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Abstract—For service and mobile operators, it is important
to monitor and keep high user engagement levels. Quality
of Experience (QoE) on video streaming applications is an
important engagement measure for video consumer customers.
In this paper, video QoE (with the focus on stalling events)
is studied from network, application, and energy perspectives
with various instrumentations on a smartphone. This enables the
understanding of inter-relation between the perspectives and also
how they influence the video QoE. Results show that packet delay
variation and the maximal burst size in the network level; inter-
picture times in the application layer; and also fluctuations in
the energy consumptions are strong indicators for QoE. Enabled
by extensive QoE experiments and energy measurements on
smartphones, we obtain a set of telling QoE models capturing
the impact of jitter and freezes, and quantifying the insights that
energy consumption can be both reduced or increased in the case
of stalling events during a video stream.

Index Terms—QoE, QoS, Energy, Mobile, Video

I. INTRODUCTION

Mobile video streaming traffic has exceed 50% of the
world’s mobile data traffic in 2012, and it is expected to be
three-fourths of the world’s mobile data traffic by 2019 [1]
thanks to the 4-and-beyond-G radio access technologies, which
have raised the perceived quality of video streaming applica-
tions and services. The degree of delight or the annoyance,
here of a user of a particular video streaming service, is named
Quality of Experience [2]. There is high competition amongst
the operators with the aim to enable the highest QoE levels
on the used video streaming services, which is important to
increase revenues. QoE is related to many influential factors
including the network, application, and energy on the end
user device. The influential factors of QoE from different
perspectives as well as the inter-relation amongst them needs
to be well understood, in order to actuate high QoE levels,
which is typically done on network level by ISPs.

In this paper, we present important findings in our pre-
vious work [6] [7] [4] [9]. Some of the influential factors
in smartphone-based video QoE are studied from different
perspectives such as network, application, and energy. We also
discuss the inter-relation in-between different layers in the
Internet stack. As an analogy, one can imagine a heavy traffic
jam at a highway during a peak hour such that the vehicles
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consume fuel at a stand-still state. This is a situation where
the cars barely move, and at the same time consume fuel as
the engines are still running. The same applies to a video
streaming application on a smartphone in communication
networks domain; the video streams are stalled occasionally
due to the Internet packet latency in the mobile network caused
often by coverage issues or heavy load, e.g., a high number
of users in the mobile network cell. This might eventually
increase energy consumption at the end user’s side. This paper
focuses on the stalling, as previous research shows that it is
one of the most important influential factor on video QoE
[13]. In this paper, we study the energy perspectives of QoE
together with the network and the application as all of these
have complex inter-relationships between each other.

The paper is structured as follows. In Section II, we present
some of the important influential factors belonging to afore-
mentioned perspectives. Sections III-V present instrumentation
for and modeling of QoE, for mobile video streaming, from the
network, application, and the energy perspectives, respectively.
The conclusive remarks from our studies relating the QoE to
network, application and energy are given in Section VI.

II. INFLUENTIAL FACTORS ON MOBILE VIDEO QOE

The degradation of QoE levels in cellular-based video
streaming is often, although not necessarily, caused by degra-
dation of QoS level in the radio network level. A high packet
latency caused by a heavy load in the network cell influences
the delivery of video data, e.g., the received throughput on
the smartphone. For example, the choice of a transmission
protocol might influence the energy consumption when there
is a problem in the network. If a video packet has not been re-
ceived within a particular time window, then the video packets
are re-transmitted from the source video server, which in turn
might cause video packets to be accumulated in large queues
at the radio link, e.g., in the base stations. This impacts QoE
indirectly in many aspects including user’s monthly data usage
offered by the network operator, the presentation of the video
content to the user in the video streaming application, and the
energy consumption of the device due to increased duration
of the cellular network module’s active state. Increased mobile
data usage caused by re-transmission of video data may impact
QoE as it may increase the monthly data cost for customers.
The presentation of the video content to the end user through



Fig. 1. QoE related expressions obtained via DRM and online surveys. [4]

the user interface, i.e., the device screen, is also interrupted and
manifested as stalling events, which in turn degrade the video
QoE of users. The increased energy consumption indirectly
affects the QoE, especially in battery powered mobile devices,
as the increased energy consumption reduces the operation
time of a device with the increased drain of energy from the
battery. Thus, saving energy on smartphones can both increase
the operation time of a smartphone, and also contribute in
greening the network.

