

University Education on Computers

Summary of a Panel Discussion

Reino Kurki-Suonio1 (chair), Oddur Benediktsson2, Janis
Bubenko, Jr.3, Ingemar Dahlstrand4, Christian Gram5, and
John Impagliazzo6

1 Tampere University of Technology (Emeritus), Finland, reino.kurki-suonio@tut.fi
2 University of Iceland, oddur@hi.is
3 Royal Institute of Technology (Emeritus), Stockholm, Sweden, janis@dsv.su.se
4 University of Lund, Sweden (Emeritus)
5 Technical University of Denmark (Emeritus), Copenhagen, Denmark, chr.gram@ddf.dk
6 Qatar University, Doha, Qatar, john@qu.edu.qa

Abstract: Following a session on university education, this panel discussed early Nordic
visions and experiences on university computing education, contrasting them to today's
needs and the international development at that time. This report gives short papers by the
panelists (their opening statements), and a brief summary (the chair's interpretation) of the
views that were raised in the ensuing discussion.

Keywords: Nordic university computing education, university computing education

1. Introductory Remarks
 by Reino Kurki-Suonio

More than forty years have passed since computer science and related topics were
introduced as academic disciplines, even though universities had already used
computers for some time and students had already experienced programming
courses. The first professors in these fields had started their work in computing
practice more than forty-five years ago. To obtain a quantitative idea of the way
the world has changed since then, notice that the factor computed by Moore’s law
for forty-five years is no less than one billion; that is, it is a factor of ten to the
ninth!

Trying to imagine ourselves in those times, we remember also that computers
were centralized facilities, operated by special personnel in the batch mode.
Computers were far too expensive and it was difficult to justify their use for
educational purposes or for computing-related research; they were primarily
purchased for more “serious” use as tools in number crunching and/or
administrative data processing.

348 R. Kurki-Suonio, O. Benediktsson, J. Bubenko, Jr., I. Dahlstrand, C. Gram, J. Impagliazzo

Another major difference is that in its infancy the world of computing was still
rather homogeneous. Until the mid-1970s, “all” computer people – system and
application developers, academicians and practitioners – gathered at IFIP world
congresses, for instance, and they were still listening to each other with interest
and with more or less good understanding. In other words, the many disciplines
that were inspired by information technology were just emerging and had not yet
developed their separating paradigms, no specialized conference or workshop
series existed, and the gulf between theory and practice was still narrow.

This panel presentation has provided a spectrum of viewpoints of computing at
universities from different countries and from different periods. The overall
collection total of these points of view has created an interesting dialogue useful to
computing history and history specialists.

2. Early Development in Finland
 by Reino Kurki-Suonio

My own university career started in 1965 at the University of Tampere and
continued from 1980 until 2002 at Tampere University of Technology. In both
places, I had the privilege of developing degree-based education in computing
from scratch. When I became involved with this, I had five years experience in
application design and implementation as well as in programming education at
Finnish Cable Works, one of the roots of today's Nokia. My ideas of computing
education were, however, strongly influenced by a post-doctoral year at Carnegie
Institute of Technology (now Carnegie Mellon University), where the computer
science department was just beginning to start in a formal way.

As discussed in more detail in [8], in Finland the first chair in computing was
established by a surprise move in 1965 by the University of Tampere – then still a
School of Social Sciences – at which point I suddenly found myself involved in
designing an academic curriculum for an emerging discipline. This activity was
not a result of gradual development. Since we did not have much of a model to
use, I had a rather free hand in the curriculum design.

Contrary to what we had heard about the controversy between a tool and a
discipline in Norway [10], this was not a problem in Tampere since the university
did not have natural sciences or technology with large number crunching needs.
Later, however, this controversy was strongly reflected in the acquisition of
computers, as is apparent in [11]. In any case, in computing education we were
definitely going for a new discipline, which we felt to be of fundamental
importance to human civilization.

