
A Compositional Model for Gesture Definition

Lucio Davide Spano, Antonio Cisternino and Fabio Paternò

ISTI-CNR Via G. Moruzzi 1, 56127 Pisa
{lucio.davide.spano, fabio.paterno}@isti.cnr.it

Università di Pisa, Dipartimento di Informatica, Largo Bruno Potencorvo 3, 56127 Pisa
cisterni@di.unipi.it

Abstract. The description of a gesture requires temporal analysis of values
generated by input sensors and does not fit well the observer pattern
traditionally used by frameworks to handle user input. The current solution is to
embed particular gesture-based interactions, such as pinch-to-zoom, into
frameworks by notifying when a whole gesture is detected. This approach
suffers from a lack of flexibility unless the programmer performs explicit
temporal analysis of raw sensors data. This paper proposes a compositional,
declarative meta-model for gestures definition based on Petri Nets. Basic traits
are used as building blocks for defining gestures; each one notifies the change
of a feature value. A complex gesture is defined by the composition of other
sub-gestures using a set of operators. The user interface behaviour can be
associated to the recognition of the whole gesture or to any other sub-
component, addressing the problem of granularity for the notification events.
The meta-model can be instantiated for different gesture recognition supports
and its definition has been validated through a proof of concept library. Sample
applications have been developed for supporting multitouch gestures on iOS
and full body gestures with Microsoft Kinect.

Keywords: Input and Interaction Technologies, Model-based design, Software
architecture and engineering, Gestural Interaction.

1 Introduction

In recent years a wide variety of new input devices has changed the way we interact
with computers. Nintendo Wii in 2006 has broken the point and click paradigm with
the Wiimote controller, based on gestures in a 3D space; iPhone has shown better
usability by means of multitouch in 2007, while Microsoft introduced Kinect in 2010
has expressed a way of interaction without wearing sensors of any kind. All these new
devices exploit gestures performed in different ways, such as moving a remote,
touching a screen, or through whole-body movements.

The introduction of these novel interaction techniques in the mass market has not
affected current user interface programming frameworks yet: the underlying model is
still bound to the observer pattern, where events occur atomically in time and gets
notified through messages or callbacks. Indeed, the support for gestures has been
mostly forced in the same paradigm by hiding the gesture recognition logic under the
hood, which usually means providing high-level events when the gesture is

completed, and leaving the possibility to provide intermediate feedback to the
handling of low-level events that are not correlated with the high-level ones. The
drawback of this approach is twofold: on the one hand the temporal extension of a
gesture is significant with respect to the time scale of a system, a gesture may require
in fact seconds to complete; on the other hand the set of recognizable gestures is fixed
and inaccessible to the system unless the programmer hooks the low level events
generated by sensors and re-implements the full gesture-recognition logic.

Moreover, gesture interfaces exploit the movement evolution in space and time as
argument for the interaction, therefore their effect on the UI usually changes
according to the movement speed or the space covered, and the program has to
perform these calculations. To better handle these problems, a framework must offer
an extended vision of how to handle gestures allowing for sub-gesture recognition and
concurrent recognition of multiple gestures (i.e. pinch-to-zoom and drawing with
another finger). The state of the art tools leave the programmer with the choice
between pre-cooked recipes and do-it-yourself with handling low level events. The
problem with this paradigm arises when we need intermediate feedback during the
gesture execution. With a single event notification, the developer is forced to re-
implement the low-level tracking, because it is not possible to separate the complex
gesture in smaller constituents. In addition, it is not also possible to compose two or
more predefined gestures. For instance, if we want to create a view that can be
zoomed and panned at the same time for the iPhone, we have again to track the low-
level events, and hard-code the gesture composition.

In this paper, we address such granularity problem by defining a gesture
description meta-model that allows constructing complex gestures from a well-
defined set of building blocks and composition operators. Moreover, composition
semantics is defined using Petri Nets and can be efficiently implemented in a
framework. Using our model, developers can associate the UI behaviour either to
simple or complex gestures, enabling gestures reuse and composition, which is not
currently supported in user interface frameworks. The implementation of a proof-of-
concept library for the recognition of the modelled gestures is also described. Finally,
we discuss two application prototypes that exploit such library, based on two different
recognition supports: iOS devices and Microsoft Kinect.

