DISCOVERY AND QUERY: TWO SEMANTIC
PROCESSES FOR WEB SERVICES

Po Zhang', Juanzi Li' and Kehong Wang'
! Department of Computer Science of Tsinghua University, 100084, Beijing, China

Abstract: In this paper, we focuses on two process phases of web services, namely the
web services discovery and web service query. Web services discovery is to
locate the appropriate service, and web service query is to search the service
data during execution of web service. When an end-user wants to book a
ticket, he will discover the web service first, and then query this service to
determine whether it can provide the satisfiable ticket. So the two process
phases should work together, not only to discover possible satisfiable service,
but to find the real satisfiable service data. It's a promising idea to adopt
Semantic Web technology to implement the two processes. This paper first
proposes the whole architecture for discovery and query, then gives four
algorithms to discover web services and three algorithms to query web service
based on the service data instance concept and similarity calculation.
Accordingly, two frameworks separately for discovery and query are
implemented. The result proves the approach of combination of two processes
can really meet the personal requirements, so has certain application value.

Key words: ~ Web Services Discovery; Query; Ontology; Similarity Computing.

1. INTRODUCTION

Web services [1] are self-contained, self-describing, modular applications
that can be published, located and invoked across the web. Once a web
service is deployed, other applications or other web services can discover
and invoke it. UDDI, WSDL and SOAP, which are three most important
technologies of web services, provide limited support in mechanizing service
recognition and discovery, service configuration and combination, service
comparison and automated negotiation. Service discovery is currently done
by name/key/category of the information model in UDDI which roughly
defines attributes that describe the service provider, the relationships with
other providers and how to access the service instance. The fixed set of
attributes in UDDI limits the way queries can be composed. Although UDDI
can find more service information in WSDL, the WSDL only describes the

572 Po Zhang, Juanzi Li, Kehong Wang

service in a low-level form of interface signature and communication
protocol and can’t provide enough semantic description for locating the
service intelligently.

The semantic web [2] will make data on the web defined and linked in a
way, that it can be used by machines - not just for display purposes, but also
for using it in various applications. Bringing web services applications to
their full potential requires their combination with semantic web technology.

Nowadays, lots of approaches for semantic web service discovery have
been proposed. However, it’s not enough for an end user only to find a web
service interface. For example, which is from OpenTravel Alliance Message
Users Guide [8] , “Bob is planning a trip for his wife and child to fly from
London to Los Angeles. He would like to depart on August 13 and prefers a
non-stop flight, but if he has to make a stopover, he prefers that there be a
maximum of one stopover. He also would like to fly on a 757 and have his
tickets mailed to him. He wants to fly economy class. Bob requests
availability on flights from London to Los Angeles on August 13. And he
wants to get the roundtrip tickets information.” If Bob only find a web
service interface which can provide a ticket, he still can not know whether
the ticket can satisfy his concrete requirements such as the exact date or
airplane type, even the logic expression of personal preferences.

So the approach proposed in this paper not only focused on semantic web
service discovery, but adopts semantic web technology to support web
service query. The combination with discovery and query can solve the
above example case.

Section 2 proposes the whole architecture for combination of discovery
and query. Upon this model and architecture, four algorithms for web service
discovery and three algorithms for web service query is separately
introduced in Section 3 and Section 4. Two frameworks for discovery and
query are introduced in Section 5. Section 6 illustrates an example. Related
works are discussed in section 7. Finally gives the conclusion and future

work in section 8.

Discovery and query. two semantic processes for web services 573

2. THE WHOLE ARCHITECTURE

Customer
Agent

Service
Provider

n Web Service L User Profile 7 User Requirements Reeul

A

Web Sefvice Discove -

.

Services Data
Instance DB

Web Service Query

Figure 1. The whole architecture for web service discovery and query.

As illustrated in figure 1, Service Provider and Customer Agent are two
important roles in this architecture. Service Provider provides web service
description and service data for service discovery and query separately. Web
service description will be stored in web services DB, and service data will
be stored in service data instances DB through CIA (Create Instances
Algorithm). MA is a general service match algorithm, which includes
output/input match algorithm, precondition match algorithm and effect
contentdegree algorithm. MA is used to fulfill the web services discovery
and IMA (Instance Match Algorithm) is used to fulfill the web service query.
F-Logic[7] Reasoner is to do the reasoning job during this two processes.
Customer Agent provides the user profile which describes the user basic
information and the user requirements which represents the service interface
information and concrete service data requirements such as a specific ticket.

