
rule r ← qr : address(Pr) in DP : the procedure asks the query qr to the node
Pr (whose URL is represented by address(Pr)); the answer set thus obtained
constitutes the extension of the predicate r. Let D be the EDB (i.e., the set
of facts) thus constructed; (ii) the Datalog program DP ′ obtained from DP by
deleting all special rules and adding the EDB D is evaluated in the standard
way.

We remark that, in order to guarantee that the intensionalQueryAnswering
never processes the same mapping query twice in the same transaction,



Algorithm P.extensionalQueryAnswering
Input: user query q ∈ LU to the hyperpeer P
Output: ansk(q,P,D)
begin

generate a new transaction id T;
DP := P.intensionalQueryAnswering(q, T );
return Eval(DP)

end

Algorithm P.intensionalQueryAnswering
Input: query q ∈ LU to the hyperpeer P , transaction id T
Output: Datalog program DP
begin

DP := computePerfectReformulation(q, P );
for each (predicate r ∈ AuxAlph(P ) occurring in the bodies of DP)

if (getTransaction(r, T ) = notProcessed) {
setTransaction(r, T, processed);
if (r is generated by a mapping to a datapeer)

DP := DP ∪ {r ← qr : address(Pr)}
else /* r is generated by a mapping to a hyperpeer */

DP := DP ∪ Pr.intensionalQueryAnswering(qr, T );
}

return DP
end

Fig. 1. Algorithms extensionalQueryAnswering and intensionalQueryAnswering in hyper-
peers

suitable checks are implemented through the procedures setTransaction and
getTransaction. More precisely, two different states are associated to each pred-
icate symbol r in AuxAlph(P ) with respect to the transaction T . If the state of
r with respect to transaction T is notProcessed, then the mapping query qr still
has to be processed in the transaction T , therefore the intensionalQueryAnswering
has to compute the answer to such a query. If the state of r with respect to trans-
action T is processed, then the mapping query qr has already been processed in
the transaction T , so the intensionalQueryAnswering does not process it again.
Of course, when a new transaction is started by the extensionalQueryAnswering,
all predicates are initially in the notProcessed state for such a transaction.

The two algorithms are reported in Figure 1. In can be shown that the result
returned by extensionalQueryAnswering invoked on a hyperpeer for a query q,
is exactly ansk(q, P,D), where D is the system database corresponding to the
extension of all datapeers.



4 Implementing the Hyper Framework on Grids

This section outlines how the Hyper Framework (as described in the previous
section) can be developed as an OGSA-compliant Data Access and Integration
Service. By implementing this standard, Hyper will exploit available, well sup-
ported and understood infrastructures. On the other hand, Hyper will be eas-
ily integrated with existing environments, implementations, and tools. Although
Grid and P2P computing are generally regarded as two different notions, we rec-
ognize that OGSA Grids provide a suitable infrastructure for P2P computing, in
that they allow nodes discovering, binding, and exchanging data the one another
in their environment, without hierarchical constraints. Furthermore, we believe
that P2P architectures address many interesting Grid application problems.

4.1 OGSA Data Services

Based on the Open Grid Service Architecture [13], Grid Data Access and In-
tegration Services (OGSA-DAI) [3] provide a reference architecture for data
integration in distributed and heterogeneous environments. Before introducing
OGSA-DAI, we summarize the basic Grid terminology and standards. The Open
Grid Service Architecture (OGSA) specifies a framework where Grid objects and
flows are designed as a set of standardized services and data models. Grid ser-
vices are characterized as state-full distributed objects that can be instantiated,
identified, searched, monitored, notified, and destroyed. By implementing OGSA
services, applications can be integrated within a distributed operating environ-
ment, and cooperate the one another. The Open Grid Services Infrastructure
(OGSI) [4] supplies a Web Services substrate for OGSA Grid functionalities,
while Globus Toolkit [2] provides an open source, reference implementation of
OGSI. Basically, OGSI Grid Services are Web Services that implement a set of
standardized interfaces to implement Grids. Currently, enhancements to OGSI
are being developed, based on the WS-Resource Framework [6], with the aim
of converging with the most recent developments of Web Service standards.
Anyway, Web based Grids can be viewed as special kinds of distributed object
systems, which leverage Web Services standards and machineries without intro-
ducing any further binding to hosting environments, thus obtaining an unprece-
dented world-wide interoperability of information systems. In the OGSI setting,
Grid objects (i.e., GridService instances) are created by invoking Factory Ser-
vices that provide them with network identity and binding information, based
on permanent handles (GSHs) and references (GSRs), which contain (possibly
changing) addressing data.

