
XMPP-based Network Management infrastructure

for agile IoT application deployment and

configuration

Enrico Ferrera1, Davide Conzon2, Paolo Brizzi3, Lucas L. Gomes4,
Marc Jentsch5, Peeter Kool6

1,2,3Istituto Superiore Mario Boella (ISMB), Torino, Italy
4Federal University of Pernambuco (UFPE), Recife, Brazil

5Fraunhofer FIT, Schloss Birlinghoven, St. Augustin, Germany
6CNet Svenska AB, Stockholm, Sweden

e-mail: 1,2,3{ferrera, conzon, brizzi}@ismb.it, 4lucas.gomes@gprt.ufpe.br,
5Marc.Jentsch@fit.fraunhofer.de, 6peeter.kool@cnet.se

Abstract—The computing technology ecosystem is today facing

with the Internet of Things (IoT) innovation, driven by radical

technological and methodological changes, which include

communications paradigms among devices as well as instruments

to enable the creation of added-value services on top of them.

Although a number of platforms are today available to address the

IoT needs at different level, few of them tackle the issue of rapid

deployment and simple configuration. This paper focuses on those

needs, providing the description of the Software Development

Platform (SDP) developed within the IMPReSS EU project,

particularly focusing on the Network Management infrastructure

and the commissioning infrastructure. The latter supports the

configuration and mashup of the different components of the IoT

platform, while the Network Management infrastructure provides

instruments for network monitoring and setup, based on the use of

the eXtensible Messaging and Presence Protocol (XMPP).

Furthermore, the paper describes other components of the

IMPReSS SDP, which interact with the Internet-of-Things

Platform’s Infrastructure for Configurations (IoT-PIC): the

Resource Adaptation Interface (RAI), which virtualizes the devices

connected to the network, and the framework for Model-Driven

application design, which has been developed to support actual

developers in the discovering and composition phases of IoT

services design.

Keywords— Internet-of-Things; IMPReSS; Network

Management infrastructure; Commissioning Interface; Model

Driven Development; XMPP

I. INTRODUCTION

In the recent past, many researches have been carried out
around the concept of Internet-of-Things (IoT). The holistic
interaction among entities such as objects, systems, services and
people, as prescribed by the IoT paradigm, represents the basic
infrastructure on top of which is possible to develop complex

platforms enabling a smarter environments and society. A
plethora of research projects focuses on new and advanced
platforms [1], providing more and more smart features for many
different purposes, from Smart Energy [2] to Smart City [3]
applications. In spite of the generic finality, existing IoT
platforms are often designed to reach specific objectives and
they lack of an easy and customizable way for instructing them
properly to perform a given task.

The level of usability and the simplicity of current IoT
platforms is quite low. The amount of complexity can be usually
afforded only by people having enough programming skills.
Filling this gap, providing means that ease the platform settings
even by non-technical users, is considered a major challenge in
the IoT panorama [4]. Within this scenario, the cooperative
European-Brazilian project named IMPReSS [5] try to tackle
this topic, since its objective is to make easy the realization of
any kind of IoT applications that embrace the concept of “smart
society”. More specifically, IMPReSS aims at realize a so called
System Development Platform (SDP), which enables rapid and
cost effective development of systems involving the Internet-of-
Things and Services and, at the same time, facilitates the
interplay with users and external systems. Such kind of platform
provides components and tools, which are designed to be more
general-purpose possible, as well as easy to be integrated and
used. Among the solutions developed in IMPReSS SDP, this
paper will focus on the Internet-of-Things Platform’s
Infrastructure for Configurations (IoT-PIC). The aim of IoT-PIC
is to extend the concepts of traditional network planning and
management to IoT networks. It provides basic means for
arranging, configuring and monitoring sub-components of an
IoT platform, so that it can perform specific tasks, implementing
specific applications and services. In other word, the proposed
framework provides an easy-to-use model-based approach for
the commissioning of general-purpose IoT platforms. With the
term commissioning, the authors mean the logical deployment
of available IoT platform sub-components necessary to instruct
the platform about the workflow for implementing a specific
application. Besides the commissioning, IoT-PIC allows to read

This work is part of the collaborative project IMPReSS, Intelligent System

Development Platform for Intelligent and Sustainable Society, co-funded by

the European Commission within the 7th Framework Program, FP7-ICT-2013-
EU-Brazil, Grant Agreement no. 614100.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

120

and set the parameters of each component of an IoT platform.
Specifically, IoT-PIC provides these features using the XMPP
protocol, an open standard originally designed for instant
messaging, which has several extensions that makes it suitable
for its use in the IoT scenario. Leveraging XMPP protocol is
possible to monitor the status and availability of software and
hardware modules belonging to the IoT platform. The
architectural design of the proposed infrastructure is such that it
can be used with different IoT platforms solutions.

