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Abstract:  Triangulation for long has been the backbone of land surveying and mapping.  
This work outlines its history in Iceland and provides an example of observations and 
computation in a triangulation network before the computer era came of age.  The work 
describes briefly a computer program written in 1965 for the adjustment of observations in 
triangulation networks and mentions later improvements of the program. 
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1.  Introduction 
 
People believe that the ancient Egyptians practiced land surveying, but 
triangulation, theodolites, and least squares adjustments are more recent.  
Willebrord Snellius (1580–1626) measured a network of 33 triangles early in the 
17th century and the theodolite, an optical instrument for observing horizontal and 
vertical angles, was developed later in that century.  Carl Friedrich Gauss (1777–
1855) did triangulation work and invented the method of least squares. 

Danish authorities had the coastal areas in Iceland surveyed and mapped in the 
beginning of the 19th century.  Björn Gunnlaugsson (1788–1876), an Icelandic 
mathematician, surveyed and mapped the interior in the years 1831–1843.  The 
Danish general staff started a new triangulation and mapping of Iceland in scale 
1:100,000 in the year 1900.  Geodætisk Institut concluded this work in 1939, 
while Iceland was still part of Denmark [3].  The governments of the United 
States, Denmark, and Iceland financed a first order triangulation of Iceland in 
1955–56 [2].  See Figure 1. 

Orkustofnun (National Energy Authority) started land surveying shortly before 
the middle of the 20th century.  Extensive leveling networks were established and 
new triangulation networks were connected to the first order network from 1955–
56.  The National Land Survey of Iceland started aerial photography in 1955 and 
from that time, Orkustofnun used aerial photographs in its mapping projects.  We 
established ground control for mapping in scale 1:20,000 with 5m contour 
intervals of large areas, and for maps in larger scale of smaller areas.  We did this 
work for the purpose of hydropower development.  Before the end of the century, 
we had surveyed about one-third of the country, mainly in its interior, and mapped 
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a quarter of the country in this way; however we subcontracted the 
photogrammetry work to various Icelandic and Scandinavian engineering firms. 
 
 
2.  Adjustment before the Computer Era 
 
In the summer of 1962 surveyors at Orkustofnun did triangulation and leveling 
work at Búrfell where Landsvirkjun (The National Power Company) was going to 
build a hydro power plant.  In the spring of 1963, the adjustment of the 
triangulation was not finished and the author worked long hours computing in 
order to finish a report and then get out in the field.  His coworkers had already 
left for the northwest of Iceland where they would spend the summer and where 
he wanted to be, but engineers needed the results of the surveying at Búrfell 
during the summer.   
 

 

 
 

Figure 1.  Observations in the first order triangulation network in Iceland were made in 
1955–56 by Geodætisk Institut of Denmark with the assistance of the National Land Survey 
of Iceland.  The network adjustment took place in Denmark.  The Hjörsey geodetic datum 
of 1955, named after an astronomical station in the network, was used by surveyors 
working in the latter half of the 20th century.  Búrfell is the site of a hydro power plant 
built in 1966–69. 
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The author used an electromechanical calculator, pen, and paper for the 
calculations.  The repetitive nature of the task, but especially the author’s wish to 
be elsewhere, made him seriously consider its future automation by means of an 
electronic computer. 
 
2.1 Background 
 
The geoid is a property of the gravity field of the earth [9].  At sea, it roughly 
coincides with mean sea level.  The Hayford reference ellipsoid used in the 
Hjörsey geodetic datum has a standard form, but its location and orientation were 
determined mainly by astronomical observations in 1955, to approximate the 
geoid locally in the region of Iceland.  After Danish surveyors established the first 
order network, Icelandic surveyors, when computing in the Hjörsey geodetic 
datum, assumed that the local normal to the ellipsoid and the local vertical axis at 
a point coincide. 

When observing at a triangulation point (the station), where a theodolite has 
been set up, centered and leveled, the observer can rotate the upper part of the 
theodolite with the telescope about the vertical axis, but the lower part contains 
the horizontal circle at rest in the horizontal plane of the station. 

A triangulation network has triangulation points and lines of sight joining 
them in three dimensions.  Each point of the network, a triangulation point or a 
point on a line of sight, is projected along the local normal onto the surface of the 
ellipsoid, where a second network is produced.  The surface of the ellipsoid is 
projected by means of a mathematical formula, Lambert’s conformal conical 
projection, onto the projection plane, where a third network is created.  The 
images of the lines of sight are curves and the observed horizontal angles (in the 
first network) are reproduced unchanged as angles between (tangents to) these 
curves.  Since this is complicated, geodesists prefered to replace the curves with 
straight lines and a fourth and final network is created.  From the actual 
observations in the three-dimensional network and approximate coordinates in this 
fourth network, geodesists have deduced formulas for computing the so-called 
reduced observations which may be treated as if they were observations made in 
the two-dimensional space of the projection plane. 
 
