

Reflections of Computing Experiences in a Steel
Factory in the Early 1960s

Pertti Järvinen

Department of Computer Sciences, FIN-33014 University of Tampere, Finland; pj@cs.uta.fi

Abstract: We can best see many things from a historical perspective. What were the first
pioneers doing in the information technology departments of Finnish manufacturing
companies? In early 1960s, I had a special chance to work in a steel industry that had long
traditions to use rather advanced tools and methods to intensify their productivity. The first
computer in our company had such novel properties as movable disk packs making a direct
access of stored data possible. In this paper, we describe the following issues and
innovations in some depth. These include (a) transitioning from the punched card
machines to a new computer era, (b) using advanced programming language to intensify
production of new computer software, (c) drawing pictures by using a line printer, (d)
supporting steel making with mathematical software, (e) storing executable programs to the
disk memory and calling and moving them from there to the core memory for running, and
(f) building a simple report generator. I will also pay attention to the breakthrough in those
innovations and in this way demonstrate how some computing solutions were growing at
that time.

Keywords: Report generator, Virtual memory, Path dependency

1. Introduction

Mason et al. [18] said that historical analyses broaden our understanding of those
processes by which information technology is introduced into organizations and of
the forces that shape its use. They use the expression “dominant design” to
describe a new configuration of an organization’s technology, strategy, and
structure. A dominant design is manifested in several ways: a new organizational
infrastructure, new functionality, new products, new services, new production
functions, or new cost structures. By changing the basis of competition in the
industry, a firm that institutes a dominant design secures an initial competitive
edge. According to Mason et al. [18] the Information Systems (IS) research
literature contains very few examples of historical analyses.

This paper describes some key issues and a few computing solutions to shed
light on a pioneer manufacturing company and its first years to utilize a computer.
According to Mason et al. [19] historical research offers perspectives on
phenomena that are unavailable by any other methodological means. They reflect
the cultural circumstances and ideological assumptions that underlie phenomena
and the role played by key decision makers together with long-term economic,

234 Pertti Järvinen

social, and political forces in creating them. Based on my recent efforts at
collecting various research methods [13], I can say that a historical method is a
rarity in the methodological information systems literature.

The rest of the paper consists of the following topics: introduction to the
computer usage, FORTRAN programs for administrative purposes, visualizing
some reports, supporting the making of stainless steel by computer, towards a
primitive operating system and the computer-aided development of reporting
software.

2. Transitioning from the Punched Card Machines to the
Computer Era

My description concerns the OVAKO steel factory at Imatra in Finland. In 1963,
the company bought its first computer, an IBM 1401 with a punched card reader,
line printer, operator console, and four discs units with movable disk packs. The
latter were rather new. The IBM marketing men and consultants said that it was
then the second newest computer with the same sort in Europe. To relate our
hardware with some other installations at the same period, I refer to McKenney et
al. [20] who mentioned IBM 1401 in their famous case of Bank of America,
where they describe the way they used magnetic tapes for storing bank accounts at
that bank. The Bank of America nicely describes both the path dependency [5]
and the importance of the selection decision in transitions from the earlier
hardware generation to the next generation.

In 1963, I began working with three other IT colleagues. I consider those
colleagues as IT experts because they were the only people who could design and
execute computer programs. My colleagues, because of their economic education,
implemented such administrative applications as payroll, invoicing, order
processing, bookkeeping, and budgeting. The company hired me because my
scores in the IBM programmer test were acceptably high. My job concerned
industrial applications, because as a mathematician, I also had some knowledge of
physics and chemistry. My working period started June 1st, about three months
before the installation of IBM 1401. I participated in the FORTRAN
programming course organized by IBM.

An important observation was that the earlier punched card experts were not
able to move easily to the computer time, although our computer used punched
cards as input media. The stored program and especially disk memory were quite
strange to punched card experts. For example, the chief of the earlier punched
card department had designed a new payroll system for a computer, and he based
his sketch of the new system upon seventeen sum-cards. The latter meant that the
intermediate results in a particular phase of wage calculation process were stored
to a new card (sum-card) which was thereafter punched as an intermediate output
and later read as an intermediate input for the next phase of that calculation. This
example demonstrates that “when novelty increases, the path-dependent nature of
knowledge has negative effects because the common knowledge used in the past
may not have the capacity to represent novelties now present” [5].