The ontologies in this architecture can be separated into two main
categories, namely the domain ontology (DO) and service upper ontology

574 Po Zhang, Juanzi Li, Kehong Wang

(SUQ). The domain ontology used here is the travel domain ontology, which
can be SchemaWeb{10], or from
http://keg.cs.tsinghua.edu.cn/persons/zp/travel_onto_is.owl. And the service
upper ontology adopts the OWL-S[11] Specification in order to align with
current Web services Standards. OWL-S Specification is a OWL-based Web
service ontology, and supplies Web service providers with a core set of
markup language constructs for describing the properties and capabilities of
their Web services in unambiguous, computer-interpretable form.

3. DISCOVERY ALGORITHMS

3.1 General Match Algorithm

algorithm MA(S, cusProfile, reqSO, reqEff)

/* Input: candidate Services S, custom Profile cusProfile, required Service
Operation reqSO, required Effect reqEff*/

/* Output: Services which satisfy user requirement Result*/

Result < S
2)ServiceOperationF < getCommonOper(S)

3)ServiceOperationS <— getSpecOper(S)
4)For each service[i] in Result

5)isMatched < false
6)SOper <~ accessSerivceOper(service[i])
7)SEff < accessServiceEff(service[i])

If (reqEff € SEff) A PrecondtionMatch(service[i], cusProfile) goto 9)
Else goto 19)

9)For each serviceoperation[i] in ServiceOperationF N SOper

Discovery and query: two semantic processes for web services 575

10)isMatched < Output/InputMatch(serviceoperation[i], reqSO,

Output|Input)
11)if (isMatched!=true) goto 19)

12)contentDegree <—queryOperEff(serviceoperation[i], reqEff)

13)remove serviceoperation[i] from ServiceOperationF
14)remove serviceoperation[i] from SOper

15)For each serviceoperation[i] in ServiceOperationS N SOper Repeat

10)-12)
16)remove serviceoperation[i] from ServiceOperationS
17)remove serviceoperation[i] from SOper
18)If (SOper!=NULL) For each serviceoperation[i] in SOper Repeat 10)-12)
19)If (isMatched!=true) remove service[i] from Result

20)Result < Result.sort(contentDegree)

21)Return Result

This algorithm is the general match algorithm for web services discovery.
Two operation sets for different purposes are defined. ServiceOperationF is
the set of common operations in different services; ServiceOperationS is the
set of specific operations in different services, complementing to
ServiceOperationF. Because ServiceOperationF is more general than
ServiceOperationS, ServiceOperationF will be matched before
ServiceOperationS. If the common operation can not meet user requirements,
then the match algorithm will remove the candidate service from result
immediately. This optimized method will have better performance to
discovery web services. accessServiceOper() is the method to get all the
operations in a service instance; accessServiceEff() is the method to get all
the effects in a service instance. Other algorithms such as Output/Input
Match algorithm and queryOperEff algorithm will be introduced in the
following sections.

3.2 Output/Input Match Algorithm

algorithm Output/InputMatch(SO, reqSO, direction)

576 Po Zhang, Juanzi Li, Kehong Wang

/* Input: Service Operation SO, required Service Operation reqSO, Output
or Input indicator direction*/
/* Output: true or false*/

1)isMatched < false
2)If (direction==Output) goto 3) Else goto 9)

3)sCustomer < accessOutput(reqSO)
4If (sCustomer.size==0) isMatched < true, goto 14)
5)sOutput < accessOutput(SO)

6)If (sOutput.size==0) isMatched < false, goto 14)
7)For each output[i] in sOutput

isMatched < isOntologySubsumeOrEqual(sCustomer, output[i])
8)goto 14)

9)sInput <— accessInput(SO)
10)If (sInput.size==0) isMatched < true, goto 14)
11)sCustomer < accesslnput(reqSO)