The paper is structured as follows. Section II reviews related
works about commissioning tools and traditional network
management protocols, from which IoT-PIC took its basic
requirements, adapting and extending them to the IoT world. In
Section III, the IMPReSS SDP is briefly introduced. Section IV
describes the IoT-PIC in its architecture and functionalities.
Section V provides details about the IMPReSS components
directly connected with the IoT-PIC, including the RAI and the
IoT-PIC GUI. In Section VI an use case for the SDP is described.
Section VII presents the result of an evaluation test done on the
platform. Finally, in Section VIII, conclusions and future works
are discussed.

II. RELATED WORK

This section presents a State-of-The-Art (SoTA) of solutions
related to the one presented in this paper. Firstly, a list of
commissioning tools are presented, then the main protocols
related to network management are introduced.

A. Commissioning tools

The lack in the SoTA about commissioning procedures and
tools for IoT networks is that, usually, those platforms are
programmed to deal with for specific tasks and reach specific
objectives. Furthermore, the availability of fully automated tools
is limited. While deploying an IoT application, the user usually
needs programming skills to manage a huge number of
configurations, customizations and integrations, which are
highly prone to systemic or human errors. Therefore, the
disposition of complex IoT environment becomes a hard work
even for professional developers. Nowadays, such tools are
explored for commissioning of complex systems in restricted
areas of Smart Society, e.g. in Smart Building area. [6] provides
an overview of the state-of-the-art of automated and semi-
automated commissioning tools; it provides a list of
commercially available automated commissioning tools and
automated commissioning prototypes. For instance, LonMaker
[7] is a single-product, a proprietary solution, which implements
a standard design, commissioning and network maintenance
software for LonWorks energy control networks. [8] deals with
the techniques for measuring persistence of commissioning
benefits and describes two tools developed for tracking the
building performances. [11] provides an overview of the main
commissioning procedures, describing the projects and the
activities that have led to the development of BEMS-assisted
commissioning tools. The European web portal BUILD UP [9]
shares on its website a series of European tools developed with
the aim of implementing the energy efficiency in buildings. The
list of tools includes software applications, checklist for
practitioners, etc. The “ICT Roadmap for Energy Efficient
Neighbourhoods” (IREEN) [10] project has provided a roadmap
that shows that most existing energy efficiency tools are

implemented focusing on proprietary solutions, e.g. deployed
for single buildings or based on proprietary protocols.

B. Network Management Protocols

Simple Network Management Protocol (SNMP) [12] is an
Internet-standard protocol, standardized by the IETF, for
managing devices on IP networks. This protocol is used to
monitor the status of devices connected to a network. An SNMP-
managed network consists of three basic components: a set of
managed devices, a set of Agents (one for each managed
device), and a Network Management Station (NMS). The
protocol is based on a distributed architecture: in the NMS, there
are the Managers, which are the components responsible to
monitor the devices. Each monitored system is controlled by an
agent, which exposes the management data as variables that can
be queried and written, in order to configure the device. Besides
allowing the management of the variables, the SNMP protocol
implements also, a notification system called trap, which allows
the agents to notify the SNMP managers, when an important
event happens on the device, like a malfunction. Anyway,
SNMP presents unsolved vulnerabilities, which affect the
security of the whole network [34], [35].

Common Management Information Protocol (CMIP) [13] is
a network management protocol standardized by OSI that allows
communication between management applications and
management agents; specifically, CMIP implements the services
defined by the other OSI standard Common Management
Information Service (CMIS)[14]. The management information
are organized in objects that can be read and modified.
Furthermore, the agents can use the notification system to send
alarms about the status of the network. Compared to SNMP,
CMIP provides additional features: as IoT-PIC it allows the
definition of any type of action to alter the state of a managed
device, while SNMP allows only the “set” function. CMIP is a
good alternative to SNMP and provides diverse features to
model complex communication networks effectively. However,
CMIP has a large amount of overhead, operating on top of the 7
layer OSI protocol, and furthermore is complex to be
implemented and maintained [33].

Both solutions are standard protocols in the IP based
networks. In IoT the problems to address are similar, but the
challenge is to manage typical components of an IoT network,
i.e. IoT gateways, sensors and actuators. MQTT [15], RESTFul
protocols like CoAP [16], HTTP [17] and XMPP are protocols
already used in IoT application deployment and therefore were
considered conceivable to use them also for the network
management purposes. The object identification approach used
in SNMP is quite hard to deal with, furthermore, much of the
system is insecure, and the SNMP traps are not simple to
manage. The aim of this work is to propose XMPP protocol as a
valid alternative for network management in IoT contexts.
XMPP – an IETF standard also known as Jabber – is a protocol
based on XML for the real-time messaging, for the exchange of
presence information and for request-response services. XMPP
supports a wide range of applications: instant messaging,
presence notification, multi-party chat, audio-video call and,
most generally, XML routing. The performance of XMPP in
term of latency, scalability and robustness have been widely
demonstrated during the years [36]. XMPP is an open protocol
and, thus, is free and open-source: over the long period an