Reflections of Computing Experiences in a Steel Factory in the Early 1960s 235

3. FORTRAN Programs for Administrative Purposes

In different places of the factory, there were certain people (more than thirty in
continuous three-shift-work) for performing production inspection (PI). Those PI
people recorded every event and state-transition considered important. Based on
their data, they manually generated different kinds of production and deviation
reports.

The new computer was very expensive. The local management wished to
produce visible results as soon as possible. For programming, there were two
compilers available, one for an assembly language (called Autocoder) and another
one for the FORTRAN language, mainly intended for mathematical calculations.
The expressions for input and output in FORTRAN were very restricted and
simple, but the language itself was quite easy to learn. Although with Autocoder
language it was possible to read all kinds of special markings punched on cards,
and although in Autocoder there were especially a wide range of expressions for
printed output, it demanded a rather long time to become familiar with all the
features of Autocoder. Therefore, at the beginning of my job as a programmer I
selected FORTRAN, which I used in my programming efforts. My first task was
to develop the computer programs that would produce similar reports on
production and exceptional events as was earlier done manually. About one year
later, I changed those FORTRAN programs to the Autocoder programs with better
output quality.

4. Drawing by Using a Line Printer

In a steel making process, they cast molten steel into moulds and after solidifying,
they removed the ingots and set down to thermal ingot furnaces for two to four
hours before lifting them up for rolling. The number of thermal ingot furnaces
was about five. The company described their “used capacity” as a percent share
for each hour each day as a figure, that earlier one worker drew manually. The
production inspection people recorded all the processing phases of ingots and in
this way produced the raw data for the drawing. They produced a figure for the
used capacity of all the thermal ingot furnaces once a day.

To produce the same figure with computer was not a trivial task, although
there were times by the clock of ingots both when set down and when lifted up.
Some ingots were not immediately placed into the ingot heating furnaces but they
were allowed to cool completely. Later, they would take them into the ingot
heating furnace. Their heating would then require many hours and the heating
period could continue from one calendar day to the next. They would have to
reconstruct the development of the ingot heating furnace history of the previous
day at the beginning of each day. The consideration of clock times required a
special care in the program. The local manager, the main user of the figure, gave
strong criticism based on bad appearance in the first versions of those figures.

236 Pertti Järvinen

I later saw how the Cascade project [1] built a graph production system. Its
purpose was to produce a hardcopy version of information analysis documentation
in a proper format. Documentation consisted of tables, matrices, and graphs.

5. Manufacturing Stainless Steel

The main part of steel production from the factory was for different construction
steels and for railway building as rails and base plates. Although small, the
relative portion of stainless steel was increasing. The main part of stainless steel
had type 18/8 or 18/10; it means that percent of chromium (a rather expensive raw
material) is 18% while the percent of nickel is 8% or 10%. In addition, the acid
sustainable steel contained a small amount of molybdenum about 3%, a very
expensive raw material. We now describe the way I utilized computer
calculations in the manufacturing of stainless steel.

In the production of steel, the starting point is scrap. Occasionally, they use a
small portion of iron ore. They first place the scrap into a furnace and with the
use of electricity, the scrap melts. From the melted batch, they do a chemical
analysis. In the factory, they built a very efficient arrangement with pneumatic
mail for taking this analysis in the chemical laboratory. It took only two minutes.
After knowing the content of the initial batch, they add suitable amounts of
different additional materials (e.g. Ni, FeCr, FeMo, SiCr and CaSi for slack
reduction [15]) to the initial batch. Before adding new materials, and if necessary,
the company removes the harmful material.

In the process of making stainless steel, the company could obtain chromium
and nickel from the initial batch or from different additional materials that might
contain different contents of chromium and nickel. The experts of stainless steel
knew that all the chromium and nickel that existed in the additional materials
would transfer to the final stainless steel. This fact helped in the calculations
because it influenced the amount of additional materials added into the initial
batch. We could mathematically describe this problem as a system of seven
equations.