12)If (sCustomer.size==0) isMatched < false, goto 14)
13)For each input[i] in sInput
isMatched < isOntologySubsumeOrEqual(input[i], sCustomer)

14)Return isMatched

This algorithm is to match the output and input of an operation with user
requirements. The main idea is that the outputs of service operation should
meet the outputs of user requirements, while the inputs of user requirements
should meet the inputs of service operation. For optimizing purpose, when
the output of user requirements is empty or the input of service operation is

Discovery and query: two semantic processes for web services 5717

empty, the match succeeds. accessOutput() is the method to get all the
outputs of an operation; accessInput() is the method to get all the inputs of
an operation; isOntologySubsumeOrEqual() is the method to use ontology
relations to determine the subsume or equal relation between two
output/input class.

33 Precondtion Match Algorithm

algorithm PreconditionMatch(Serv, cusProfile)

/* Input: a Service instance Serv, customer profile cusProfile*/
/* Output: true or false*/

1)isMatched « false

2)SPre « accessServicePre(Serv)

3)If (SPre.size==0) isMacthed « true, goto 14)

4)tempPre — ¢

5)For each precondition[i] in SPre
6)flogicFact « cusProfile
NflogicRule « precondition|i]
8)If(flogic_engine(flogicFact+flogicRule)==true)
tempPre.append(precondition[i])

9If isEqual(tempPre, SPre) isMatched«— true, goto 14)
10)SOper < accessSerivceOper(Serv)
11)For each serviceoperation[i] in SOper
12)OPre « accessOperPrecondtion(serviceoperation][i])
13)If (tempPre.contains(OPre)) isMatched« true, goto 14)
14)Return isMatched

This algorithm is to match the preconditions of a service instance with
user profile. From the general match algorithm introduced in section 4.1, it
can be inferred that precondition match algorithm should be done earlier
than output/input match algorithm. It’s also for optimizing purpose. This
algorithm adopts flogic reasoning engine, which takes the user profile as
flogicfact and the preconditions as flogicrule, to determine whether the user
profile can match preconditions. It’s obvious that if all the preconditions of a
service instance are matched, the match algorithm will succeed. However, if
not all the preconditions are matched, then to find one operation whose

578 Po Zhang, Juanzi Li, Kehong Wang

preconditions are all matched, if this operation exists, then the algorithm will
also succeed. Otherwise, the algorithm fails. accessServicePre() is the
method to get all the preconditions of a service instance; accessServiceOper()
is the method to get all the operations in a service instance;
accessOperPrecondtion() is the method to get all the preconditions of an

operation.
34 Effect ContentDegree calculation Algorithm

algorithm queryOperEff(SO, reqEff)
/* Input: Service Operation SO, customer profile cusProfile*/
/* Output: contentDegree*/
DIf (reqEff.size==0) contentDegree <« 1, goto 7)
2) contentDegree «— 0
3)OESf « accessOperEffect(SO)
PIf (OEff.size==0) goto 7)
5)contentDegree « contentDegree + (reqEffNOEfY).size
6)contentDegree «— contentDegree/reqEff.size
T)Return contentDegree
This algorithm is to calculate the contentdegree to represent the effects
match degree to user requirements. The contentdegree can be defined as the
ratio of the cardinality of effects intersection set to the cardinality of
requirement effects set. It’s an important value for MA algorithm to sort the

candidate services result.

4. QUERY CALCULATIONS
4.1 Service Data Instance and Similarity calculation

Definition 4.1 Service Data Instance. The Ontology Instance constructed
from service data based domain ontology is called Service Data Instance.
Definition 4.2 Category of Similarity. Assume a Service Data Instance I
has N properties, in which p properties are plain text type, q properties are
enumerated type, r properties are numerical type and k properties are
boolean type, N =p + q + r + k. I can be represented as

Discovery and query: two semantic processes for web services 579

P() = {(PT,, PTy,..., PT}), (PE,, PE,,..., PEy), (PN;, PN,,..., PN)), (PB,,
PB,,..., PBy)}
PT stands for text property, PE stands for enumerated property, PN stands
for numerical property, PB stands for boolean property.
Definition 4.3 Boolean Similarity. It’s the simplest similarity, which is to
compute the similarity of boolean type properties. The similarity function of
PBs is as follows:

SimB(PB,, PB;) = XOR(value,,value,)

Definition 4.4 Numerical Similarity. It is used to compute the similarity of
numerical type properties. The similarity function of PNs is as follows:

lvalue,. ~value Jl
MAX (value, ,value)

SimN(PN,, PN) = 1 -

Definition 4.5 Enumeration Similarity. It is used to compute the similarity
between enumerated type properties. Set operation is used to define the
similarity.

|Set(PE,) N Set(PE,)|

ISet(PE,) U Set(PE)|

SimE(PE, , PE,) =

Set(PE) represents the value set of PE, the calculation result is the ratio of

the cardinality of intersection set to the cardinality of union set.
Definition 4.6 Text Similarity. It is used to compute the similarity of plain
text type properties. With the cosine measure, the similarity function of FTs
is as follows:
> wiws
SimT(PT;,PT,) = kel

$ 2 S .2
J(Zw? QW
k=1 k=1

wE is the weight for kth value of feature vector of plain text, can be

computed by frequency of features.
Definition 4.7 Single Layer Similarity. It’s to compute different type of
properties between two Ontology Instances, and then get the similarity

580 Po Zhang, Juanzi Li, Kehong Wang

between them. When encounter an objectproperty, the URI of this property
referring to should be considered as plain text type and processed using Text
Similarity.

Definition 4.8 Multi Layer Similarity. Different from Single Layer
Similarity, when encounter an objectproperty, the URI of this property
referring to should be considered as another Instance whose depth increases
one, then assign the deeper layer instance similarity as this property
similarity. This recursive calculation won’t stop until all the properties are
datatypeproperty or reach stop condition. The deepest layer similarity is the
same as Single Layer Similarity. The calculated similarity is called Multi
Layer Similarity.

4.2 Create Instances Algorithm

algorithm CIA(S, Onto)
/* Input: Web Service S, Ontology Model Onto*/
/* Output: The all service data instance InstanceList */

1) InstanceList — ¢

2) while (S has new output)

3) Ol « the next output of S

4) Map O1 to Class C1 in Onto

5) for each property p of C1

7) if (p is DataTypeProperty) then goto 9)

8) else If (p is ObjectProperty) then goto 13)
9) Get the data value v of p from S, and erase v from S
10) if (the data value v is null) goto 5)

11) Store the data value v to p

12) goto 5)

13) if reach the stop condition goto 5)

14) for each range classes C of p

15) push C1

16)Cl1 «— C

17) goto 5)

18) pop Cl1

19) goto 14)

Discovery and query: two semantic processes for web services 581

20) goto 5)
21) generate a new instance 11
22) append I1 to InstanceList
23) goto 2)
24) return InstanceList

This algorithm is to create instance from service data. Assuming service S
has N outputs mapping to N classes in ontology DB, and one class averagely
has M datatype properties and I object properties. When recursing k layers,
the time complexity to create a service instance is equal to the time
complexity to iterate all the properties and assign
them: Nx(M +IxM+1*xM +---+1*"'M +1*), approximate O(2NM*) when
I~ M. This time complexity is exponential complexity to the number of
properties of one class. Assuming the average length of one property value is
L, the space complexity isO2NLM*).

4.3 Multi Layer Similarity Calculation Algorithm

algorithm ComputeSimilarity(I1, 12, depth)

/* Input: ontology instance I1, ontology instance 12*/

/* Output: the similarity between 11 and 12*/

1) similarity « 0, count < 0

2) for each property of I1

3) if (p is DataTypeProperty) then goto 5)

4) else If (p is ObjectProperty) then goto 8)

5) similarity < similarity + ComputeSimilarity(data value v1 of p in I1, data

value v2 of p in I2)

6) count « count + 1

7) goto 2)

8) if reach the stop condition goto 14)

9) for each range instances I1° of p in I1 and 12’ of p in 12

10) similarity « similarity + ComputeSimilarity(I1°, 12°, depth+1)

11) count « count + 1

12) goto 9)

13) goto 2)

14) similarity « similarity + ComputeSimilarity(uril of range instance of p
in I1, uri2 of range instance of p in 12)