For the core of this discipline, I considered expressing of complex algorithmic
processes. It was clear that, as an academic discipline in an area with much
practical importance, the curriculum should combine practical skills with
theoretical understanding. Of course, this “motherhood” statement was never easy
to implement, since “one man’s theory is another man’s practice”. In addition,
much of what practitioners criticized as being too theoretical in our curriculum is
now pure practice.

University Education on Computers 349

Although the field then was much more homogeneous than today, computing
practice had two important lines of separation: one between scientific computing
and administrative data processing, and the other between programming and
system analysis and design. In my mind, the emerging discipline should do away
with these differences. I felt that the discipline is much more fundamental than
using computers as tools in certain applications, and that results in its core areas
are application-independent. Additionally, I also strongly opposed the common
view of practitioners that programming is a low-level activity of coding, or the
technical mastery of one or more programming languages.

In designing and then implementing the curriculum, my colleague, Miikka
Jahnukainen, assisted me. He had already been involved with a plan to educate
system analysts and designers for administrative data processing. We felt that it
was a good idea to expose the students to our complementary views on what was
most essential for the students. I could concentrate on algorithmic processes, data
structures, principles of programming languages and operating systems, and other
aspects of the young computer science, whereas Jahnukainen’s approach better
prepared students for the more mundane practices of the ADP departments and led
to the Scandinavian direction of “systemeering”. However, to my disappointment,
the two views seldom merged successfully in the students’ minds. My idealism
was also shaken by the experience that so many of the students – especially ones
who wanted to specialize in administrative system design – had tremendous
difficulties in passing the courses that I considered to be the core of the discipline.

In any case, when further Finnish universities followed us in starting their
computer science and related departments, we had already gained some
experiences that they could utilize, in addition to the international models that then
started to be available.

3. A Swedish Perspective
 by Janis Bubenko, Jr.

In the early days of computing, the 1950s and the 1960s, researchers and
practitioners had different visions about computing in the future. Swedish
researchers’ vision was the continued use of large computers, precise application
problem formulation in high-level, declarative languages followed by “code
generation” and optimization. We believed in the development of advanced tools
for design and generation of information systems. We also believed we
would/could develop a comprehensive “theory of information systems
development”. However, we totally underestimated the complexity of such an
undertaking. It is important to note that, in the 1960s, our vision of future
information technology did not include (1) personal and personally owned and
portable computers, (2) data communication development and the internet, (3)
security threats and problems, and (4) the development of commercial off-the-
shelf (COTS) software and hardware. We could hardly have imagined that these
things were possible.

350 R. Kurki-Suonio, O. Benediktsson, J. Bubenko, Jr., I. Dahlstrand, C. Gram, J. Impagliazzo

Today, university education in information technology has become specialized
in many different directions such as theoretical aspects (computer science),
databases, information systems, software engineering, requirements engineering,
human-computer interaction, and many other specialties. However, in most of
these specialties we still consider certain fundamental topics as essential. Some of
them include modeling of “object systems” (applications) using different types of
models (conceptual, object-oriented, process, rules, etc.), programming languages
of different kinds, algorithms and data structures, mathematics and logics, and
design, testing and proofs of programs.

Major changes during the last twenty years that have affected the needs of
academic computing education are the personal computer and advances in
software and hardware technology, advances in telecommunications, the internet
technology including search technologies. These developments have changed our
vision of the way we can build future systems and the way our vision affects the
way future systems may influence our daily lives.

What should be the proper role of computer science and other theoretical bases
in computing education and research today? The complexity of systems is
increasing. Systems increasingly experience “bad input” and hostile attacks. The
need to build systems with “a correct and safe (robust) behavior” is increasing.
The need for interfaces designed in such a way that non-computer experts can use
them is obvious.

As a contrast, the use of formal methods, mathematics, and logic in computing
education seems decreasing. In some Swedish colleges, for dubious reasons,
some advanced theoretical topics in computing have been “dropped” in order to
attract more students to information technology. We should never forget that
systems and program development is much more than “front page design”.
Unfortunately, few companies of today understand the importance and need for
higher-level theoretical knowledge within the computing field.