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

121

open standard provides stronger security, greater extensibility,
and is more open to improvement than proprietary technologies.
XMPP is, after more than 10 years of development, proven and
mature; it has been tested in scenario with thousands of Jabber
servers on internet and millions users (e.g. it has been at the basis
of Google Talk) and a large number of applications have been
developed using the instant-messaging functionalities, in very
different application fields. XMPP is fully decentralized:
everyone can use its XMPP server and manage independently its
network. XMPP is extensible: using the potential of the XML,
everyone can add features to the core functions. It offers
interoperability features, such as HTTP binding, service
discovery, file transfer, server federation. Finally, XMPP
natively provides security features, such as Simple
Authentication and Security Layer (SASL) [18] and Transport
Layer Security (TLS) [19], both for client-to-server and server-
to-server communications.

The proven scalability, the openness of the protocol, the
security features natively provided, the possibility to identify
univocally the entities and the possibility to easily interconnect
things and humans are the features that have made XMPP one
of the most used protocols in the IoT field. Keeping the same
architecture of SNMP, but leveraging on an XMPP architecture,
can be sent out notifications, restart tasks and seamlessly
manage device availability (changing status, forcing web pages
update, etc.). The XML data are small in this case, and one
XMPP server can be used both to talk to humans in message
stanzas, or to computers, using the same protocol. This is
particularly important useful to save resources in resource-
constrained devices, avoiding requiring the support for
additional protocols like SNMP or CMIP. IoT-PIC leverages
many features provided by the protocol: every device is
univocally identified through a Jabber Identifier (JID); and the
presence mechanism is used to know in real-time the status of
the devices. Furthermore, also XMPP Extensions (XEPs) [20]
are used. The XEP-0030 (Service Discovery) [21], used to
discover what entities are on the network and, exactly, which
XMPP features those entities implement. The XEP-0050 (Ad-
Hoc Command) [22], which provides workflow capabilities for
any structured interaction between two XMPP entities. The
XEP-0060 (Publish-Subscribe) [23] that allows to subscribe to
an information node and, then, to receive a notification, only
when an entity publishes an item to that node, providing a
scalable and real-time alternative to constant and expensive
polling for updates. Finally, also the XEP-0248 (PubSub
Collection Nodes) [24] is used to organize the publish-subscribe
nodes leveraged in the discovery mechanism in a hierarchical
structure. Indeed, this XEP explains how to create nodes, which
can contain one or more other nodes (both leaf nodes and other
collection nodes); the subscription to one of these nodes allows
receiving the notifications of all the events sent to the publish-
subscribe nodes that it contains, therefore implementing an
actual network management.

III. THE IMPRESS SYSTEM DEVELOPMENT PLATFORM

This section introduces the architecture of the IMPReSS
platform and describes the concept at the basis of the
components described in the paper.

Figure 1 shows the IMPReSS platform architecture from a
functional point of view.

Figure 1. IMPReSS Functional architecture

 Among the components of the platforms, this paper
particularly focuses on the ones related with the commissioning
and network management of the platform: the RAI, the IoT-PIC
GUI and particularly the IoT-PIC. They have two main goals:
the first one is to allow the composition of the different available
modules in order to connect them and to realize desired
applications and services; the second one is to allow the
management of the status of both the entire platform and the
single modules. The IoT-PIC GUI is a user interface, which
relies on the IoT-PIC, responsible to perform the commissioning
tasks requested by the stakeholder. The Resource Adaptation
Interface (RAI), instead, is responsible of the virtualization of
the devices connected to the network.

The stakeholders mostly involved with the provisioning
issues are the Developers and the Managers. Developers
combine different modules and compose the specific logic flow
that the desired application has to compute. Actually, he/she
realizes the final “IMPReSS-enabled” application through the
usage of the SDP. The system Managers set the parameters of
the platform modules to make the system effective. They install,
configure, deploy the applications, and connect them to other
external services and hardware components. Managers must
have a specific interface (GUIs actually, in different flavors,
such as Web-based and smartphone/tablet apps), so that they are
easily able to operate on the system under different
circumstances into different environments. To fit both needs
(Developers’ and Managers’ ones), the IoT-PIC allows dealing
with the main aspects of commissioning and network
management:

 IoT Platform sub-components composition: i.e.
interconnect different available components of the
platform (e.g. service proxies, data filtering and
aggregation modules, decision support systems, etc.). In
other word, the composition aims to realize the
application, defining, for each relevant platform
component available, from which other components it

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

122

has to take the inputs and to give its outputs. This stage
defines the workflow of the application. This feature is
used by the platform Developers for defining
connections among different sub-components in order to
implement specific application logic. In fact, through the
composition is possible to realize the actual application
to be executed. For instance, in order to make a building
management application, the developer can use the GUI
in order to graphically connect the outputs of the logic
blocks representing physical temperature sensors with
the inputs of a module calculating mean values of
incoming data series. The output of this last module can
be connected with the input of another module that check
if incoming values are above or below specific
thresholds. The output of this last module can be used as
input for the software module that drives a bell for
announcing a critical situation. IoT-PIC framework has
the role of concretely implement the logical connection
sketched on the GUI.