2 Related Work

The attempt to create compositional representations of different event sources into
higher-level events, have a very long research history [1] and the need of a structured
approach is exacerbated by the new interaction devices available nowadays. In [2],
the analysis of the various interaction techniques considered different dimensions of
languages (lexical, syntactical, semantic and pragmatic), in order to provide designers
with a theoretical foundation when creating interfaces based on gestures. Through the
years, such work evolved in order to include sensors that started to be pervasively
included in consumer devices, supporting the advancement towards the Reality-Based
Interaction [4]. For instance, in [13] the authors characterized the physical actions
that users need to perform to enter a command through accelerometer-based devices.

While such categorization is useful to define how and why the user should perform an
action rather than another, the following step is to ease the development of such kind
of interfaces. In this regard, the support offered by frameworks has to be effective and
uniform across the different operating systems and devices [7]. Therefore, we want to
focus on generic and machine-understandable gesture descriptions, such as the
Gesture Definition Markup Language (GDML) [8], which allows a declarative
description of the sequence of events that the device senses for recognizing a custom
touch gesture, raising a single event when the gesture completes. We overcome this
approach supporting the association of UI behaviour also to gesture sub-parts and
parallel gesture recognition. In [6], Kammer et al. described GeForMT, a
formalization language for multitouch gestures defined by four components: pose
function, atomic gestures, composition operators and the focus on a user interface
object. We propose a more general solution that is suitable for devices different from
touch screens.

Model-based approaches for user interfaces included gesture descriptions limited
to specific supports (e.g. multitouch [11], 3D interaction [3] etc.). In our work, we
attempt to overcome the main limitation of these description languages, which is the
focus on a single gesture recognition support. Our paradigm aims to be more abstract
while allowing concurrent gesture recognition, preserving composition and
independence from concrete sensor values: our meta-model allows describing
gestures for different recognition devices with a uniform vocabulary.

The definition of a compositional model for complex multitouch gestures has been
defined in [5]. The authors use regular expressions for describing gestures, where
literals are identified by triples containing the touch event type (start, move, end), the
touch identifier and the concerned UI object. The operators are the usual ones for
regular expressions. Our work shares with this approach the possibility to create
composite expressions for describing gestures, separating them from the UI control.
However, we overcome the single gesture recognition assumption in [5], providing
the possibility to define parallel gestures. In order to do this, we use Petri Nets for the
definition of a gesture meta-model, a notation that has been proved to be effective for
the description of event-driven interactive interfaces [1].

In addition, we provide a general solution that is applicable not only for touch
devices, but also for different recognition supports by creating an abstract
representation of the different features that can be observed, as happens in existing
descriptions of multimodal interaction [14].

3 Gesture Description Meta-Model

In this section, we theoretically define our gesture description meta-model. Such
meta-model is abstract with respect to a specific gesture recognition support, which
means that it is possible to instantiate it for different devices (e.g. multitouch screens,
body tracking devices, remotes etc.). We start from the definition of the basic building
blocks (ground terms), which represent the set of basic features observable through a
specific device. Composed terms represent complex gestures (that can be further

decomposed) and they are obtained connecting ground or composed terms through a
well-defined set of composition operators.

The definition of the UI behaviour can be associated to the recognition of basic or
composed gesture definition. As we will better explain in the following sections, we
used Non Autonomous Petri Nets [12] in order to describe the recognition process,
since they ease the description of parallel computations driven by external events,
such as the reaction of the user interface according to the notifications coming by the
gesture recognition device. Once the Petri Nets for a basic building block and for all
the composition operators have been defined, the designer can create complex
gestures through expressions of basic building blocks and/or complex gestures
composed through the set of operators. The actual Petri Net for the complex gesture is
derived visiting bottom-up the complex gesture expression definition and can be
executed by the library (see section 4.1).

3.1 Basic Building Blocks: Ground Terms

Ground terms of our language are the basic building blocks of our gesture description
model, since they cannot be further decomposed. They are defined by the events that
developers currently track in order to recognize gestures. Ground terms do not have a
temporal extension, though their values may be obtained by computing a function of
the raw sensor data (the current gesture support).