4. University Computer Science Education in Denmark
 Before 1970
 by Christian Gram

4.1 The Very Beginning

Before 1962, no regular curriculum in computer science existed at universities.
However, we do know that universities offered several extra courses for both
students and academic staff. Some of the topics included programming in
assembly language, Algol or FORTRAN, which departments then supplemented
with courses in numerical technical calculation.

The first regular courses for students emerged in the early 1960s at the
universities and they centered on departments of mathematics; at the technical
universities, they centered on departments of electronics. As an example, the first
computer-related course at Copenhagen University was “Mathematics 4”, and the

University Education on Computers 351

contents of the course (a) Programming in Algol, (b) Numerical analysis of
problems in linear equation solving, numerical integration, and root finding.

4.2 The First Plan

Through his work on compiler construction and on EDP applications, Peter Naur
became convinced that some common basic principles lay behind all data
processing and use of computation. In 1966, while he worked as a senior
consultant at Regnecentralen, he published a red booklet with 64 pages called “A
Plan for a Course in Datalogy and Datamatics” [9]. The booklet outlined what a
general course in computer science should contain. The preamble stated that
“Datalogy is as fundamental as language and mathematics in education”, and
some knowledge of programming must be taught early. The plan proceeded by
describing in some detail six major areas:

o Concepts and methodology for datalogy; computers; data processes.
o Single data elements; dealing with data representation; numbers and

arithmetics; classification and choices.
o Medium size data sets; problems concerned with searching and sorting;

sequential analysis of text; arithmetic expressions; list structures.
o Communication between man and computer; format of input data; output

representations; dialogue between man and machine.
o Large data sets and file transactions; processing efficiency; utilization of

sequential secondary storage; searching on secondary storage media.
o Development of large programs; consideration of safety problems; ways to

plan and develop large programs.

Using this plan as the list of contents, Naur and a group of colleagues at

Regnecentralen planned to write a textbook containing eighteen chapters. It was
our conviction at the time that new textbooks were essential; the management at
Regnecentralen supported this belief. In 1967-69, the group wrote thirteen of the
planned eighteen chapters; however, they never finished the last five chapters.
The project stopped because in 1969, Copenhagen University appointed Naur as
professor in Datalogy. At the same time, Regnecentralen moved toward a more
business-oriented direction. However, the material they developed influenced the
computer science curricula created in the late 1960s.

4.3 Comparison with Today

The tables below show a comparison between computer science courses of today
and courses in 1968. The column “Typical 2007 Courses” contains course titles
from a typical computer science curriculum 2007. The column “Corresponding
Titles 1968” shows, where similar courses existed already around 1968 and where
methods, principles, or technology were still under development.

Table 1 mentions some of today’s courses, which are more or less similar to
courses that already had existed in the late 1960s. Table 2 contains several
modern courses that had no obvious parallel in the old days. For many of the

352 R. Kurki-Suonio, O. Benediktsson, J. Bubenko, Jr., I. Dahlstrand, C. Gram, J. Impagliazzo

courses, the technology was not yet available; for other courses, the theory was
still under development; in a few cases, the topics simply did not exist in the
1960s.

Table 1

Typical 2007
Courses

Corresponding
Titles 1968

Remarks

Intro to
Mathematics

(same)

Linear
Algebra

(same)

Advanced
Algorithms

(same)

Compilers

(same)

Types and
Programming
Languages

Programming Languages

Functional
Programming

LISP LISP was the only functional
language

Advanced
Databases

Databases

Operating
Systems

(same)

Object-oriented
Programming and
Design

Design of EDP Systems The term “object-oriented” was not
invented, but design was dealt with
much the same way as today

Optimizing in
Production
Planning

System Analysis, Optimization Not exactly the same course, but
much of the same flavor

Computer
Architecture

(same) Very similar courses, even if
technology differed

Man-Machine
Interaction

Input/Output Formatting The term “interaction” in today's
meaning was not possible; the
emphasis was on user-friendly
input/output