582 Po Zhang, Juanzi Li, Kehong Wang

15) count « count + 1
16) goto 2)
17) similarity « similarity/count
18) return similarity

This algorithm is to calculate the multiple layer similarity between two
ontology instances. Assuming one class averagely has M properties. When
recursing k layers, the time complexity to compute the two ontology
instances is as twice as the time complexity to iterate all the properties and
read them. From section 4.2, this time complexity iso(4a*), and the space

complexity iso(4Lm*).
4.4 Instance Match Algorithm

algorithm IMA(Req, S, Onto, Rules)

/* Input: User Reqirements Req, Web Service S, Ontology Model Onto,
Logic Rules */

/* Output: The all satisfiable service data instances ResultList */

1) ResultList «+ ¢

2) InstanceList «— CIA(S, Onto)
3) for each instance I in InstanceList
4) for each rule R in Rules
5) flogicFact « 1
6) flogicRule <~ R
DIf (flogic_engine(flogicFact+flogicRule)==true)
then goto 9)

8) else goto 3)
9) goto 4)
10) similarity « ComputeSimilarity(I, Req, 1)
11) assign similarity to instance I
12) append (I, similarity) to ResultList
13) goto 3)
14) ResultList.sort
15) return ResultList

This algorithm is to control CIA algorithm and similarity calculation
algorithm. It also adopts flogic reasoning engine to do the logic comparison

Discovery and query: two semantic processes for web services 583

between the user preferences and service data instances, which takes the
service data instances as flogic fact and the user preferences logic as flogic
rule.

S. TWO FRAMEWORKS

5.1 The Web Services Discovery Framework

Customer
Agent

Service
Provider

User’s RDF
Profile

Recommended

Description for f. .
Service

Web Service
XXX

Grounding ;
WSDL
Description

! Ontology Based }
Web Services

Instance DB

F-Logic
Fact

; i Q i F-Logic
i o Ontology DB for § Rules for Rules DB
o Web Services D Domain User

System
Administrator

Figure 2. Web Services Intelligent Discovery System.

WSIDS (Web Services Intelligent Discovery System) is an intelligent web
services discovery framework and consists of several components that
cooperate in semantic Web Service discovery.

We use WODOS (Web Oriented Distributed Ontology System) to build
the framework. The WODOS is a semantic web infrastructure system
developed by us, something like Jena. The WSIDS will use these
characteristics of WODOS:

584 : Po Zhang, Juanzi Li, Kehong Wang

1. Store the ontology in the format of RDF/OWL-Lite into the relationship
data base.

2. Import/export the OWL-Lite/RDF file.

3. Query ontology of base using RQL

4. An embedded F-logic inference engine witch can import
OWL-Lite/RDFS ontology as F-Logic’s fact using a converter.

The key of the WODOS is that the platform is a “total solution” for the
semantic web applications built on an expansible, flexible, scalable and open
architecture. In this system, varied operations of ontology are added, updated
and deleted dynamically. So we bring forward a WSDL2RDF converter and
deploy it into WODOS. The WODOS is extended for the WSIDS.

As illustrated in figure 2, it is system administrator to create DO and SUO

by the standard of OWL-Lite/RDFS. The system administrator can use some
tools to do this, such as OntoEdit. He also need create F-Logic rules for
domain users’ references and constraints description. After the system
administrator create the ontology and rules, WODOS can import the
OWL-Lite files and F-Logic files into the database.
To discover web services, we need set up a services database based on the
ontology system created by the administrator. The database will include
semantic description of many services. The information need be provided by
service provider. If the service provider need to insert a new service into the
database, the WSDL file of this service and a service description OWL file
grounded to the WSDL should be created. Then the WSDL2RDF converter
will converter WSDL file to RDF file and import result file into database of
WODOS together with the OWL file grounded to it.