 IoT Platform sub-components Configuration: this stage
provides to each platform component involved in the
realization of the application (i.e. the ones interconnected
through the composition stage) the values for the correct
behavior of the applications. For instance, suppose we
have interconnected, through the composition stage, the
output of a temperature sensor to a module that raises an
alert whenever the temperature exceeds a threshold. In
this case, the configuration stage is responsible for set
parameters, such as the sensing rate of the sensor
temperature and the threshold temperature at which the
second module has to rise the alert. The IoT-PIC shows
to the platform Manager all the available services and
entities, allowing to configure the parameters of the
entities of the overall IoT platform.

 IoT Platform sub-components Discovery: it allows
detecting automatically devices joining the IoT platform
and the services they provide. A common language has
to be used to describe the services, in order to allow their
usage without the need of users’ intervention.

The IoT-PIC GUI is a model-driven development toolkit that
allows inexperienced developers to discover and compose
distributed devices and services into mashups [30]. The
proposed modeling tool allows operators to model the
integration of IoT components visually and programmatically,
transforming the model into actual source code, executable as a
standalone application, with software interfaces selectable
during prototype modeling. This interface has been designed to
allow users to configure, compose and manage entities to
provide different services for the Internet-of-Things by a single
access point. Through its interface, users are able to compose
their IoT platform, leveraging only on the actual services, among
the ones available, required for their specific purposes.

IV. INTERNET-OF-THINGS PLATFORM’S INFRASTRUCTURE

FOR CONFIGURATIONS (IOT-PIC).

The role of the IoT-PIC is to provide a unique and general
way of performing the commissioning of the platform. The
architecture of the IoT-PIC is shown in Figure 2. This
architecture is inspired by the SNMP one (described in the

section II) and aims at performing the configuration and
composition of hardware and software resources.

Commercial devices for IoT (i.e. sensors and actuators,
appliances) that provide Network Management functionalities
usually leverage on proprietary or SNMP-based solutions,
accessible from SDKs. The proposed solution aims to provide
similar approaches at a GW level, which can act as aggregation
point for NM information coming from WSANs abstracted by
the RAI through technology-specific drivers (for details about
RAI, see section V). This is particularly useful when the IoT
platform backbone leverages on resource-constrained GWs such
as Raspberry PI, where using a unique protocol that manages all
IoT issues helps to save computational resources and power
consumption. The architecture of IoT-PIC consists of two levels,
the global and local one, and is mainly composed by two
components:

 An IoT-PIC Manager (PIC_M) at a global level.

 An IoT-PIC Agent (PIC_A) at local level.

The communication among the components leverages the
XMPP protocol.

Figure 2. Configuration and Composition Framework architecture

The PIC_M is the module in charge of managing the
configuration and composition processes of the other modules
into the platform; it works as an interface between the
applications and the various components of the platform. The
functionalities of PIC_M consist in the following:

 Notifies the applications on the status of the components
available in the middleware.

 Retrieves the configuration from the PIC_A, when
required through a XMPP ad-hoc command.

 Updates the configuration of the components through the
PIC_A via XMPP.

PIC_M is responsible for the management of the
composition stage. In order to do this, the IoT-PIC leverages on
the publish-subscribe paradigm, which allows the complete
decoupling of the various components. Specifically, when the
output of a component is connected to the output of another
component, it means that the last one will subscribe itself to the
publish-subscribe node, where the first one publishes its data.

A PIC_A is associated with each component of the platform,
for example, for the devices, the PIC_A is embedded in the RAI
driver, which manages the device. It exposes “get” and “set” ad-
hoc commands, to manage configuration parameters of a
specific component to the PIC_M. The PIC_A operates actually
the configuration commands coordinated by PIC_M. The

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

123

association of an agent to each module makes the system more
expandable and scalable from the point of view of configuration
issues. PIC_A is responsible for:

 Register the component in the PIC_M.

 Handling the configuration parameters of the component.

 Handling the interconnection of the components with
each other, adding and removing input sources.

IoT-PIC has been designed to be a stand-alone component
that can extend different existing IoT platform with
commissioning and configuration support, in order to build more
complete IoT platforms. The user can interact directly using an
XMPP client, modifying the configuration file or using a GUI,
which communicates using the API provided by the PIC_M (as
described in section V). This choice has been done to avoid to
strictly coupling the IoT_PIC with other components of the
IMPReSS platform. This design follows the request done by the
EU Commission in the ICT-30-2015 call of the H2020 program
[25], to “break the silos”. The European Commission so
identifies the need in the current IoT scenario: to build systems
and tools, which can work in different platforms, instead to
continue building new IoT solutions incompatible with existing
ones. The IoT-PIC already address this issue, since even if has
been developed as a LinkSmart [26] in IMPReSS project, it is
compatible with different IoT platforms such as VIRTUS [27].