Artificial
Intelligence

(same) Courses existed in late 1960s, but
the contents were much different
from today’s courses

Table 2

Typical 2007
Courses

Corresponding
Titles 1968

Remarks

Intro to
Graphics

 No graphical media existed

Intro to Image
Processing

 No means for image manipulation existed

Logic: Models and
Proofs

 Prolog courses began to appear in curricula in
the 1970s

Software
Engineering

 The term was not invented until 1968

Computation and
Deduction

 Theoretical computer science courses were
not established

University Education on Computers 353

Cryptography and
Security

 Problems around secure EDP were not yet on
the agenda

Reversible
Computation

 Theories were not developed

Algorithmic
Geometry

 Mathematicians had not yet started to use
computers in geometry

Data net (Data Transmission) The term “data net” was not invented, but
one-to-one transmission was used and taught

Intro to Distributed
Systems

 Distributed systems were not invented

Chip Design (Circuit Analysis and
Design)

Systems and methods for chip design did not
exist

Robot
Experimentation

 Robots did not really appear in courses until
the 1980s

5. Experiences in Lund
 by Ingemar Dahlstrand

In 1985, I entered academia at Lund Technical College (LTH), so I did not take
part in the early build-up, except for programming courses in machine code and
later Algol. When I did become a teacher after much practical experience in
industry, I found that the education offered at LTH was at a strong level, both
practically and theoretically. In the 1960s, I had thought that getting research
started was more urgent than mass education because computer scientists outside
the Stockholm area had a rather poor job market. The question always had
emerged as to whether computer science was a science in its own right. My
response is emphatically “yes”. This is the first time in civilization that we learn
to instruct a completely obedient apparatus, and we are finding it surprisingly
difficult. Our department at LTH offered programs in both numerical analysis and
in computer science, but that was for historical reasons.

Our students sometimes complained that they wanted to learn C++ because
that was what industry used. Actually, industry asked the faculty to teach students
foundations and problem solving; for commercial usage, industry was prepared to
teach specialized topics themselves. A computer scientist should know the
difference between a good method and a poor one, even if he or she must use the
latter for a while. We had a seminar once at a national conference; it started out
with the question: Does computer science build upon its foundations such as
computability, program proving, and the Turing machine? I do not think it always
does.

6. The Start of Computer Science Education in Iceland
 by Oddur Benediktsson

With the acquisition of an IBM 1620 Model 2 computer in 1964, the University of
Iceland entered the computer age. Programming became part of the engineering
curriculum in the following year. The programming language used was

354 R. Kurki-Suonio, O. Benediktsson, J. Bubenko, Jr., I. Dahlstrand, C. Gram, J. Impagliazzo

FORTRAN II. Programming became a required component of an “applied
mathematics” course in the engineering curriculum. At that time, only the first
three years of the engineering studies could be completed in Iceland; students
would go abroad to finish their studies.

In the academic year 1972-73, a new three-year sequence of study, the BS in
Applied Mathematics, became a curriculum in the Mathematics Department at the
University of Iceland. The core curriculum consisted of mathematical analysis,
algebra, and statistics, in addition to computer science, numerical analysis, and
operations research. The curriculum was partly based on the recommendations of
the ACM Curriculum Committee on Computer Science “Curriculum 68:
Recommendations for the Undergraduate Program in Computer Science” [2].

Computer science became a separate three-year BS degree program at the
University of Iceland in 1976. The Mathematics Department housed the degree
program in computer science; the program remained there for the subsequent ten
years, before becoming an independent department.

The following table shows the first computer language taught to engineering
and science students at the university and the computer systems used.

Table 3

Period Computer

system
First language

1965 – 1975 IBM 1620 FORTRAN II
1976 – 1978 IBM 360/30 and PDP 11 FORTRAN IV
1979 – 1982 DEC VAX-11 FORTRAN 77
1983 – 1986 DEC VAX-11 and PCs on net FORTRAN 77 and Modula-2
1987 – 1990 DEC VAX-11 and PCs on net FORTRAN 77 and Turbo Pascal
1990 – 1996 Unix servers and PCs on net C++ and Turbo Pascal
1997 – 2006 Unix servers and PCs on net Java and MATLAB

It was noted that the first computer language taught at a university could have

a profound effect on the students involved, since the first language often becomes
a tool used for the entire working life.