The discovery procedure will begin if a customer agent gives a request.
This request includes user’s profile which includes the information about the
customer such as country, sex, business trip or personal trip and so on. Then
this profile will be translated to the F-Logic’s fact by Onto2F-Logic
converter. The Onto2F-Logic converter also translates all ontology of four
layers into the F-Logic’s fact. Before that, the RQL Based Domainlizer will
“cut out” the ontology in the Web Services Instance DB into the same
domain as the request of the customer agent. This is because of there are
perhaps many domains of services ontology in the Instance DB and they
need not be translated into F-Logic’s fact. As getting the fact, the F-Logic

Discovery and query: two semantic processes for web services 585

reasoner also get the preferences and constraints rules from the rules DB,
as the result of F-Logic reasoner, a list of services, which are recommended
to customer and are not reject by the preferences and constraints rules, are
brought forward to customer agent.

5.2 The Web Service Query Framework

WSDIM(Web Service Data Instances Matcher) is a framework to
implement the Web Service query computation and algorithms. It not only
supports the First-Order Logic such as F-Logic, but supports the Description
Logic such as Racer [13]. The graphical user interface of this framework is
illustrated in figure 3. This similarity result is the result of the example
introduced in section 6.

File
J‘M atch result ™

H P hasFlight-Dhttp://keg. cs. tsinghua. edu. cnfontology/ travel#flight!
P hasDestination-Dhttp://keg. cs. tsinghua. edu. cn/ontology/travel#LosAngelesAirport
- P hasCity—Dhttp://keg. cs. tsinghua. edu. en/ontology/ travel#LosAngeles
Lo P type~Dhttp:f/keg. cs. tsinghua. edu. cnfontology/ travel#Airport
P hasAircraft-Dhttp://keg. cs. tsinghua. edu. enfontology/travel#eraft 757
Lo P oeraftType—>75T http://www. w3. org/2001 /XMLSchema#string
o P type-Dhttp://keg. cs. tsinghua. edu. cnfontology/ travel#Aircraft
o P seatEconomy—>123:http: //www. w3. org/2001/XMLS chema#int
4 P hasTicket-Dhttp://keg. cs. tsinghua. edu. cn/ontology/ travel#ticketl
- P hasOrigin-Dhttp://keg cs. tsinghua. edu. cn/ontology/ travel#Londondirport
i i P hasCity—Dhttp://keg. cs. tsinghua. edu. cnfontology/ travel#London
i P type—Dhttp://keg. cs. tsinghua. edu. cnfontology/ travel#Airport
P hasScheduledDepartureDate->htip://keg. cs. tsinghus. edu. cn/ontology/ travel#datel
P type=Dhttp://keg. cs. tsinghua. edu. cnfontology/travel#Date
o P month=>8:http:/fwww. ¥3. org/2001/XMLSchema#int
R R ~ date->13:http://www. w3. org/2001/XMLS chema#int
Wi P* type-Dhttp://keg. c¢s. tsinghua. edu. cnfontology/ travel#Flight
P seatClass—Deconomy:http://www. w3. org/2001/XMLSchema#string
e P type=Dhttp://keg. cs. tsinghua. edu. en/ontology/travel#AirTicket

rP P subClassOf-Dhttp://keg. cs. tsinghua. edu. cn/ontology/travel#Ticket

P type-Dhttp://www. w3. org/2002/07/ owl#Class

% P subClassOf~Dhttp://keg. cs. tsinghua. edu. en/ontology/travel#FlightDomain
2" 0. 9791666666666667
5@ ticketd
¥ 0.875
@ ticket2
0. 7483487450462352
i@ ticket3

#

X

&

£

N

#

Figure 3. The similarity result computed by WSDIM.

586 Po Zhang, Juanzi Li, Kehong Wang
6. AN EXAMPLE

As the use case described in OpenTravel Alliance Message Users Guide
[8], “Bob is planning a trip for his wife and child to fly from London to Los
Angeles. He would like to depart on August 13 and prefers a non-stop flight,
but if he has to make a stopover, he prefers that there be a maximum of one
stopover. He also would like to fly on a 757 and have his tickets mailed to
him. He wants to fly economy class. Bob requests availability on flights
from London to Los Angeles on August 13. And he wants to get the
roundtrip tickets information.”