A. Composition operations

 To allow the composition of the applications, the IoT-PIC
implements a set of features for the service discovery,
implemented through the XMPP protocol. These features allow,
on one hand, to register automatically the new devices connected
to the network, describing them and their functionalities, with a
common format; and, on the other hand, to allow their
discovering. Particularly, in the proposed solution, every
resource discovered, is associated with an account on the local
XMPP server. When a new resource is connected to the network,
the manager of that network calls an ad-hoc command on
PIC_M, This command creates one or more publish-subscribe
nodes, representing the resource and its features. Following a
concept similar to the one defined by the OSGi Device
Abstraction Layer standard specification [28], the devices are
described through the functions they provide and the operations
possible on them. Specifically, the PIC_M creates a collection
node with the name of the id of the resource and, then, inserts in
this collection node one leaf node for each function provided by
the resource. For example, if the resource is a sensor that
measures humidity and temperature, the PIC_M creates a
collection node with the id of the device, containing two nodes,
one for the function temperature and one for the function
humidity. Using the features defined in the XEP-0030, the
PIC_M associates to each node the information useful for the
service discovery. The resource nodes have associated the list of
resource types (for the sensor taken as example, the list will
contain Humidity Sensor and Temperature Sensor). Instead, the
function nodes have associated the list of operations possible for
that function (i.e. getTemprature for the temperature function
and getHumdidity for the humidity one). This is the lowest part
of the hierarchy; the Context Manager can create nodes related
to the location where the nodes of the devices can be inserted to

set their location. Finally, all the nodes have to be inserted in one
source node, in order to allow browsing the tree starting from
the root.

Besides the nodes, the PIC_M publishes also a set of ad-hoc
commands callable on the resource: this set of commands maps
the list of operations registered in the Service Discovery nodes.
Accordingly, when a user discovers the operations on a resource,
he/she knows that he/she can use that name to call a command
on the resource. In this way, using the service discovery
provided by XMPP, it will be possible to search for a resource
node on the server and, through its name, it will be possible to
retrieve the commands that it exports. Particularly, the IoT-PIC
provides and ad-hoc command, which allows discovering the
resources; if the user does not indicate parameters, the entire
hierarchy of nodes is returned. Otherwise, if the user needs to
limit the discovery, it can use this format:

{“nodes”: [], “types”: [], “devices”: [], “functions”: [],
“operations”: [] }

Where, the different fields are used in this way:

 “nodes”: if a list of nodes is indicated in this part, the
result indicates only the nodes contained in these ones.

 “types”: if a list of types is indicated in this part, the result
indicates only the devices of these types.

 “devices”: if a list of devices is indicated in this part, the
result indicates only functions and operations of these
devices.

 “functions” : if a list of functions is indicated in this part,
the result indicates only devices that support these
functions.

 “operations”: if a list of operations is indicated in this
part, the result indicates only devices that provide these
operations.

The PIC_M will maintain the tree synchronized with the
presence of the resources, when a resource disappears, the
manager associated to its network calls an ad-hoc command on
the PIC_M, which deletes the collection node of the device and
its children.

B. Configuration operations

For the configuration part, the architecture built is similar to
the one designed for other network management protocols
described in section II. Specifically, every PIC_A exposes two
ad-hoc commands: the first command provides a list of all the
management data, into a XML structure, which associates to
every variable: the type, the current value and a list of possible
values to assign (if range is limited). The second command
allows updating the values associated to one or more of these
variables (if they are writable); to write the values, the ad-hoc
command has to be called, passing to it the XML used in the
reading command with new values.

The applications, which has to configure the various
components, interact with the PIC_M that provides two ad-hoc
commands to read and write the configurations on the various
PIC_A.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

124

V. IMPRESS COMPONENTS

This section describes the components, which interact with
the IoT-PIC to enable the system Integrators and Managers to
deploy and configure an instance of the IMPReSS platform.

A. Resource Adaptation Iinterface

The Resource Adaptation Interface (RAI) is an evolution of
the Physical World Adaptation Layer (PWAL) described in [29].
The RAI virtualizes each resource as a Virtual Device that
exposes features or functionalities, provided by physical devices
or third-party services, through a set of methods and parameters
defined by specific Java interfaces.

The RAI improves the PWAL in several aspects and its
architecture has been fully refactored. Three layers (see Figure
3), completely decoupled with each other, compose the RAI
architecture. In this way, it is possible to change one of them,
without requiring many modifications to the others.