7. A U.S. Perspective with International Overtones
 by John Impagliazzo

During the 1950s and the early 1960s, the United States began to generate courses
associated with data processing primarily targeted toward technical (two-year)
colleges. By 1965, ACM had published a paper that was a preview of the well-
known Computing Curriculum’68. By the 1970s, we witnessed literature
regarding graduate and undergraduate information systems programs, which
culminated with Computing Curriculum’78. By the 1980s, we saw literature on
discrete mathematics and programming courses, now coined as CS1 and CS2 as
well as curricula recommendations for information systems and computer
engineering.

University Education on Computers 355

7.1 The “First” U.S. Computer Science Department

It is always dangerous to speculate “firsts” when it comes to history, particularly
computing history, because many institutions of higher learning explore
innovative learning and teaching, particularly during the 1960s. Notwithstanding,
it does appear that Purdue University was a leader at least in one area. The Purdue
website states:

“The first Department of Computer Sciences in the United States was
established at Purdue University in October 1962. There are three natural phases
in its history. In the 1960s the effort was to define courses, degree programs, and
indirectly the field itself.”

During that time, the university hired five faculty members in the first year for
its graduate program, which was part of the Division of Mathematical Sciences
within the departments of mathematics and statistics. At first, computer science
was an option in the mathematics and later became a separate B.S. degree in 1967.

7.2 Emergence of a National Computing Curriculum

By the mid-1960s, much activity ensued in curriculum development. ACM had
established a Curriculum Committee on Computer Science (C3S). This group had
been considering curriculum problems for approximately three years. During the
early part of this period, the committee held a number of informal sessions with
computer people at various national meetings. In the latter part of this three-year
period, ACM formally organized the committee, where it made a definite effort to
arrive at concrete suggestions for a curriculum. In 1965, the group published a
paper [1], which became the precursor to Curriculum’68.

Other movements began to emerge during the 1960s. In February of 1967, the
President created a Science Advisory Commission (SAC) that focused on the use
of computers in higher education. The Computer Sciences in Electrical
Engineering (COSINE) Committee explored the ways in which computer science
would be part of electrical engineering that then led to the establishment of a
Commission on Engineering Education in September of 1967 in Washington DC
[5]. The question of recognition became a topic of discussion concerning whether
the emerging discipline of computing was legitimate in its own right. Lofti Zadeh
placed a marker on that topic with his landmark paper on the subject [12].

7.3 ACM Curriculum’68

The synergies that existed in the mid-1960s gave rise the very well known
publication of the ACM Curriculum’68: Recommendations for Academic
Programs in Computer Science. It was no accident that Curriculum`68 closely
resembled the degree program at Purdue; indeed, Purdue was a test bed for
developing recommendation. The published computer science curriculum
contained three divisions for computer science that included:

o Information Structure and Processes (data structures, programming
languages, methods of computations),

356 R. Kurki-Suonio, O. Benediktsson, J. Bubenko, Jr., I. Dahlstrand, C. Gram, J. Impagliazzo

o Information Processing Systems (computer design and organization,
translators and interpreters, computer and operating systems, special
purpose systems), and

o Methodologies (numerical mathematics, data processing and file
management, symbol manipulation, text processing, computer graphics,
simulation, information retrieval, artificial intelligence, process control,
instructional systems).

Curriculum’68 also included recommendations for mathematics and the

sciences. From the mathematical sciences, the curriculum recommended
elementary analysis, linear algebra, differential equations, algebraic structures,
numerical analysis, applied mathematics, optimization theory, combinatorics,
mathematical logic, number theory, probability and statistics, operational analysis.
From the physical and engineering sciences the curriculum recommended general
physics, basic electronics, circuit analysis and design, thermodynamics, system
mechanics, field theory, digital and pulse circuits, coding and information theory,
communication and control theory, and quantum mechanics.