Furthermore, GridService instances maintain Service Data Elements (or
SDEs) that allow accommodating any kind of instance attribute, with standard
access, manipulation, and search methods. Also, clients can subscribe for notifi-
cations regarding changes of specific data elements.

Based on OGSA, the Data Access and Integration (OGSA-DAI) specification
details a service-oriented treatment of heterogeneous data sources, by modeling



GridService finds service instances, manages handlers and supplies data ser-
vices

DataDescription supplies data service descriptions (e.g. metadata)
RelationalDescription supplies relational metadata (e.g. tables and

columns names)
DataAccess manages data access

SQLAccess manages SQL queries
DataServiceFactory creates and configures GridService instances

SQLDataServiceFactory creates and configures SQL Data Service in-
stances

Fig. 2. DAI interface hierarchy

them as Grid services. The main purposes of OGSA-DAI are summarized in [3],
as follows:

– Integrate data sources and resources into OGSA-compliant architectures.
– Obtain information about data that may be distributed amongst several

heterogeneous database environments.
– Locate the data that may be distributed, or replicated, over many different

types of databases, the locations of which may not be known beforehand.
– Integrate data models that may be different on distributed databases.
– Find the databases that hold the required data and to be in a position to be

able to interpret that data.
– Access that data through uniform interfaces.
– Integrate data from various sources to obtain the required information.

In practice, Data Services are special kinds of GridService instances that
implement a suitable set of description, access, manipulation, and query inter-
faces. Data Services are qualified and described by specific SDE arrays, which
convey relevant information such as metadata for structured or semi-structured
databases. Interestingly, Data Services standardize and virtualize the access to
source metadata, as well as query interfaces, thus providing a powerful abstrac-
tion of the underlying database infrastructures. The OGSA-DAI proposal defines
three main WSDL interfaces (portTypes) for describing, accessing, and instan-
tiating data sources, called DataDescription, DataAccess, and DataSer-
viceFactory, respectively, which can be specialized to support different meta-
data structures or access methods (cf. Figure 2). This way, specific database
systems, such as RDBMS, can be wrapped by appropriate implementations of
DAI interfaces. Moreover, implementations can represent virtual views instead
of concrete sources, and, in turn, can get integrated by higher level virtual data
services. In brief, OGSA-DAI allow data providers wrapping data sources and
mediating their access, thus providing a virtualization mechanism in which dif-
ferent data models can be easily integrated.



Fig. 3. Hyper Data Services

4.2 Hyper Data Services

We will specify here Hyper Data Services (HDS) on the basis OGSA (DAI)
standards (c.f. Figure 3). From OGSA-DAI, HDS inherits:

– peer identity, which is provided by GSHs and GSRs
– peer discovery and binding
– peer typing, by means of specific SDEs
– extensional query answering services, for any suitable query language
– transaction identification for intensional queries, which relies of GSHs

First, we refer to generic DAI Service instances as nodes, which can be used as
data sources by HDS, with provision that they supply relational metadata access
services as well relational query services. We don’t require nodes exposing any
particular metadata format, or support any particular query language. Instead,
we assume that nodes provide enough information for accessing their relational
alphabets, where each relation is given, at least, a symbol and an arity. Nodes can
provide such kind of information trough their DataDescription data elements.
For instance, RelationalDescriptions [8], are likely to expose information
about relational schemas, including tables, columns, column types, and keys.
As such, they would allow dealing with relational metadata according to the
abstraction outlined above. Nodes will also provide extensional query answering
services with their standard means.