After discussion with the technical supervisor of the smelting department, I
had developed a computer program to solve the system of seven equations. In
practice, after doing the chemical analysis of the initial batch and making the
transfer to the furnace, the supervisor made a telephone call to the computer room
to report the results of the analysis. The operator then entered those analysis data
into my program by using the computer console. It took about thirty seconds to
calculate and print the result back to the console. The message was something as,
“Please add m kg of material A, n kg of material B, etc.” They kept the telephone
line open and after the results were ready, the operator told the result to the
supervisor.

During the first series of stainless steel making, they produced about 25
smelting charges. The technical boss was at the smelting plant and I was in the
computer room. Manufacturing of one batch took about 4 hours to make, so the
first series took more than one week to make. Sometimes both the technical boss

Reflections of Computing Experiences in a Steel Factory in the Early 1960s 237

and I had to wake up in the middle of night for taking care of this calculation.
Nevertheless, I was happy because all the batches made went inside of the very
tight limits, i.e. no smelting batch was a scrap.

In steel industry Fabian [8, 9] rather early in the 1950s applied linear
programming to all stages of steel making – from coal and ore through finished
products. Some sub model is close to the one I had prepared. Fabian’s largest
process model covers the whole production. One expert in operations research,
Bo Nyholm, encouraged me to consider a similar model, but the complexity of
product assortment with many production paths on the one hand and the shortage
of computer memory and suitable program package on the other hand prevented
realization of our attempt.

6. Systems and Applications Programs: From Punched Cards to
Disk Storage

The sorting program produced by IBM for our IBM 1401 computer filled two
cases, about 4000 punched cards. It would take many minutes to load the cards
from the card reader into the core memory. When I followed the reading process,
I found that the card reader was reading about half of the cards at the steady rate.
After a more careful study, I found that those cards belonged to a sub program
intended for sorting data on magnetic tapes, but we did not have any tape unit. I
removed those cards, and thereafter the sorting program functioned correctly in
our context with four disc units.

The reduced set of the punched cards belonging to our sorting program was
still rather large. Its input from the card reader took a long time. Therefore, I
continued my studies to shorten the loading time. I had an idea to locate the
sorting program to a disc unit. After recording it in the disc unit, the sorting
program, I could move the sorting program to the core memory by a short and
simple call from the console. The operators were happy, because they saved time
in two respects. The loading time was then shorter than before, and the loading
always succeeded which was not always true with punched cards. After many
repeated usage times they got worse and created a jam in the card reader.

After my first successful trial to utilize disk memory for the sorting program, I
applied the same idea to my application programs. I recorded them into the disk
memory and I could call them by name from the operators’ console. At the same
time, I eliminated the so-called IOCS (Input Output Control System) cards from
the front of the program cards. Later, I understood that those IOCS cards were the
beginning of an operating system, and my arrangement was in fact a simple
operating system.

The next step forward was to avoid the upper limit of the core memory of
12K. I compiled my large program as components and located every component
to the disk memory. When executing the large program, I read, or my main
program read, one component after another from the disk to the core memory. In
this way, I could prepare about 100K program and execute it without any problem.

238 Pertti Järvinen

Later, I understood that I had applied an idea of the virtual memory and its static
(pre-planned) approach to storage allocation [6].

7. A Simple Report Generator

The first programming tasks were to read a set of punched cards and to write a
report. Later, a major part of report requests concerned data in different files
stored on disks. The structure of a reporting program was somewhat similar. This
created a desire to automate my programming efforts. Hence, I developed a
special program for reporting purposes. Later, I recognized that I in fact
developed a simple report generator.

It was possible to give the name of a sorted file as a parameter for my report
generator. In addition, a user would give the names of data items moved from the
file into the report. The order of the data items determined the presentation order
of the output form. One could compute a certain output item from stored data
items. The way to perform those computations could have a representation as a
“mathematical” formula allowing addition, subtraction, multiplication and
division operations in addition to brackets. My report program interpreted and
evaluated the expression in run time and produced an output to a certain location
on the report. We could count the general or total sums and the intermediate
sums. After leaving the steel factory 1967, I heard [21] that they used my report
generator for many years to do various kinds of tasks; it also functioned as a
simple spreadsheet.

The most demanding task in the development of the report generator was an
evaluation of the mathematical expression. Later I understood that I in fact solved
the problem of the way to transform recursions into iterations ([16], p. 37).