Curriculum’68 enjoyed a high degree of initial success. Many universities,
nationally and internationally, that had an interest in establishing a computer
science department began using it as a reference, at least as a starting point.
However, it was not long before the recommendation showed some of its frailties
and began to receive criticism. By 1974, published documents called for a
revision of Curriculum’68 [6]. This paper claimed among things that the 1968
report did not address the nature of computer science, it did not address the subject
matter for a complete bachelor’s program, and it did not address articulation
between technical and university programs. In addition, specific courses
mentioned such as discrete structures, switching theory, and sequential machines
seemed isolated, and many courses not mentioned in the 1968 report already
existed in many computing programs.

A follow up article in 1976 [7] addressed what a computer science major
should be able to do rather what courses a student should take. These attributes
included an ability to (1) write correct, documented, readable programs in a
reasonable time, (2) determine whether written programs are reasonably efficient
and well organized, (3) know what types of problems are amenable to computer
solution, (4) make reasonable judgments about hardware; and (5) pursue in depth
training in one or more application areas. The strong undercurrent toward
curriculum reform soon led to a formal revision of the battered 1968 report.

7.4 ACM Curriculum’78

To address the needs of the computing community, ACM created a new
committee to overhaul the former curriculum report. The committee created a
new report called Curriculum’78 [3] and developed themes of concentration that
included computer programming I and II, computer systems, computer
organization, file processing, operating systems and architecture, data structures
and algorithm analysis, programming languages (overview and theory), computers

University Education on Computers 357

and society, database management systems, artificial intelligence, algorithms,
software design, automata, computability, formal languages, and numerical
mathematics. Curriculum’78 was similar to Curriculum’68; however, the new
version stressed greater adherence on software and treated hardware in a more
general way. Many universities around the world adopted the framework
Curriculum’78. After three decades of use and the development of new
technologies, with few modifications, many computing programs in existence
today reflect a strong association with the curriculum report from 1978. The
curriculum seems to have endured the test of time.

7.5 Further Evolutions

Despite its level of success, Curriculum’78 soon was to come under scrutiny and
would not be satisfactory to the greater computing community. The 1980s
witnessed a flood of new curricula recommendations, particularly from the Data
Processing Management Association (DPMA), which today is the Association for
Information Technology Professionals (AITP), and from the Computer Society of
the Institute for Electrical and Electronic Engineers (IEEE). Some of these reports
include:

o DPMA Educational Programs and Information Systems (1981).
o ACM Information Systems Recommendations – Undergraduate &

Graduate Programs (1983).
o IEEE Computer Society Model Curriculum – Computer Engineering

(1983).
o DPMA Information Technology and Systems (1984).
o DPMA Associate (Two-Year) Level Model Curriculum – Information

Systems (1985).
o DPMA Model Curriculum – Information Systems (1985).

The mid-1980s witnessed great debates on the subject of computing. Some of
the debate centered upon whether computer science was indeed a science as
opposed to being a part of engineering or a mathematics discipline – or neither of
these. The culmination of the debates resulted in a new computer science
curriculum recommendations called Curriculum’91 [4]. The next fifteen years
saw major changes in curricula development on all computing areas. The details
of these developments are beyond the scope of this narrative.

8. Discussion Summary

Arne Sølvberg from the Norwegian University of Science and Technology,
Trondheim, briefly commented on the background of Norwegian computing
history in the discussion. He identified two important Scandinavian sources of
inspiration in the early development: work on programming languages and
compilers by Peter Naur’s group in Denmark, and Langefors’ approach to
information systems engineering in Sweden. As a major change to the early

358 R. Kurki-Suonio, O. Benediktsson, J. Bubenko, Jr., I. Dahlstrand, C. Gram, J. Impagliazzo

situation, Sølvberg indicated that computing departments are now well established
and they no longer have to defend their existence. Although there is not so much
change in the foundational courses, we find that much of the earlier curriculum
content appears in other disciplines, which has an effect on the relationship of
computing departments to other departments.