The word cloud shown in Fig.1 is constructed based on
the frequency of the words obtained from 29 users via 376
expressions in Day Reconstruction Method (DRM) weekly
interviews (conducted in the lab) as well as 430 entries in the
online survey [4]. DRM is a method to help users to provide a
feedback on the perceived experience within the last 24 hours
at each recalled activity on the smartphone. The most frequent
keyword is ‘battery’ (consumption) on smartphones, which
is followed by other keywords relating to mobility, Internet
performance (e.g., ‘slow’, ‘freeze’), camera, Flash Player, etc.
The coding and grouping of the words are performed by two
researchers with expert knowledge, with an agreement rate of
a 90 %. The inter-relation between the influential factors on
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Fig. 2. Inter-relation between the influential factors on QoE.

QoE is depicted in Fig. 2. The indicative metrics regarding the
network, application, and energy aspects are discussed next.

III. QOE STUDY IN THE NETWORK

We study the video QoE with respect to the metrics mea-
sured directly at the network level. According to the IQX
hypothesis [5], the change of QoE caused by a change of
Quality of Service (QoS) depends on the current level of QoE,
which is pointing at QoE as an exponential function of QoS.
We have implemented and deployed a measurement Linux
kernel module on the Android device. This measurement
module records the timestamp when the video packets arrive at

the smartphone terminal. In addition, the measurement module
is also deployed on the media server such that the timestamps
when the video packets leave the media streaming server are
also recorded. This is implemented on top of a User Datagram
Protocol (UDP) tunnel such that at the server side, metrics such
as the sequence number and the time stamp of the departing
packets are appended to the UDP tunnel header and then
sent to the receiving end. Once the packet is received at the
smartphone terminal, these two metrics are decapsulated. This
way, the end-to-end delay as well as delay variation during
a video stream is measured, and then matched to the video
QoE. QoE is measured via the 5-level Mean Opinion Score
(MOS) scale. The communication between the kernel and the
user space are done via a UDP socket communication. One-
way-delay of one packet Dn is calculated by the subtraction
of the departure timestamp TS,n from the arrival timestamp
TR,n obtained at both ends of the communication channel as
shown in in Eq. 1.

Dn = TR,n − TS,n [ms] (1)

PDV =

���� 1

N − 1

�
N�

n=1

(Dn
2)−ND

2

�
[ms] (2)

where Dn is the one-way delay, D is the average delay, and
N is the number of packets per second. PDV is updated each
time a packet arrives as shown in Eq. 2.

As a streaming server, an Apple Darwin Streaming Server
(DSS) framework is installed on a fixed PC running Linux
with kernel version 2.6.27, and the video is streamed using
the Real Time Streaming Protocol (RTSP) protocol. The video
is encoded with 24 fps, and 325 kbps. The streamed video is
displayed on a 240 × 180 pixels screen on the smartphone
terminal.

In Fig. 3, a snapshot of a part of a video streaming is
illustrated. The measured Packet Delay Variation (PDV) values
and the user rating (UR) values are given in time series. It
reveals that a user is reluctant to give high user ratings when
the video quality improves, but reacts immediately with a poor
user rating when the quality degrades.

The benefit of using the Exponential Weighted Moving
Average (EWMA) techniques on human perception statistics
is further studied in the scope of memory effect, as the current
QoE of a user highly depends on the previous QoE [11]
[12]. Inclusion of the remaining effects of the previously
obtained outputs into the calculation of the current output
is made possible by the EWMA approach (as computed in
Eq. 3). PDVEWMA(i) is the current (at ith interval) expo-
nential weighted moving average PDV, PDVEWMA(i− 1) is
the previous exponential weighted moving average PDV, and
PDV (i) denotes the current PDV value. α is typically set to
0.25.