Our report generator differed from ordinary application programs in many
ways because it had interpretive flexibility. Doherty et al. [7] define interpretive
flexibility as the capacity of a specific technology to sustain divergent opinions.
They have also found that

“… all technologies offer a range of functions and features that will facilitate some
activities, while inhibiting others. Based upon the evidence from the empirical study,
it became clear that there were upper and lower limits with respect to the functions
that the system supported, and that these boundaries constrained the way in which the
technology could be interpreted. More specifically, it was possible to discern, what
we have termed, ‘enforcing constraints’ that make certain elements of the system’s
functionality mandatory. At the opposite end of the spectrum, it was also possible to
identify ‘proscribing constraints’ that delineate the functions that do not exist, or for
whatever reason cannot be used.”

Because our report generator was more flexible than any single report program, its
interpretive flexibility was much larger than any report program, or it cannot be
included into the domain of the interpretive flexibility concept at all.

My report generator was the first step in the sequence of my trials in
computer-aided design of information systems. The next step in early 1980s was
a simple file generator that demonstrated how it was easier to support human

Reflections of Computing Experiences in a Steel Factory in the Early 1960s 239

memory by computing systems than human data processing [12]. My group’s last
step in late 1980s was to develop an application generator, Genera [14]. It was
similar to an interpreter capable of analyzing and executing Pascal-type
specifications. We could quickly generate some twenty to thirty applications with
Genera until the commercial application generators made it obsolete.

8. Discussion

In this work, we demonstrated that the transition from punched card machines to a
computer made big changes in storing data. Computers can support people’s
memory with storage media allowing quick storing and retrieval properties. We
also showed how the third generation programming language, even such one
intended to mathematical calculations, could intensify software production
compared with the traditional solution of that time, an assembly language. To
eliminate manual work I used the computer to draw some figures. The only
device for that purpose was the line printer, not very suitable for such a task.

In addition to those primitive and easy computer applications, we also used a
computer for some demanding tasks. Firstly, to solve a set of seven equations is
impossible with paper and pencil at the blast furnace with noise and heat. In this
task, the computer is superior compared with a human being. We then also
demonstrated networking in the germinal form. Secondly, we utilized the disk
memory of our computer to improve operators’ work by storing our programs to
disk and calling them into running from there. Our advances are clearly steps
towards modern operating systems. Thirdly, we developed a report generator with
spreadsheet facilities. In our construction, we needed knowledge later theorized in
connection with compilers.

Gaines and Shaw [10] were a few of the first researchers who performed a
historical analysis of hardware/software, state of artificial intelligence and state of
human-computer interaction. They structured their analysis into eight years
periods based on new generations of IBM big computers. They especially studied
consecutive phases of the development of human-computer interaction. They
used the model of the six eras as follows:

“Each technology … seems to follow a course in which a breakthrough leads to
successive eras: first replications in which the breakthrough results are copied widely;
second empiricism in which pragmatic rules for good design are generated from
experience; third theory in which the increasing number of pragmatic rules leads to
the development of deeper principles that generate them; fourth automation in design
based on the theory; finally leading to an era of maturity and mass production based
on the automation and resulting in a rapid cost decline.”

By referring to the model of six eras I can say that my innovations or

breakthroughs can be found in the computer literature, but were not available at
our company. Few people (if any) in Finland then knew those innovations and
their design concepts [22]. Knowledge and algorithms concerning construction of
compilers [2, 3] and operating systems [4] were already published in the scientific
literature in the 1960s and early 1970s. But the March and Smith’s seminal article

240 Pertti Järvinen

of design research [17] was published as late as 1995. That article outlines what is
design science in information systems, and what are the potential results. March
and Smith first wrote that in addition to new design knowledge the new
instantiations also can be accepted as research outcomes. Hevner et al. [11] later
supported that claim.

I know that this paper has its specific limitation, i.e., it is based on personal
memories. But I am happy that I could send the draft to two of my colleagues
from that time (Managers Kostamo [15] and Ruotsi [21]) for verification. They
both confirmed my text. Another limitation is that my contributions are based on
one case only. But to my mind, it is not a very severe shortcoming, because my
contributions belong to design research. Instead of providing mathematical or
statistical evidence for my tentative contributions, which is normal in mathematics
or social and natural sciences, I “proved” my contributions by demonstration. For
example, it was possible to satisfy most of the report requests by my report
generator.