2.2 Field Work 
 
The fieldwork culminated in observations of horizontal angles at the triangulation 
points.  A simplified description of the observations at a station is to say that the 
field operator aimed the theodolite at the targets (the distant triangulation points) 
in clockwise order and read the horizontal circle each time.  (In fact, we repeated 
this twelve times and then computed the means).  This gave one set of direction 
readings (see Figure 2).  By this method of observation adjacent angles (b – a  and  
c – b in Figure 2) are correlated but the direction readings are not.  To observe the 
adjacent angles in an uncorrelated manner would require a more complicated 
procedure of observations in the field. 



246 Gunnar Thorbergsson 
 

 

 
 
Figure 2.  The horizontal plane at triangulation point S: Triangulation points A, B, and C 
are observable targets.  The lines of sight are projected vertically onto the horizontal plane 
where they meet the horizontal circle (at rest during observations) in graduations or 
numbers a, b, and c.  The line SO passes through zero on the horizontal circle.  The 
numbers a, b, and c are recorded in the field book.  They are a set of direction readings.  In 
this case, the number of targets, which must be less than eight, is three. 
 
 
2.3 Office Work 
 
The most time consuming part of the office work was adjustment of observations.  
In adjustment of indirect observations [8] in a triangulation network, the 
horizontal coordinates of the unknown points are to be determined in a way that 
minimizes the sum of squares of observation residues.  We previously computed 
the heights above the reference ellipsoid of all points in the network and during 
the adjustment considered the heights known.  The author used this variant of 
adjustment in the computation of the horizontal coordinates of triangulation points 
at Búrfell. 

We computed the initial coordinates for the unknown points, usually by 
forward section from two known or already computed points.  Denoting the initial 
coordinates of point Pi by (Xi, Yi), they would later become (Xi + xi, Yi + yi), 
where xi and yi are coordinate changes to be found by adjustment.  In this initial 
network, with some points with known coordinates and unknown points with 
initial coordinates, distances and directions were carefully computed. 

We reduced each observation so that the reduced observation became as if we 
had made it in the straight-edged network in the plane.  These reductions were 
made using precomputed tables and diagrams.  The reductions take into account 
the curvature of the earth and the distortion due to Lambert’s conformal conical 
projection onto the plane and, in the case of distance between two points, the 
different heights of the points above the Hayford reference ellipsoid.  (However, 
we observed no distance at Búrfell).   

The expression atan2(Xi + xi – X0 – x0 , Yi + yi – Y0 – y0) holds for the angle 
at station P0 clockwise from the Y-axis to the line joining P0 to target Pi.  With the 
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help of Figure 3 this direction angle for the line joining station to target can be 
expressed differently, resulting in an observation equation, loosely formulated as 
“observation constant + reduced direction reading + residue = arctangent 
function”.  The arctangent function has to be linearized by Taylor’s expansion 
before being used in linear equations. 

 
 

 
 
Figure 3.  The projection plane: S is the image of a station joined by straight lines to the 
images of targets A, B, and C.  Line SO passes through zero on the image of the horizontal 
circle.  Angles a, b, and c are reduced observations.  The unknown angle o, clockwise from 
the Y-axis to the line SO, is named orientation constant.  The observed direction angles or 
directions to the targets are o + a, o + b, and o + c. 

 
 
Each of the m observation equations in a set of m direction readings contains 

an unknown orientation constant and a residue, but the orientation constant does 
not occur in other equations.  It is easy to prove by the method of least squares, 
that the sum of the m residues is zero, and an equation created by summing the m 
observation equations is free of residues.  We could use this equation in at least 
two different ways for eliminating the orientation constant from the observation 
equations.  In Method 1, the orientation constant is eliminated from the equations 
by subtracting the mean of the m equations from each of the equations, but the 
number of unknown variables in each observation equation is thereby increased.  
In Method 2, the orientation constant is deleted from each of the m observation 
equations and the truncated equations used with weight 1, provided the equation 
formed by summing the m truncated equations is used with weight –1/m when the 
normal equations are formed.  This gives the same normal equations as Method 1.  
See “Schreibersche Summengleichung” in [10]. 
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The first stage of the adjustment at Búrfell involved six unknowns and four 
known triangulation points.  We used a precision of eight decimal digits when 
computing distances, directions, and coordinates in the initial network, but four or 
five digits in the following matrix computations.  We used Method 2 and a 
simulation shows that we needed 1440 multiplications and divisions for the matrix 
computations.  For simplification, we show the use of Method 1 (requiring 2310 
multiplications and divisions) in the following discussion. 

We can write the observation equations for the whole network in matrix 
notation as v  = Bx  – r .  Here v  is a vector of unknown residues, r  is a constant 
vector, x  is an unknown vector of changes to the initial coordinates of unknown 
points, and B  is a matrix of rows as many as there are observations; and columns 
as many as there are unknown coordinates.  The vector r  has a component in the 
column space of B  and a component orthogonal to that space, hence v  is least 
when it is equal to the latter component and its component in the column space of  
B is zero, which means that  BTv  =  0.  The normal equations BTBv  = BTr  follow.  
We need to compute the upper triangular part of BTBv and the right hand side 
vector BTr . 