Figure 3: RAI architecture

The lower layer of the architecture consists in a set of
technology-specific Device Managers classes that are
responsible for the actual integration of different resources.
These components are able to handle specific types of networks
and furthermore, they contain the implementation of specific
device discovery features.

A set of application-level resource models are used for the
virtual device interface definition. The modelled interfaces are
implemented with specific commands, depending on the
specific resource to be integrated. The middle layer is the RAI
core, which is in charge to map the southbound devices and to
notify upper layers about each network changing. The upper
layer is responsible for the exposition of the methods/services
provided by the resources. This layer is made of the APIs offered
by the RAI core, in order to retrieve and manage virtual devices
and call their resource-specific methods.

In IMPReSS, the IoT-PIC interacts with the RAI in several
ways, through the XMPP protocol. The user, through the IoT-
PIC, can install/remove and start/stop the Device Managers of
the RAI. Furthermore, the IoT-PIC is used to configure the
Device Managers, using the methods described in the previous
section. Finally, the IoT-PIC receives the notifications from the
RAI, when a new device is connected to the network.

B. IoT-PIC GUI

IoT-PIC GUI (Figure 4) allows the system integrators to
manage and monitor an instance of the IMPReSS platform.
IOT-PIC GUI allows a number of features that simplify
commissioning and management of the implemented IoT
platform. The features include: Connection management, for the
XMPP features. Management of system bundles (RAI,
Managers of the IMPReSS SDP). Download of desired system
bundles. Installation and removal of system bundles. Start and
stop of system bundles. Management of system bundles updates.

Figure 4 – IoT-PIC web interface

An installation wizard procedure has been designed to guide the
user into the different configuration tasks. Once launched, the
IoT-PIC GUI reads its Platform Configuration File loading the
values, including the web link to download an xml file
containing the updated list of the available system bundles.
Using these data, users can fill a form and save their personal
settings, related to XMPP server configurations, as Internet
Protocol (IP) address, hostname, listening port and pub/sub
node. After saving above information, the IoT-PIC GUI tries to
connect to the local XMPP server. If the connection fails, the
IoT-PIC GUI displays an error message and let user to try to
establish the connection again. Once the connection is
established, users can access all the functionalities of the
interface. This interface is dynamically built using the list of
available bundles downloaded from the web link. The GUI
provides, for each bundle, the following operations:
download/remove: when the user click the download button, the
PIC_M download the bundle from the remote repository and
install it in the middleware instance. Once the bundle is installed,
if no more needed, it can be removed. Update: when a new
version of an installed bundle is available on the repository, the
GUI alerts the user. Once the Update button is clicked, the
software automatically uninstall the previous module and
replace it with the new one. Start/stop: this operation allow to
start and stop the execution of the bundles installed.

The interface provides also a visual indication of the status
of the bundles, in order to inform in real-time the user if the
bundle is correctly running, or if there is some error in its
execution.

Besides the page for managing the system bundles, the IoT-
PIC GUI provides also an administrative page used by system
Managers to install and configure the RAI Device Managers.
The two views represent different levels of management, for this
reason, the first page is only accessible for the system
administrator, while this latter one is accessible to all the users

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

125

of the platform. For this page, the web interface uses the PIC_M
to retrieve the list of Device Managers available on the
repository, and using this list, it dynamically creates the web
page, shown in Figure 4. Through this web page, it is possible to
interact with the PIC_M, in order to indicate the Device
Managers to install (or remove) in the RAI. Furthermore, the
interface can be used to configure one Device Manager: when
the user clicks the configure button, the GUI queries the PIC_M,
to retrieve the configuration parameters for the corresponding
bundle (e.g. data related to sensors, addresses, communication
protocol, thresholds, or sampling rate). The GUI uses this
information to build a form, which has to be filled by the user to
indicate the value to set for each parameter. Once saved the
values set in the bundle, through the PIC_M.

Figure 5: IoT-PIC GUI – Commissioning view

The IMPReSS toolkit is completed by a model driven
development (MDD) tool for IoT applications, see Figure 5. The
architecture of this tool is similar to the one described in [29],
with the difference that this one uses the features provided by
the IoT-PIC, to discover the components and to create the
interactions among them, to implement applications, based on
the IMPReSS platform. The tool provides a list of the
components available in the platform; this list is maintained
updated in real-time, through the IoT-PIC. Furthermore, when
the application is created using the MDD tool, the configuration
generated contains information useful to connect components
among each other, as indicated by the links created in the
application model.