PDVEWMA(i) = (1− α) · PDVEWMA(i− 1) + α · PDV (i) (3)

When obtaining the User Rating (UR), EWMA is used for
computing the correlation of instantaneous user perception
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Fig. 3. Timeseries illustration of the video packet delay variation measured
at the mobile video client device. [6]

against the current and the previous QoS metrics. Thus, we
imitated the human perception by using EWMA on PDV
values [11].

We used a user interface similar to Fig. 4(a), and asked each
user to rate the video quality by using one of the five buttons
located in the user interface at own will while the video is
being streamed. There were in total 15 participants in the
study, and they were asked to watch the video as they have
being watching it in daily life settings.

Various video packet queues on the way from the streaming
server to the video player might cause the PDV. Moreover, the
3G operator contributes to increases in PDV by attempting to
compensate packet loss by retransmissions. In addition, TCP,
while trying to recover from lost packets, might amplify the
PDV. This might yield bursty packet traffic causing stallings.
For this reason, we study the packet delay variation in another
metric called Maximal Burst Size (MBS). This measures the
amount of packets being received at a smartphone terminal in
a short time interval. We assumed that this way the abnormal
bursty behaviour of the video streaming traffic via 3G can
better be captured.

First, we observe that the UR obtained at a given time is
strongly impacted by the previously measured PDV values
as expected. The power-law model fitted better (with a R2

value increased by 0.1) than an exponential IQX-type one [5].
Furthermore, the goodness-of-the-fit value R2 for the power
model is improved by over 100% when the EWMA technique
is applied. We obtained the models for the relation between
the PDV and the MOS that is strengthened via EWMA as
given with Eq. 4.

UR = −9.10 (PDVEWMA/ms)0.08 + 16.18, (4)

The relation between the UR and the MBS is also studied, and
observed that the peaks in the number of transmitted packets
per given time interval have a negative impact on the UR. This
can be explained by the fact that large MBS values indicate
a ON/OFF behavior. In this case, when there is no available
bandwidth the packets are queued, and then flushed all at once,

causing a stall in the video streaming application. Eq. 5 shows
the obtained model with respect to the MBS and the MOS
with a better (R2 = 0.78) goodness-of-fit as compared to Eq.4
(R2 = 0.68).

UR = 59.96MBS
−0.036
[packets/ms] − 51.71 (5)

In order to find out the influential factors on video QoE, we
investigate at a level in the Internet stack that is closest to the
user. Typically, the user interface level is where a particular
service is sensed and experienced by a human user.

IV. QOE STUDY IN THE APPLICATION

In the application, we consider the user interface, the
point where the user interacts with a video streaming appli-
cation/service. Measurement points are deployed at relevant
parts of the open-source VLC video player application code
base such as the recording of timestamps when the video
frame is rendered and displayed on the video screen. This
modified version is called VLQoE. Then, the inter-frame (or
inter-picture) time during a video stream are computed. The
deviation of the inter-picture times are then matched to the
perceived video QoE. We measured and quantified QoE with
opinion scores that are collected at user’s own will while the
video is being streamed. We conducted the measurements on
an Android device.