By its form the normal equation matrix is positive semidefinite and it will be 
positive definite if regular.  We can infer some properties of the matrix from the 
network from which it is computed.  The matrix may be singular if the surveyor 
forgets to make observations in some part of the network.  It will be regular if no 
part of the network could move relative to the rest without contradicting 
observations.  The normal equations were solved by Gaussian elimination [4]. 
 
 
3.  A Computer Program for the Adjustment 
 
In December 1964, an IBM 1620 Model II computer became available at the  
Computing Center of the University of Iceland [7] and in 1965, the author wrote a 
FORTRAN II program for adjustment of triangulation using adjustment of 
indirect observations.  At first, the computer was without removable disk and 
without a printer.  Input, output, and even external storage had to be on punched 
cards (named IBM cards) and FORTRAN II used statement numbers in its 
branching and looping statements that could easily have resulted in “spaghetti 
code”. 

We could do the adjustment in one or more stages in one computer run.  The 
input to the program was on punched cards and consisted of a dictionary stack, 
one observations stack for each stage of adjustment, and a coordinates stack.  The 
dictionary stack was used for translating point names into point numbers, an 
observations stack contained observations for one stage of adjustment and 
instructions for the initialization of coordinates of unknown points, and the 
coordinates stack contained a list of points with or without coordinates. 

At each stage of adjustment, we could use a chain of triangles, specified on a 
punched card, to direct the computation of coordinates of unknown points.  Each 
triangle contained at least two observed angles and each chain at least two points 
known initially or from the adjustment in a previous stage.  Alternatively, we 
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could use a card with a sequence of point names to direct a special routine to 
compute the coordinates of each of the points by resection.  We used the 
formulation in Handbuch der Vermessungskunde for the reduction of observations 
to the plane [5]. 

The observation equations for each set of direction readings were formed as 
explained in the previous section.  They were not stored but used to compute their 
contribution to the normal equations.  If any residues were outside specified 
bounds, the program reported all such residues and the processing stopped. 

We solved the normal equations by Cholesky factorization [4].  We computed 
the elements of the diagonal and super-diagonal of the inverse of the normal 
equation matrix (but not the entire inverse matrix) and they were used for 
computing mean errors of coordinates and the parameters of error ellipses and 
confidence ellipses for the unknown points [8]. 

The program consisted of a small main program and five subroutines running 
one after another, each invoking a number of other subroutines and using the 
COMMON declaration (i.e. global data) for data storage.  We used this structure 
to maximize storage space for the normal equations and we implemented vectors 
and matrices as one-dimensional arrays.  The first version of the program was 
about 2100 lines of code. 
 
 
4.  Adjustment Using the Computer 
 
The use of the program changed the work of the surveyor by enabling him to plan 
larger networks or have larger parts (up to 23 unknown points) of a network 
adjusted as one whole, and he could spend more time in the field and less time in 
the office. 

At Orkustofnun there was access to a card punch machine where the data was 
entered into white IBM cards.  We then brought the cards to the Computing 
Center at the University where computer operators kept the program on differently 
colored cards.  A stack of cards with the first part of the program was put in front 
of the input cards in the input card hopper, the program started, and cards with 
intermediate results appeared in the output card stacker.  An operator then put 
these after the second part of the program in the input card hopper, and so forth.  
The juggling of card stacks became rather complicated if the adjustment was in 
many stages.  We would then take the final output cards to the Skýrr computing 
center elsewhere in Reykjavík where an operator used an IBM 1401 computer to 
print their content [1]. 
 
 
5.  Later Improvements 
 
The first version of the program did not accept observations of distance, but 
subsequent versions did.  By then the Computer Center had added removable data 
storage disks and a printer to its computer system; as a result, the juggling of card 
stacks or trips to the second computer were no longer necessary.  Later versions of 
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the program used heights above the reference ellipsoid and a three-dimensional 
model avoiding reductions to the plane, the normal equation matrix was stored as 
a variable-band matrix, and free adjustment [6] was possible. 

 

 
 

Figure 4.  In 2003, the 40-year-old triangulation in Búrfell area was readjusted with some 
of the triangulation points fixed by GPS observations.  Of the five hydro power plants in 
the Þjórsá-Tungnaá river system, the 270 MW plant at Búrfell was built in the years 1966–
1969 and the 130 MW plant at Sultartangi in 1997–2000. 
 
 

We used this program as late as 2003 for re-computing old triangulation 
networks with some of their points positioned by GPS observations (see Figure 4).  
By then the computer era had revolutionized land surveying, partly by computers 
embedded in surveying instruments, and with new technologies such as the Global 
Positioning System.  In the earlier years, triangulation had been greatly facilitated; 
finally, it became almost obsolete. 
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