This led to a discussion on some factors that call for changes in today’s
programs and may even affect their viability. We see diminishing numbers of
students and increased problems in getting good ones; we must address the
interdisciplinary nature of computing and students’ ability to use computers, even
though they need not know how they work inside. As a response, people
suggested that we must create new kinds of programs, where computing may be
combined with other areas such as art. Instead of programming languages, we
may have to use multimedia as the central role in the new computing approaches.

A brief exchange between Ingemar Dahlstrand and Janis Bubenko, Jr., brought
up a contrast that is important in computing education. In computer science, we
are interested in making the machine do exactly what we want it to do, whereas in
system design a major problem is to determine what we want the computer to do.

Regarding new kinds of programs, Enn Tyugu referred to specialized
computing programs, as those in bioinformatics. Christian Gram mentioned the
rise of “IT high schools” and an IT university in Denmark where “computer
science” becomes an add-on to a professional education in another area.

As for the diversity of computing-related programs, John Impagliazzo
mentioned that according to a survey conducted a few years ago, universities in
the U.K. have more than five thousand different titles for names of computing
programs; the ACM/IEEE Computing Curricula 2005 discusses only five basic
models for them: Computer Science, Computer Engineering, Information
Systems, Information Technology, and Software Engineering. Bud Lawson
emphasized that from the viewpoint of systems engineering, traditional programs
concentrate just on how to deal with computers, which is only one component in
total systems.

The discussion ended with an understanding that the relatively homogeneous
early views on university education in computing are transitioning by tremendous
diversification. Instead of trying to place the study of computing into a well-
defined place in a structured classification of university disciplines, we now need
to view it as an interdisciplinary area. Such a transition would require important
organizational changes that will bring specialists together from different kinds of
computing-related areas and that will encourage interaction and cooperation
among them.

References

[1] ACM Curriculum Committee on Computer Science, “An undergraduate program in

computer science—preliminary recommendations”, Communications of the ACM, 8(9):543-
552, September 1965.

University Education on Computers 359

[2] ACM Curriculum Committee on Computer Science, “Curriculum’68: Recommendations
for the undergraduate program in computer science”, Communications of the ACM,
11(3):151-197, March 1968.

[3] ACM Curriculum Committee on Computer Science, “Curriculum’78: Recommendations
for the undergraduate program in computer science”, Communications of the ACM,
22(3):147-166, March 1979.

[4] ACM/IEEECS, Computing Curricula 1991, Report of the ACM/IEEE-CS Joint Curriculum
Task Force, IEEE Computer Society Press [ISBN 0-8186-2220-2] and ACM Press [ISBN
0-8979-381-7], February 1991.

[5] Coates, Clarence L., et al, “An Undergraduate Computer Engineering Option for electrical
Engineering”, Proceedings of the IEEE, Vol. 59, No. 6, June 1971.

[6] Engel, Gerald, et al. “Initial Report: The Revision of Curriculum’68”, ACM SIGCSE
Bulletin, September 1974.

[7] Engel, Gerald , “The Revision of Curriculum’68: An Abstract”, ACM SIGCSE Bulletin,
July 1976.

[8] Kurki-Suonio, Reino, Birth of computer science education and research in Finland, History
of Nordic Computing, J. Bubenko, Jr., J. Impagliazzo, A. Sølvberg (Springer), 2005, pp.
111-121.

[9] Naur, Peter, Plan for et kursus i datalogi og datamatik. A/S Regnecentralen, Copenhagen
March 1966.

[10] Nordal, Ola, “A tool or science? The history of computing at the Norwegian University of
Science and Technology”, In this volume.

[11] Nykänen, Panu and Andersin, Hans, “Scientific computers at the Helsinki University of
Technology during post pioneering phase”, In this volume.

[12] Zadeh, Lofti A., “Computer science as a discipline”, Journal of Engineering Education,
58(8):913-916, April 1968.