VI. USE CASE

The IoT-PIC presented in this paper has been implemented
and tested in an energy efficiency scenario. In the beginning of
the scenario, an integrator, using the GUI presented in previous
section, installs all the components of the IMPReSS platform.
The instance of IMPReSS includes two applications (energy
saver and alarm system) and three types of IoT resources
(Presence sensors, Lights, Smart plugs) deployed into the
system. The Energy saver manages the lights, in order to save
energy (i.e. It turns off the lights where there is no class
scheduled). When there is a class, presence sensors detect if a
row of seats in the classroom is empty. For the empty areas, the
lights are automatically switched off. In the proposed scenario,
in the aforementioned condition, is it possible to imagine the
following situation: presence detection done only through
presence sensors often gives false positive and so, in order to
reduce the number of errors, other sensors need to be integrated.
At this point, it is possible to see how the IMPReSS platform
allows integrating new devices, without requiring modifications
to the existing applications. For example, a system integrator can
decide to add a Kinect sensor to improve presence detection. The
integrator, using the IoT-PIC and the web interface, searches for

a driver available for the Kinect (assuming has been already
developed and published by another developer) and uses it for
the integration. The driver is installed at runtime in the RAI,
which discovers the presence of the new device. Through the
PIC_A, the device creates on the server the hierarchy of pub/sub
nodes, which represent its functions and data produced. The
component is therefore automatically added in the model driven
tool. Using this tool, the user can connect, for example, the
output of this component to the input of a hypothetical lights
management one. Because of this connection, the PIC_M
indicates to the PIC_A of the lights management component to
subscribe itself to the pub/sub node of the device, in order to
receive its events. Finally, using the web interface the user can
configure the various components of the platform; the interface
can now convert the XML structure returned by the ad-hoc
command of the PIC_M in a form that can be compiled by the
user, in order to tune, at runtime, the behavior of the
components, to satisfy his/her needs.

VII. EVALUATION

The solution presented in this paper has been evaluated
during a test organized by the IMPReSS project consortium at
Universidade Federal de Pernambuco (UFPE). Ten people,
among students and ICT technicians, have tested the
components of the platform, filling out a user experience
questionnaire. Particularly, the questionnaire requires an
evaluation on the following aspects: attractiveness – general
impression towards the component; efficiency – how fast and
efficient the component is and how the user interface look
organized; perspicuity – how much is easy to understand how
to use the component and how does it work; dependability –
how much the user feels while using the component (i.e. is the
interaction with the product secure and predicable?);
stimulation: how much interesting and exciting people
perceived the component; novelty – how much the design of
the component is innovative and creative.

The results of the evaluation about the IoT-PIC (Figure 6)
show a good appreciation of the component, particularly
regards its usability.

Figure 6 – Evaluation results

VIII. CONCLUSION AND FUTURE WORKS

The paper has presented a novel IoT Network Management
infrastructure, based on the XMPP protocol, and it has described
how this solution is leveraged in the IMPReSS architecture, as

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

126

part of a complete Model Driven Development toolkit. The
solution proposed allows applying Network Management
features, typical of IP network, in the IoT scenario. Through this
framework, the gateways, sensors and actuators involved can be
configured and monitored in real-time, using a standard IoT
communication protocol, without requiring to support a specific
additional protocol only for this task; this aspect is particularly
important in the IoT scenario, because of the use of resource-
constrained devices. Features provided by the IoT-PIC enable
the easy composition of IoT application, allowing the automatic
discovery of new components and the interconnection of IoT
entities. The proposed solution guarantees a high-level data
security using TLS encryption and SASL authentication,
embedded in the XMPP protocol.

In the next future, the authors will investigate the possibility
to enhance the IoT-PIC, with some useful features typical of
Network Management solution, like the possibility to evaluate
the quality of service and the round trip time or other parameters
used to monitor the status of a network.

Furthermore, a set of application-level resource models are
used for the virtual device interface definition. The modelled
interfaces, implemented with specific commands depending on
the resource to be integrated, are defined through Java interfaces.
Those interfaces define a basic number of methods/services
provided by the most common device types, but the usage of
ontology descriptions will be investigated.

Finally, currently the XMPP community, while promoting
the use of XMPP in IoT scenario [31], is working to a set of
extensions including an experimental extension regarding to IoT
Discovery [32]. The authors of this paper are going to investigate
how to integrate these extensions in the presented solution.

REFERENCES

[1] The ebbits Project. (Online), http://www.ebbits-project.eu/news.php.

[2] GreenCom Project. [Online], http://www.greencom-project.eu/.

[3] Jalali, R.; El-Khatib, K.; McGregor, C., "Smart city architecture for
community level services through the internet of things," in Intelligence
in Next Generation Networks (ICIN), 2015 18th International
Conference on , vol., no., pp.108-113, 17-19 Feb. 2015

[4] Sarkar, Chayan, et al. "A scalable distributed architecture towards
unifying iot applications." Internet of Things (WF-IoT), 2014 IEEE
World Forum on. IEEE, 2014.

[5] IMPReSS web site (online) http://impressproject.eu/news.php.

[6] Frank, M. et al. (2007), ”State-of-the-Art Review for Commissioning Low
Energy Buildings: Existing Cost/Benefit and Persistence Methodologies
and Data, State of Development of Automated Tools and Assessment of
Needs for Commissioning ZEB”, NISTIR 7356, 2007

[7] LonMaker.(Online),
http://www.echelon.com/products/tools/integration/lonmaker/.