Then, we define hypernode any node that supports DataAccess methods im-
plementing the system-wide query answering algorithms described in Section 3.
With respect to the general P2P framework, hypernodes correspond to hyper-
peers, whereas nodes correspond to datapeers. Hypernode metadata will be ex-
posed with standard DataDescription ports, that is, WSDL portTypes with
no standard operations that provide a suitable structure of SDEs. Once again,
the format of hyper metadata could be one of those envisioned in DAI, as long
as it allows handling a basic relational alphabet. Extensional query services will
be supported by standardized DataAccess operations as well.



HyperAccess: intensionalQueryAnswering (IN trans, IN query, OUT
datalog, OUT fail)

– trans – the transaction identifier (GSH)
– query – the body of the intensional query (conjunctive query)
– datalog – the resulting Datalog program
– fail – an error code in case of abnormal termination

Fig. 4. intensionalQueryAnswering operation

The binding to DAI metadata and access methods that characterize a spe-
cific hypernode (e.g. Relational, XML) is called hypernode’s flavour. For each
supported flavour, a conversion from the specific access language to the hyper-
node internal relational metadata will be implemented. This will guarantee a
seamless integration of hypernodes with any other agent in their Data Grid en-
vironments. At the current stage, only an SQL flavour is being designed, but
future developments could include other flavours, such as XML.

As mentioned above, extensional DataAccess operations will rely on stan-
dard DAI methods. Intensional queries, on the other hand, will require a specific
support. This will be provided by the HyperAccess portType, which is an ex-
tension of DAI DataAccess. Therefore, hypernodes will support two DataAc-
cess ports, which is allowable in DAI infrastructures. HyperAccess defines a
single operation, named intensionalQueryAnswering (cf. Figure 5).

When a query is issued against a hypernode (cf. Figure 5), a transient
DataAccess service is created, which allows accessing the result set of the
query according to the node’s flavour. The GSH of the newly created service
identifies the query session. The inquired node examines the query against its
internal mapping structure, and lists out nodes that are relevant for answering
the query, or some of its parts. Each mapped node that is a hypernode (this can
be checked at run time by accessing the node service metadata), is inquired with
an intensional query, which takes as input the session GSH and the query frag-
ment which is relevant to the mapped node. Recursively, the mapped node will
invoke intensional query operations on the hypernodes, according to its map-
pings. Note that the evaluation of cycles in mappings can be stopped thanks
to the session GSH, which allows nodes detecting if an intensional query that
has already been answered is issued back because of a cycle. The distributed
intensional query process results in a Datalog program, which is evaluated by
the node where the query was originated. This evaluation results in Grid-wide
data access plan, that is, a list of extensional queries to be posed to other nodes
in the Grid in order to get the integrated response. Finally, each relevant data
node will be inquired through its standard extensional query interface, and the
global result will be made available to the access service associated to the query
session.



Fig. 5. Interaction among peers during query answering: an example

5 Conclusions

In this paper we have presented Hyper, a joint research initiative of Università
di Roma “La Sapienza” and IBM Italia, which aims at developing a Data Grid
integration system based on peer-to-peer schema mappings, which resorts on
epistemic logic for providing a semantics for the mappings among peers. Also,
we have presented an OGSA-DAI extension defining data services (hypernodes)
which are capable of integrating any other standard data service in a Data Grid.
Thanks to the peer-to-peer architecture, hypernodes can enter and leave the
Grid, or change their own structure, without enforcing any change neither in
other Grid participants, nor in “analyst” nodes. In fact, they get integrated
in the overall information system, as far as other hypernodes are interested in
establishing and maintaining a mapping with them, in a unsupervised manner.
Of course, uncontrolled dynamics in a Hyper Data Grid would cause dangling
mappings. However, this would only affect the information completeness, without
breaking the system functionality.

Differently from simple key-based Semantic Overlay Networks [11], Hyper
does not enforce any “clustering” based on shared conceptual structures cover-
ing the entire Grid semantics. Of course, Hyper is concerned with high quality
query answering on complex structured data, and should not be compared with



performance-oriented infrastructures dealing with loosely structured informa-
tion. With respect to enhanced, semantically rich, and self-organizing Semantic
Overlay Networks such as [7], or similar data management infrastructures such
as [17], Hyper uses a simple relational language for expressing both schemas and
mappings, rather than new class-based languages like RDFS and OWL. This way,
Hyper facilitates the exploitation of well-supported industrial standards such as
OGSA-DAI, and allows for a smooth integration of legacy business databases.