The users in this study are asked to watch a 250 seconds
long video clip that consists of various scenes including racing
scenes of sailing boats. The video clip contains a sequence of
6251 pictures and is encoded with a nominal frame rate of
25 fps with a bitrate of 1000 kbps. The same video is watched
twice (first with RTSP, then with Hypertext Transfer Protocol
(HTTP)) by each user on a smartphone (with a video screen
size of 196×117 pixels, which is provided to them. Each user
was encouraged to rate the temporal quality based on the five-
level MOS scale, while pressing one of the five user rating
buttons at her/his own will during the playout. In addition, a
‘freeze’ button is horizontally placed on top of the five buttons
at the user interface. The user interface used in the experiments
is given in Fig. 4(a).
30 subjects performed the study at various location in

Karlskrona, Sweden by using exactly the same smartphone.
In total, 60 (= 30 users × 2 protocols) user experiments were
conducted. We asked the users to hold the smartphone at a
comfortable distance with convenient illumination level, i.e.,
at a familiar physical context as in daily life. This way, we
imitiated peoples’ natural daily life settings in the subjective
tests. The video was muted such that the users could focus
only on the visual freezes. A visual freeze can be measured at
the user interface with an inter-picture timeDp, as the time gap
between two consecutive pictures displayed on the smartphone
screen. This is calculated in Eq. 6. Tp(k) is the timestamp
when the kth picture is displayed on the smartphone screen.
An illustration of the Dp metric during a video stream is given
in Fig. 4(b).

Dp(k) = Tp(k)− Tp(k − 1) (6)



(a) VLQoE tool user interface.

(b) Inter-picture time measurements.

Fig. 4. (a) presents the user interface of VLQoE tool; (b) illustrates the
inter-picture time measurement. [7]

The distributions of the inter-picture time values for the user
ratings 1− 5, as well as freeze indications collected from all
users, are given in Fig. 5. The corresponding mean Dp values
for ‘UR 5’, ‘UR 4’, ‘UR 3’, ‘UR 2’, ‘UR 1’, and ‘freeze’
are 152ms, 282ms, 321ms, 768ms, 831ms, and 1289 ms,
respectively. Van Kester et al. [10] state the acceptable freezing
duration as 360ms, which also confirms our results when
considering an acceptable UR of 3.

By using the VLQoE tool, we assumed that a 3G video
stream follows a two-state ON/OFF model. The ON (smooth
playout) and OFF (freeze) states are set based on the Dp met-
ric. We considered the state-of-the-art 100ms as the maximum
tolerance threshold for a user to feel that a system reacts
instantaneously [3]. Then, Dp values less than 100ms are
assigned to an ON state; while the Dp values higher than
100ms are assigned to an OFF state. The state durations were
modeled by exponential distributions. The mean Maximum
Likelyhood Estimate (MLE) of ON and OFF durations for all
58 iterations were calculated as 9.7 s and 642ms, with mean
R2 values of 0.81 and 0.93, respectively. This model will be
applied for controlled local-based video streams in the user
tests as described in Section IV.

V. ENERGY AS AN OBSERVABLE METRIC FOR QOE
INDICATION

Amongst many other influential factors, energy (and partic-
ularly the remaining battery level of a smartphone) is one of
the most important ones that influence the overall QoE of a
smartphone user [4]. And energy is highly consumed in video
streaming applications due to (1) the high bandwidth demand,

Fig. 5. The distribution of inter-picture times in between two user indications
are given for all five UR scores. [7]

keeping the network module in its active state for long
durations; (2) high CPU utilization for processing/rendering
the multimedia packets; and (3) good-enough screen illumi-
nation for a clear presentation of video content on a battery-
powered smartphone display. For these reason, it is important
to understand the energy consumption patterns during a video
stream and how these patterns are influenced when there are
video quality issues such as stalling events.

By using the VLQoE tool, the inter-picture time during a
video stream is measured. In parallel, the Monsoon energy
measurement tool is used to measure the total instantaneous
power consumption of a smartphone terminal. Then, the re-
lation between the power measurements and the freezes are
observed. Fig. 6 illustrates a snapshot, during a video stream,
of the relation between the inter-picture time and the total
power consumption of smartphone. Phase 1 is the low power
state, can also be called as the initial rebuffering state where no
pictures are yet displayed on the screen, of the video stream.
Phase 2 is the steady playout state. It is observed that the high
inter-picture OFF time causes a slight reduction in the power
consumption values. The reason for this is that the video stalls,
as there are no packets to present on the smartphone screen.
Thus, there is a direct relationship between the inter-picture
time and the duration of the power consumption staying at a
rather lower level.
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Fig. 6. Illustration of the power consumption and the inter-picture time
values during video streaming. [8]