References

[1] Aanstad P., G. Skylstad G. and A. Sølvberg A., 1971, Cascade – a computer-based

documentation system, Computer-Aided Information Systems Analysis and Design,
Bubenko J., Langefors B. and Sølvberg A. (Studentlitteratur: Lund), pp. 93-118.

[2] Aho A.V. and Ullman J.D., 1972, The Theory of Parsing, Translation and Compiling, Vol
I: Parsing, (Prentice-Hall: Englewood Cliffs).

[3] Aho A.V. and Ullman J.D., 1973, The Theory of Parsing, Translation and Compiling, Vol
II: Compiling, (Prentice-Hall: Englewood Cliffs).

[4] Brinch Hansen P., 1973, Operating System Principles, (Prentice Hall: Englewood Cliffs).
[5] Cohen W.M. and Levinthal D.A., Absorptive capacity: A new perspective on learning and

innovation, Administrative Science Quarterly. Volume 35, Number 1, pp. 128-152 (1990).
[6] Denning P., Virtual memory, Computing Surveys. Volume 2, Number 3, pp. 153-189

(1970).
[7] Doherty N.F., Coombs C.R. and Loan-Clarke J., A re-conceptualization of the interpretive

flexibility of information technologies: Redressing the balance between the social and the
technical, European Journal of Information Systems. Volume 15, Number 6, pp. 569-582
(2006).

[8] Fabian T., A linear programming model of integrated iron and steel production,
Management Science. Volume 4, Number 4, pp. 415-449 (1958).

[9] Fabian T. (1963), Process analysis of the U.S. iron and steel industry Proceedings of a
Conference sponsored by the Cowles Foundation for Research in Economics at Yale
University (April 24-26, 1961, Manne A.S. and Markowitz H.M. (Wiley: New York), pp.
237-263. (see http://cowles.econ.yale.edu/P/cm/m18/m18-09.pdf)

[10] Gaines B.R. and Shaw M.L.G., From timesharing to the sixth generation: the development
of human-computer interaction. Part I, International Journal of Man-Machine Studies.
Volume 24, Number 1, pp. 1-24 (1986).

[11] Hevner A.R., March S.T., Park J. and Ram S., Design science in information systems
research, MIS Quarterly. Volume 28, Number 1, pp. 75-105 (2004).

[12] Järvinen P. 1983, The ABC System – A Collection of Research Articles, Report A112,
(Department of Mathematical Sciences, University of Tampere: Tampere).

[13] Järvinen P. 2004, On Research Methods, (Opinpajan kirja: Tampere, Finland).

Reflections of Computing Experiences in a Steel Factory in the Early 1960s 241

[14] Järvinen P., Kiukkonen P., Koskivirta M. and Välimäki H. 1987, How flexible software
could support learning?, presented in Social implications of home interactive telematics
(HIT) conference, June 24-27, 1987, Amsterdam, 16 p.

[15] Kostamo P. Manager of Steel Department 2007, interview 19.2.2007.
[16] Kurki-Suonio R. 1971, Computability and Formal Languages, (Studentlitteratur: Lund).
[17] March S.T. and Smith G.F., Design and natural science research on information

technology, Decision Support Systems. Volume 15, Number 4, pp. 251-266 (1995).
[18] Mason R.O., McKenney J.L. and Copeland D.G., Developing an historical tradition in MIS

research, MIS Quarterly. Volume 21, Number 3, pp. 257-278 (1997).
[19] Mason R.O., McKenney J.L. and Copeland D.G., An historical method for MIS research:

Steps and assumptions, MIS Quarterly. Volume 21, Number 3, pp. 307-320 (1997).
[20] McKenney J.L., Mason R.O. and Copeland D.G., Bank of America: The crest and trough of

technological leadership, MIS Quarterly. Volume 21, Number 3, pp. 321-353 (1997).
[21] Ruotsi E. Manager of Production Inspection Department (2006), interview 13.11.2006.
[22] van Aken J.E., Management research based on the paradigm of the design sciences: The

quest for field-tested and grounded technological rules, Journal of Management Studies.
Volume 41, Number 2, pp. 219-246 (2004).