Many relevant aspects of a complete P2P data integration environment are
not addressed in our system so far. Above all, we would mention the problem of
individual mapping [22, 12], i.e., how to handle the identity of values denoted by
different constants in different peers. If referred to objects denoted by network-
wide identifiers (e.g. URIs), such a referential consistency could be ensured by
a suitable “instance mapping” mechanism. This problem, however, is not ad-
dressed in our current framework.

Another open issue is that of discovering metadata correspondences, with
the purpose of facilitating (at best, automating) the creation of metadata map-
pings. Simple relational metadata schemas, such as those considered here, would
give just a little support to such a discovery. The adoption of rich ontology
languages, such as those conceived for Semantic Web [1], if supplemented with
good lexicalizations and links to reference ontologies (e.g. WordNet) would give
an appropriate support to such a discovery. The way metadata mappings are
established, however, is out of the scope of the Hyper Framework.

Acknowledgments

This research has been partially supported by the projects INFOMIX (IST-2001-
33570), SEWASIE (IST-2001-34825) and INTEROP Network of Excellence (IST-
508011) funded by the EU, by the project “Società dell’Informazione” subproject
SP1 “Reti Internet: Efficienza, Integrazione e Sicurezza” funded by MIUR –
Fondo Speciale per lo Sviluppo della Ricerca di Interesse Strategico, and by
project HYPER, funded by IBM through a Shared University Research (SUR)
Award grant.

References

1. W3C semantic web, 2001. www.w3.org/2001/sw.

2. The globus alliance, 2004. www.globus.org.

3. Open grid services architecture data access and integration, 2004.
www.ogsadai.org.uk.

4. Open grid services infrastructure, 2004. forge.gridforum.org/projects/ogsi-wg.

5. The semantic grid, 2004. www.semanticgrid.org.

6. The ws-resource framework, 2004. www.globus.org/wsrf.

7. K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt. Gridvine: Building
internet-scale semantic overlay networks. Technical Report IC/2004/38, EPFL,
2004.



8. M. Antonioletti, A. Krause, S. Hastings, S. Langella, S. Malaika, J. Magowan,
S. Laws, and N. W. Paton. Grid data service specification: The relational realisa-
tion. Technical report, DAIS Working Group, 2003.

9. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations
of peer-to-peer data integration. In Proc. of the 23nd ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 2004), 2004. To appear.

10. L. Camarinha-Matos, H. Afsarmanesh, C. Garita, and C. Lima. Towards an archi-
tecture for virtual enterprises. J. Intelligent Manufacturing, 9(2), 1998.

11. A. Crespo and H. Garcia-Molina. Semantic overlay networks for P2P systems.
Technical report, Computer Science Department, Stanford University, 2002.

12. A. Doan, Y. Lu, Y. Lee, and J. Han. Profile-based object matching for information
integration. IEEE Intelligent Systems, 18(5):54–59, 2003.

13. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration. In Open Grid
Service Infrastructure WG, Global Grid Forum, 2002.

14. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications, 15(3), 2001.

15. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration.
In Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99), pages 67–73.
AAAI Press/The MIT Press, 1999.

16. A. Y. Halevy. Answering queries using views: A survey. Very Large Database
Journal, 10(4):270–294, 2001.

17. A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: data management
infrastructure for semantic web applications. In Proc. of the 12th Int. World Wide
Web Conference (WWW 2003), pages 556–567, 2003.

18. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

19. H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. The MIT Press,
2001.

20. P. McBrien and A. Poulovassilis. Distributed databases. In M. Piattini and O. Diaz,
editors, Advanced Database Technology and Design. Artech House, 2000.

21. N. Paton, M. Atkinson, V. Dialani, D. Pearson, T. Storey, and P. Watson. Database
access and integration services on the grid. Technical Report UKeS-2002-03, UK
e-Science Programme, National e-Science Centre, 2002.

22. G. Zhou, R. Hull, R. King, and J.-C. Franchitti. Using object matching and
materialization to integrate heterogeneous databases. pages 4–18, 1995.