For instance, if we are describing a gesture for a multitouch application, the ground
terms are represented by the low-level events that are available for tracking the finger
positions, which are usually called touch start, touch move and touch end. Besides, for
creating full body gestures, the current recognition devices and libraries offer means
for tracking specific skeleton points, such as hands, head, shoulders, elbows etc. As
happens for multitouch gestures, also full body ones are recognized tracking the
skeleton points positions over time.

Here, we define an abstract building block that can be instantiated for different
gesture recognition supports. In order to do this, we have to consider that a gesture
support provides the possibility to track a set of features that change through the time.
As said before, the meaning of each feature (and the associated low-level event)
depends on the concrete gesture recognition support.

A feature is a n-dimensional vector (e.g., the position of a finger is a vector with
two components, the position of a skeleton joint has three components, etc.). A set of
features can be also represented with a vector with a number of components equals to
the sum of the dimensions of its elements. A set of features is the abstract
representation of a gesture recognition support at a given time, since it describes the
data provided by a given hardware and software configuration. We will provide
examples for the definition of a gesture recognition support in the following sections.
The state of a gesture support at a given time is represented by the current value of
each feature. The state of a gesture recognition support over time can be represented
by a sequence of such states, considering a discrete time sampling. Equation 1 defines
a feature 𝑓, a gesture recognition support 𝐺𝑆, a gesture recognition support state 𝐺𝑆𝑖
and a gesture recognition support state sequence 𝑆.

𝑓 ∈ ℝ𝑛

𝐺𝑆 = [𝑓1, 𝑓2, … , 𝑓𝑚] 𝐺𝑆 ∈ ℝ𝑘 𝑓𝑖 ∈ ℝ𝑛𝑖 �𝑛𝑖 = 𝑘
𝑚

𝑖=1

𝐺𝑆𝑖 = [𝑓1(𝑡𝑖), 𝑓2(𝑡𝑖), … , 𝑓𝑚(𝑡𝑖)] 𝑡𝑖 ∈ ℝ
𝑆 = 𝐺𝑆1 ,𝐺𝑆, … ,𝐺𝑆𝑛 𝑛 ∈ ℕ

(1)

A gesture building block notifies a change of a feature value between 𝑡𝑖 and 𝑡𝑖+1.
Such notification can be optionally associated to a condition, which can be exploited
for checking properties of the gesture state sequence such as trajectories for hand
movements. For instance, it is possible to checks whether the path of a tracked point
is linear or not, avoiding the notification of different movements.

The feature change notification is accomplished by the gesture support, and it is
external with respect to the current state of the gesture recognition.

We define the basic traits and the composition operators using Non-Autonomous
Petri Nets. A Petri Net is a bipartite graph consisting of two types of nodes:
transitions (represented as black rectangles) and places (represented as circles), which
are connected by directed arcs. A place contains a positive number of tokens and the
state of the net is represented by the distribution of the tokens among the places.
When all the places that are connected to a given transition contain at least one token,
the transition fires, withdrawing a token from all the incoming places and adding one
token to all the outcoming ones. In this work, we consider a particular type of Petri
Net called Non-Autonomous, in which the firing of a transition is enabled not only by
the presence of the tokens, but also by the occurrence of an event that does not depend
on the considered Net. Therefore, in Non-Autonomous Petri Net, the transition fires
only if the incoming places contain a token and if an event of a given type occurs (see
[12] for a more detailed description). We need such kind events in order to model the
notification of a feature change by the considered gesture support.

We define an event type for each observed feature and each optional gesture state
sequence constraint. It is possible to model the external notification with the
definition of a function 𝑟𝑎𝑖𝑠𝑒, which establishes if the Petri Net external event will be
raised at a time 𝑡 as defined in equation 2.

𝑟𝑎𝑖𝑠𝑒�𝐸𝑓𝑖,𝑃(𝑆),𝑡� ⇔ �𝑓𝑖(𝑡) ≠ 𝑓𝑖(𝑡 − 1)� ∧ 𝑝(𝑆) 𝑝: 𝑆⟶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (2)

It states that the event 𝐸𝑓𝑖,𝑃(𝑆) at time 𝑡 is raised if the value of the feature 𝑓 is
changed and if the property on the gesture support state sequence 𝑝(S) is verified. In
order to avoid a cumbersome representation, we will identify the events simply
specifying the related feature and optionally giving a name to the gesture state
sequence property. If no constraint has to be verified on the state sequence, we will
simply omit it. For instance we will identify the event in Fig. 1 with 𝑓𝑖 , 𝑝(𝑆). If
𝑝(S) is true for all 𝑆, the event will be identified as 𝑓𝑖.