Assuming there are four different web services: AirChina_Service,
CathayPacific_Service, ShanghaiAir_Service and NorthernAir_Service.
AirChina_Service will provide an airchina ticket as output, while using
ticket information and credit card information as inputs. The other three
services also have ticket as output and the same inputs. According to Bob’s
requirements, all these four services can go through Output/Input Algorithm.
However, the precondition of AirChina_Service requires the membership of
airchia_zhiyin club which is not true for Bob whose profile gives the
membership of POP and CSSS club. And the effects of ShanghaiAir_Service
and CathayPacific_Service don’t include the “ticketmailed” effect in user
requirement, so the contentdegree of these two services are both 0 according
to Effect ContentDegree calculation Algorithm, while NorthernAir_Service
can provide this effect, gets contentdegree 1. Then through the general MA
algorithm, NorthernAir_Service which has the highest contentdegree will be
recommended to Bob. Up to now, the discovery of web services has been
finished. '

Then Assuming NorthernAir_Service has some different service data, and
we can pick four of them to delegate all the service data. The four service
data (tickets) are: ticketl, ticket2, ticket3, ticket4. In which, ticketl, ticket2
and ticket4 is from London to LosAngeles, while ticket3 is from LosAngeles
to London; the departure date of ticketl, ticket2 and ticket3 are all August
13, while ticket4 is October 15; ticket]l doesn't have a stopover, while ticket3
and ticket4 have one stopover NewYork airport, and ticket2 have two
stopover NewYork airport and Washington airport; the airplane type of

Discovery and query: two semantic processes for web services 587

ticketl and ticket4 is 757, while ticket3 is 747 and ticket2 is unknown; all
these tickets provide economic class.

NorthernAir_Service description can be obtained from
http://keg.cs.tsinghua.edu.cn/persons/zp/NorthernAir.owl, while the four
service data instances can be obtained from
http://keg.cs.tsinghua.edu.cn/persons/zp/NorthernAirlnstances.owl. The

similarity calculation algorithm is to get the similarity between two ontology
instances. Now, the service data instances have been constructed, so the user
requirements should also be constructed as ontology instance as illustrated in
figure 4.

myticket::AirTicket =~ > -------c-mcccmmcie e Level

Figure 4. The ontology instance for end user requirements.

And the logic expression for user requirements can be written in f-logic
format:

FORALL X,Y,X1,Y1,XO,XD isReturnTicket(X,Y) <-
X["hasFlight"->>X1]
AND Y["hasFlight"->>Y1]
AND X1["hasOrigin"->>XO]
AND X1["hasDestination"->>XD]
AND Y 1["hasOrigin"->>XD]
AND Y 1["hasDestination"->>XO].
This means the ticket X and ticket Y is roundtrip tickets whose origin
airport is the other’s destination airport and destination airport is the other’s
origin airport. This flogic result through F-Logic Engine can be obtained at

http://keg.cs.tsinghua.edu.cn/persons/zp/result.txt.

588 Po Zhang, Juanzi Li, Kehong Wang

Then through IMA algorithm, the sort of the four tickets is: tikcetl 1.0,
ticket4 0.979, ticket2 0.875, ticket3 0.748. So the NorthernAir_Service not
only provides the service interface to meet user requirements, but really
provides the specific satisfiable ticket — ticket1.

After finishing the two processes, Bob eventually get the satisfiable ticket
from NorthernAir_Service. ‘

The meaning of myticket:AirTicket in figure 4 is that myticket is the
instance of ontology class AirTicket, in order to represent the required ticket
information. myflight:myFlight defines a new class myFlight, which is the
subclass of class Flight, in order to extend the constraints for class Flight.
Class myFlight adds owl:minCardinality and owl:maxCardinality constraints
to the property hasStopover of class Flight, in which owl:minCardninality is
0 and owl:maxCardinality is 1, represents the user requirement for stopover
constraints. The user request <can be obtained from

http://keg.cs.tsinghua.edu.cn/persons/zp/request.owl

7. RELATED WORKS

Now semantic web service has become a hot research topic, which uses
ontology concept to enhance service discovery. The work in [4] annotates
the operation, input, and output description of a Web Service, described in
WSDL format, with DAML+OIL-based ontological concepts. Precondition
and effect of the service are also added to WSDL as additional information
such as [9] [5], but they are not used for queries as only the matching of the
operation, input, and output is considered. The work in [6] and [3] both
consider behavioral aspects in their service models but those aspects are not
fully considered or used as query constraints for service matching. The work
in [3] enhances WSDL with DAML+OIL based ontological information and
considers a web service by its behavioral aspects all rounds. It allows the
operation, input, output, precondition, and effect to be used as query
constraints, and additionally consider the case when output or effect of the
service has some conditions placed on them - the case when we provide a
rule-based reasoning to determine the output and effect for query matching.
And METEOR-S project [12] also proposed a infrastructure for semantic

Discovery and query. two semantic processes for web services 589

publication and discovery of web services, which is called METEOR-S
WSDI.