[8] Friedman, H. et al. (2010), ”Commissioning Cost-Benefit and Persistence
of Savings”, Cost-Effective Commissioning of Existing and Low Energy
Buildings, Energy Conservation in Buildings and Community Systems
(ECBCS) Program.

[9] BUILD UP web portal. (Online), http://www.buildup.eu/home

[10] IREEN Project. (Online), http://www.ireenproject.eu/

[11] Visier, J. C. et al. (2004), ”Commissioning tools for improved
energyperformance”, Energy Conservation in Buildings and Community
Systems(ECBCS) Program.

[12] Case JD, Fedor M, Schoffstall ML & Davin J. (1990) Simple Network
Management Protocol (SNMP)

[13] ITU X.711 (1997) Common management information protocol:
Specification (online) http://www.itu.int/rec/T-REC-X.711/en/

[14] ITU X.710 (1997) Management Communication Service and Protocol
(online) http://www.itu.int/rec/T-REC-X.710-199710-I/en

[15] IBM & Eurotech. (2010) MQTT V3.1 Protocol Specification. (online)
http://public.dhe.ibm.com/software/dw/webservices/ws-
mqtt/MQTT_V3.1_Protocol_Specific.pdf.

[16] Shelby Z, Hartke K & Bormann C. (2013) Constrained Application
Protocol (CoAP) draft-ietf-core-coap-18, RFC 7252. (online)
http://datatracker.ietf.org/doc/draft-ietf-core-coap/.

[17] Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P & Berners-
Lee T. (1999) Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616,
(online) https://www.ietf.org/rfc/rfc2616.txt.

[18] Myers J. (1997) Simple Authentication and Security Layer (SASL)
(online) https://www.ietf.org/rfc/rfc2222.txt

[19] Dierks T., Allen C. (1999) The TLS Protocol Version 1.0 (online)
https://www.ietf.org/rfc/rfc2246.txt

[20] XMPP Standard Foundation – XMPP Extensions (online)
http://xmpp.org/xmpp-protocols/xmpp-extensions/

[21] XMPP Standard Foundation – XEP 0030 Service Discovery (online)
http://xmpp.org/extensions/xep-0030.html

[22] XMPP Standard Foundation – XEP 0050 Ad-Hoc Commands (online)
http://xmpp.org/extensions/xep-0050.html

[23] XMPP Standard Foundation – XEP 0060 Publish-Subscribe (online)
http://xmpp.org/extensions/xep-0060.html

[24] XMPP Standard Foundation – XEP 0248 PubSub Collection Nodes
(online) http://xmpp.org/extensions/xep-0248.html

[25] EU Commision. ICT 30 2015: Internet of Things and Platforms for
Connected Smart Objects (online)
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_i
d=8269.

[26] LinkSmart Middleware Portal (online)
https://www.linksmart.eu/redmine.

[27] Conzon, D., T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi, and M. A.
Spirito, "The VIRTUS Middleware: An XMPP Based Architecture for
Secure IoT Communications", 21st International Conference on
Computer Communications and Networks (ICCCN), pp. 1 -6, 07/2012.

[28] OSGi Alliance. RFC 196 Device Abstraction Layer (online)
https://github.com/osgi/design/raw/master/rfcs/rfc0196/rfc-0196-
DeviceAbstractionLayer.pdf

[29] Conzon, D.; Brizzi, P.; Kasinathan, P.; Pastrone, C.; Pramudianto, F.;
Cultrona, P., "Industrial application development exploiting IoT vision
and model driven programming," in Intelligence in Next Generation
Networks (ICIN), 2015 18th International Conference on , vol., no.,
pp.168-175, 17-19 Feb. 2015

[30] Benslimane D., Dustdar S., and Sheth A., “Services Mashups: The New
Generation of Web Applications,” IEEE Internet Comput., vol. 12, no.5,
pp. 13–15, Sep. 2008

[31] XMPP Standard Foundation – XMPP–IoT (online)
http://wiki.xmpp.org/web/Tech_pages/IoT_systems.

[32] XMPP Standard Foundation – XEP 0347 Internet of Things – Discovery
(online) http://xmpp.org/extensions/xep-0347.html.

[33] Roh, Inho, and Ilsoo Ahn. "CMIP based Light MIB: Design &
Implementation."

[34] Chatzimisios, Periklis. "Security issues and vulnerabilities of the SNMP
protocol." 1st International Conference on Electrical and Electronics
Engineering. 2004.

[35] Lawrence, Nigel, and Patrick Traynor. "Under New Management:
Practical Attacks on SNMPv3." WOOT. 2012.

[36] XMPP perfomances [online]
https://iotprotocols.wordpress.com/2015/03/31/performance-tests-
xmpp/

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

127