In order to model the current progress in the gesture recognition, we use a control
state token (𝐶𝑠) on the Petri Net. The recognition of a basic block will be enabled by
the presence of such token, and it will be inhibited by its absence. As we explain
better in the following sections, the parallel recognition of different gestures in a
composed Net is possible managing multiple instances of such control state token.
The Petri Net in Fig. 1 defines a basic building block for gesture recognition.

Fig. 1. Gesture recognition building block

The two dotted arrows connect this subnet to transitions that are “externals” with
respect to the building block, namely the previous and the following parts of the
gesture net. The place 𝑆𝑡𝑎𝑟𝑡 𝐹1 receives the control state token from its incoming
transition. If it is the first one in the recognition net, it will contain the token
associated with the entire recognition process. The transition after this place fires only
when the event 𝑓1, 𝑝(𝑆) occurs. Finally, the control state token will reach the place
𝐸𝑛𝑑 𝐹1, concluding the basic gesture recognition. The actions to be performed in
order to react to the basic gesture recognition are associated to the latter place. The
out coming arrow starting from the 𝐸𝑛𝑑 𝐹1 place connects the considered block with
the next part of the gesture net.

In order to represent a basic building block we use the notation 𝐹𝑖[𝑝]: we assign a
name to the considered feature (𝐹𝑖 in this case) and also to the boolean function (𝑝),
which is omitted if it is true for every gesture support state.

3.2 Composition Operators

A gesture description model is based on the composition of the aforementioned
ground terms. The connection is performed through a set of operators, which express
different temporal relationships among them. Such set has as starting point those
defined in CTT [11], which has been proved effective in defining the temporal
relationship for task modelling. Some of them (sequence and choice) have been
already defined through Petri Nets in [10]. We provide here a complete definition
together with the support for conditions on device feature that is peculiar to gesture
modelling. Table 1 lists the composition operators that we will describe in the next
sections. All binary operators are associative, therefore the n-ary version of a binary
operator (e.g. choice) is defined applying such property.

Table 1. List of composition operators

Operator Notation Arity
Iterative 𝐺∗ 1
Sequence 𝐺1 ≫ 𝐺2 2 (n)
Parallel 𝐺1 || 𝐺2 2 (n)
Choice 𝐺1 [] 𝐺2 2 (n)
Disabling 𝐺1 [> 𝐺2 2 (n)
Order Independence 𝐺1 |=| 𝐺2 |=| … |=| 𝐺𝑛 n

During the discussion in the following sections, we need also the definition of two
different sets of ground terms, given a complex gesture definition. The first one is the

set that containing all its ground terms. We refer such set as 𝐺𝑆 (Ground terms Set).
Equation 3 defines how to construct the 𝐺𝑆 for a gesture 𝐺, which consists of a
recursive set union on the sub-blocks connected through the composition operators.

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝐺𝑆𝐺 = {𝐹𝑖[𝑝]}
𝐺 = 𝐺1∗ ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1 ∪ 𝐺𝑆𝐺2 𝑜𝑝 ∈ { ≫, ||, [], [>}

𝐺 = 𝐺1 |=| 𝐺2|=| … |=| 𝐺𝑛 ⇒ 𝐺𝑆𝐺 = �𝐺𝑆𝐺𝑖

𝑛

𝑖=0

(3)

The second set we need to define contains only the ground terms not appearing as
the right operand in a sequencing temporal relation, so they are immediately
recognizable when the gesture execution starts. The operators that express such
relation are sequence and disabling. We will call such set starting ground terms set, or
𝑆𝐺𝑆 and it is defined in Equation 4. Obviously 𝑆𝐺𝑆 ⊆ 𝐺𝑆.