It seems that the research on web services discovery is more active than
web service query. The technology used in web service query is still based
on keyword search. Adopting semantic web technology to assist web service
query, and then to combine web services discovery and query has more
application value for meeting end user requirements.

8. CONCLUSION AND THE FUTURE WORK

The new features in this paper comparing to other approaches are as
follows:

The first is this paper use two kinds of ontologies for web services
discovery and query. The domain ontology is a travel domain ontology,
which constructed from Open Travel Alliance Guide which is a famous
travel alliance including more than 150 travel industry companies. This
ontology can be obtained from SchemaWeb!'"”, or from
http://keg.cs.tsinghua.edu.cn/persons/zp/travel_onto_is.owl. And the service
upper ontology adopts the OWL-S Specification in order to align with
current Web services Standards.

The second is to propose a whole architecture for web services discovery
and query, which is based on the service model above, and to represent end
user requirements with flogic based user preferences and constraints.

Then various algorithms is given for the whole architecture proposed
above, including the more detailed algorithms for web services discovery
and the similarity calculation based algorithms for web service query. And
two frameworks are implemented accordingly.

Finally the use case illustrated in this paper can be represented and solved
easily in this architecture, and shows the application value for end user.

How to reduce the exponential complexity similarity algorithm to lower
complexity is an important future study issue. And the automatic generation
of preferences and constraints rules form learning of user choices is an
important and interesting issue that will also be studied further.

590 Po Zhang, Juanzi Li, Kehong Wang
9. REFERENCES

1. Hugo Haas. Web Services activity statement. W3C, http://www.w3.0rg/2002/ws/Activity,
2001.

2. Tim Berners-Lee, James Hendler, Ora Lassila. The Semantic Web. Scientific American,
2001, 284(5):34-43.

3. Natenapa Sriharee and Twittie Senivongse, Department of Computer Engineering
Chulalongkorn University, "Discovering Web Services Using Behavioral Constraints and
Ontology”, Distributed Applications and Interoperable Systems, 4th IFIP WG6.1
International Conference, DAIS 2003, Proceedings, Springer, Paris, France, November
17-21, 2003, pp.248-259.

4. Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth, John A. Miller, “Adding
Semantics to Web Services Standards”, Proceedings of the International Conference on
Web Services, ICWS '03, Las Vegas, Nevada, USA. CSREA Press 2003, pp.395-401

5. Peer, J, “Bringing Together Semantic Web and Web Services”, Proceedings of the 1st
International Semantic Web Conference (ISWC 2002), Lecture Notes in Computer
Science Vol. 2342. Springer Verlag, Sardinia (Italy), 2002, pp.279-291.

6. Paolucci, M. et al., “Semantic Matching of Web Services Capabilities”, Proceedings of the
1st International Semantic Web Conference (ISWC 2002), Sardinia (Italy), Lecture Notes
in Computer Science, Vol. 2342. Springer Verlag (2002).

7. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of objectoriented and
frame-based languages. Journal of the ACM, 42(4), 1995, pp. 741-843.

8. hitp://www.opentravel.org/

9. Uche Ogbuji. Supercharging WSDL with RDF - Managing structured Web Service
metadata. IBM developerWorks article, 2000.

10.Po Zhang. Travel Ontology.
http://www.schemaweb.info/schema/SchemaDetails.aspx?id=236, 2005.2.

11. http://www.daml.org/services/owl-s/

12.METEOR Project on Workflow and Semantic Web Process,
http://Isdis.cs.uga.edu/proj/meteor/meteor.html

13.http://www.sts.tu-harburg.de/~r.f.moeller/racer/