Indeed, Fig. 6 is a high-level sketch of a smartphone’s power
consumption pattern when there is a stalling event during a
video stream. We hypothesize that freezes actually can cause
either an energy saving or an energy waste depending on the



transmission protocol. In the case of a freeze during a video
stream, if there is a packet retransmission initiated by the
underlying Transport Control Protocol (TCP) connection, then
all the video content is shown to the user with an extended
view duration, which implies an increased energy consump-
tion. During the freeze time, energy is still being consumed
by CPU, AMOLED display, and the current power state of
the radio data module. Thus, the energy consumed during
the stall duration must be considered as wasted. Therefore,
the smoother the video playout, the lower the total energy
consumption and the higher the QoE.

In contrast, if there is no retransmission to compensate the
lost packets, such as in video streams established over UDP,
then there is a picture jump, which causes some content to be
skipped, but leaves the total video view duration unchanged.
The energy drop during a freeze duration can be considered
as saved energy. However, the freezes influence the QoE of
a user during a video stream in an unfortunate way. Thus,
in the case of a video transmission with skipped pictures,
there is a tradeoff between the energy saving and the MOS.
It is important to find out the maximum saved energy without
impacting QoE. For the case of video streams, where there
is no picture jump, the waste of energy increases with the
duration of a freeze. Thus, for the latter scenario, it can be
said that the better the streaming quality, the less energy is
wasted. The two scenarios are illustrated in Fig. 7.











































 



(a) Streaming with re-transmission and without content loss.






































(b) Streaming without re-transmission and with content loss.

Fig. 7. Illustration of the power consumption on a smartphone with freeze
scenarios. [9]

Next, the amount energy waste and the energy savings for
the two scenarios are computed by considering QoE models.
The procedure that is followed during the video experiments
is given in Fig.8. Each user is asked to watch three versions of
the same video content in a raw, and are asked to give a MOS
score at the end of each video. The film clip was three minutes
long, with a 6 Mbps bitrate and 25 fps, and converted into MP4
multimedia format. The video is streamed via the local drive







  



































Fig. 8. Video QoE experiment procedure. [9]

of the smartphone to enable controlled experiments. We em-
ulate the ON/OFF exponential model obtained in Section IV,
which means that play and freeze durations are exponentially
distributed over the video session. The mean OFF duration is
set to 2 s with varying mean ON durations of 4 s, 8 s, and 16 s.
The first version of the video is the original one that has no
temporal distortions (scenario 1); the second version contains
freezes and the video pictures are not skipped (scenario 2); and
the third version also contains freezes and the corresponding
video pictures are skipped (scenario 3). The three versions
of the videos are shown to the user in random order, and
in-between each video session, the user is asked to rate the
video quality of the previous film clip. After the user registers
the MOS score, she is asked to watch a gray screen for 15
seconds on the smartphone to reduce the memory effect. In
total, 60 users were involved in the study. We computed the
OFF probability POFF as the ratio of the mean OFF state
duration to the sum of the mean ON and OFF state durations.
Then, the relation in-between the POFF and the MOS scores
are computed.

In total, it was observed that, with the presented settings in
the experiment, there was no statistically significant difference
in QoE, regardless of whether or not skips follow freezes. The
important factor that influences the QoE is whether or not a
freeze happens. Thus, we merge the data for scenario 2 and
3, i.e., the scenarios involving freezes regardless of the fact
that the pictures are skipped or not. When the POFF values are
fitted to the MOS scores, an exponential relation is obtained
in Eq. 7 with R2 = 0.73:

MOS = 4.59e−3.44·POFF (7)

= 4.59e−3.44·Tfreeze
Tvideo . (8)

Eq. 8 can further be used to calculate the relation between
the energy saving or energy waste, as both are highly related
with the ratio of the total freeze duration to the whole video
duration, cf. Fig. 7. The power saving during a freeze Psaving
is measured to be 185mW, and the total freeze duration Tfreeze
can be further substituted with Esaving

185 mW , yielding the model
expressed by Eq.9, where the total video duration Tvideo is
three minutes in the experiment setup.