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝑆𝐺𝑆𝐺 = {𝐹𝑖[𝑝]}
𝐺 = 𝐺1∗ ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 𝑜𝑝 ∈ { ≫, [>}
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 ∪ 𝑆𝐺𝑆𝐺2 𝑜𝑝 ∈ {||, []}

𝐺 = 𝐺1 |=| 𝐺2|=| … |=| 𝐺𝑛 ⇒ 𝑆𝐺𝑆𝐺 = �𝑆𝐺𝑆𝐺𝑖

𝑛

𝑖=0

(4)

3.2.1 Iterative Operator
The iterative operator repeats the recognition of gesture subnet for an indefinite
number of times. In order to avoid an infinite gesture definition, each iterative basic
block should also be coupled with a disabling operation. As already specified in Table
2, we will use the ∗ symbol in order to represent the iterative operator (e.g.
𝐹∗ recognizes an infinite number of value changes for the feature one). It is possible
to define this operator simply creating a cycle from the ending transition of a gesture
subnet to its starting place. In this way, the recognition subnet will be fed again with
the control state token, immediately after the gesture has been recognized. Fig. 2
shows the Petri Net definition of the iterative operator. The thicker arrow represents
the operator definition.

Fig. 2. The iterative operator

3.2.2 Sequence Operator
This operator simply defines that two gesture subnets should be performed in
sequence. We use the ≫ symbol in order to represent this operator. It is possible to
define such operator connecting the last transition of the first gesture with the starting

place of the second one. Fig. 3 shows a gesture consisting of the sequential
composition of two basic feature recognizers. The thicker arrow represents the
sequence operator.

Fig. 3. The sequence operator

3.2.3 Parallel Operator
The parallel operator defines the recognition of two or more different gestures at the
same time. We use the || symbol in order to represent the parallel operator.

From the Petri Net definition point of view, the blocks representing the parallel
gestures should be simply put in different recognition lines. In order to do this, we
assign a different control state token to each line. This can be obtained, as shown in
Fig. 4, inserting a transition that “clones” the control state token and dispatching a
copy to the starting place of each different recognition lines. We add a place at the
end of each recognition line that forwards the “cloned” control state token to the last
transition that, once all gestures terminated, restores only one token in the net.

Fig. 4. The parallel operator

3.2.4 Choice Operator
The choice operator defines a gesture that is recognized if exactly one between its
first and its second component is detected (either one or the other). We use the
symbol [] for representing it. The net can be defined as it is shown in Fig. 5, and its
construction is similar to the parallel operator. The transition after the 𝐶ℎ𝑜𝑖𝑐𝑒 𝑆𝑡𝑎𝑟𝑡
place splits the control state token between two subnets, each one representing a
component involved in the choice. The two lines cannot evolve independently as
happens for the parallel operator. Therefore, when one subnet starts its recognition,
the other one should be interrupted. In order to do this, it is sufficient to connect the
first place of the first gesture subnet with the first transition of the second one and
vice versa. In this way, once one of the two feature events is raised, the control state
token from the other gesture subnet is deleted.

Fig. 5. The choice operator

More precisely the steps to be followed for constructing a Petri Net for 𝐺1[]𝐺2 in
the general case are the following:
1. Calculate 𝑆𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2
2. Connect the first place of each element of 𝑆𝐺𝑆𝐺1 with the first transition of each

element in 𝑆𝐺𝑆𝐺2
3. Connect the first place of each element of 𝑆𝐺𝑆𝐺2 with the first transition of each

element in 𝑆𝐺𝑆𝐺1
The last transition of each gesture subnet is connected to the 𝐶ℎ𝑜𝑖𝑐𝑒 𝐸𝑛𝑑 place,
which forwards the control state token to the following part of the recognition net.

3.2.5 Disabling
The disabling operator defines a gesture that stops the recognition of another one,

thus “disabling” it. The operator symbol is [>. It is typically needed when a gesture is
iterative, in order to define the condition that stops the loop. Fig. 6 shows the
definition of the disabling operator using Petri Nets for 𝐺1[> 𝐺2. The basic idea is to
connect the first place of each basic component belonging to 𝐺1 to a “copy” of the
first transition of the starting blocks of the second one. In Fig. 6 we can see an
example of this kind of net, where the first gesture is composed by only one building
block. This gesture can be disabled by the second one, which starts with an event
related either to the feature 𝑓2 or 𝑓3. In order to obtain the desired effect, we connect
the 𝑆𝑡𝑎𝑟𝑡 𝐹1 place with a copy of both the transitions after the 𝑆𝑡𝑎𝑟𝑡 𝐹2 and
𝑆𝑡𝑎𝑟𝑡 𝐹3. In order to construct the net for 𝐺1[> 𝐺2 in the general case, we need to
perform the following steps:
1. Calculate the sets 𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2
2. Connect the starting place of each element of 𝐺𝑆𝐺1 with a copy of the first