MOS = 4.59 · e−18.59
Esaving/J
Tvideo/s . (9)

With this tradeoff model between the MOS and the energy



saving, at most 4.25 J can be saved while keeping the MOS
level at 3.

The power consumption during a freeze Pfreeze is measured
to be 728mW. Applying similar calculations to model the
relation between the MOS and the energy waste, Eq. 10 can
be obtained showing that the MOS degrades further with the
increase in the energy waste caused by a freeze:

MOS = 4.59 · e−4.72Ewaste/J
Tvideo/s . (10)

We can conclude that the amount of energy saving in a three
minutes long video stream is insignificant for a commercial
smartphone with battery capacity of 9.88 Wh. Throughout ex-
tensive energy measurements on the smartphone, we identified
potential scenarios where energy saving might be possible
and we recommended approaches to increase energy saving
while maintaining QoE. It has shown, for TCP-based streams,
that a lower total energy consumption can be achieved with a
smoother video playout causing in parallel a higher QoE. In
contrast, for UDP-based streams, there is a tradeoff between
the QoE and the energy saving, i.e., the stalling events both
decrease QoE and the energy consumption.

VI. CONCLUSION

In this paper, we have presented various studies on video
Quality of Experience (QoE) from different perspectives such
as network, application, and energy. Starting on the network
level, we have identified the Packet Delay Variation (PDV) and
the Maximal Burst Size (MBS) metrics as strong indicators of
QoE. Although an exponential IQX-type of model represented
the relation between QoE and QoS well, a power-law model
was found to yield a slightly better QoE model for both PDV
and MBS. A major improvement was reached by incorporating
exponentially weighted moving averages into the calculation
of the corresponding network-level parameter.

Turning to the application level, we quantified stalling via
inter-picture times trespassing a given threshold (100 ms).
The corresponding instrumentation was done by modifying the
open-source VLC player for Android OS. Indeed, the inter-
picture time of a 3G-based video stream could be modeled
by a two-state exponential ON/OFF model with a mean OFF
value of around 600 ms and a mean ON value of around 10 s,
respectively. We obtain a QoE model as a function of the freeze
or OFF probability POFF, measured at the user interface.

Through extensive energy measurements on the smartphone,
we were able to relate QoE to energy consumption. We
leveraged QoE models that the impact of stallings at the user
interface, which then allowed to relate QoE to energy waste
and savings on the smartphone. It was shown for TCP-based
streams that a lower total energy consumption can be achieved
with a smoother video playout, which comes along with higher
QoE. In contrast, for UDP-based streams, there is a tradeoff
between the QoE and the energy saving, i.e., the stalling events
both decrease QoE and the energy consumption. However, the
achievable savings are in no proportion to the potential loss
of QoE.

One of our main findings is that smoother video delivery
yields both better QoE and better energy efficiency in case
of retransmission-based video streams. The QoE of a video
streaming application/service highly depends on the network
level QoS metrics including the packet delay, throughput, etc.
Thus, the most obvious way of monitoring and preventing poor
video quality is via QoS management by an Internet Service
Provider (ISP), e.g., with smart scheduling and increasing
bandwidth. However, due to the wide variety of video stream-
ing applications with different streaming characteristics and
over-the-top streaming protocols, it is hard to pinpoint a low
QoE level by solely relating it to the QoS metrics collected in
the network level. As future work, collaborative data analytics
and machine learning techniques can be suggested to study
many cross-layer metrics simultaneously to predict quality
degradations in advance, and to actuate timely robust decisions
to improve QoE and to save energy for smartphones at the
same time.
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