transition of each element in 𝑆𝐺𝑆𝐺2 , possible duplicates (transitions that have the
same incoming places and the same external event) are merged. In case of order
independence operator, a transition duplicate is added also to each 𝑂𝐼 𝐹𝑙𝑎𝑔 and
𝑂𝐼 𝐸𝑛𝑑 (see section 3.2.6)

3. Connect the second place of each element in 𝑆𝐵𝑆𝐺2 with the transitions generated
at step 2. Such connection has to preserve the single control state token property
for each sub-gesture, so we need to collapse recursively the recognition lines with

an ad-hoc net in the case 𝐺1 sub-components contain the parallel or the order
independence operator.

Fig. 6. The disabling operator

3.2.6 Order Independence
The order independence operator is used when two or more gestures can be performed
in any order. The composed gesture is recognized when all of its subcomponents have
been recognized. We will use the symbol |=| for this operator. It is worth pointing out
that such operator is not strictly needed, because it is possible to derive it according to
the following property in Equation 5.

𝐺1 |=| 𝐺2 = (𝐺1 ≫ 𝐺2)[](𝐺2 ≫ 𝐺1) (5)

In general, we can define an order independence composition of a set of n gestures
as a choice between all the permutations of its elements. Inside each permutation the
gesture set elements are connected through the sequence operator. Obviously, such
kind of definition creates n! options for the choice that makes it too expensive both
from the space and time point of view. It is possible to provide a more compact net
for defining this operator, which is shown in Fig. 7. The idea is to create a Petri Net
that repeats 𝑛 times the choice between the composed subnets, removing one option
at each iteration.

The steps to construct this net for 𝐺1|=|𝐺2|=|. . .|=|𝐺𝑛 are the following:
1. Calculate 𝑆𝐺𝑆𝐺𝑖∀𝑖 ∈ [1,𝑛]
2. Create an 𝑂𝐼 𝐹𝑙𝑎𝑔 place for each 𝐺𝑖 and connect it with its last transition.
3. Create an 𝑂𝐼 𝐸𝑛𝑑 place for each 𝐺𝑖 and connect it with the same transition at the

end of the net.
4. Connect the transition after the 𝑂𝐼 𝑆𝑡𝑎𝑟𝑡 place with each starting place of all

elements in 𝑆𝐺𝑆𝐺𝑖 and with all the 𝑂𝐼 𝐹𝑙𝑎𝑔 places.

5. For each 𝑖 ∈ [1,𝑛] , connect the starting places of each element of 𝑆𝐺𝑆𝐺𝑖 with all
the starting places of each element in ⋃ 𝑆𝐵𝐺𝐺𝑗 𝑗 , with j ∈ [1, i − 1] ∪ [i + 1, n]

6. For each ∈ [1,𝑛] , connect the event-driven transitions of each element of 𝐺𝑆𝐺𝑖
with 𝑂𝐼 𝐹𝑙𝑎𝑔𝑖and vice versa.

7. For each 𝑖 ∈ [1,𝑛] connect the ending transition of the net associated to 𝐺𝑖 with all
the elements in 𝑆𝐺𝑆𝐺𝑖

8. For each 𝑖 ∈ [1,𝑛], connect the starting places of each element of 𝑆𝐵𝑆𝐺𝑖 with the
last transition of the order independence net.

Fig. 7. The order independence operator

4 Library Support

In this section we detail the implementation of GestIT1, a proof of concept library that
allows the development of gesture interfaces according to our meta-model definition.
The library class diagram is shown in Fig. 8. It has a core independent from the actual
gesture recognition support (core package), plus a set of extensions, which deal with
the actual devices that currently are iOS devices (multitouch package) and Microsoft
Kinect (fullBody package). The library core contains the classes for the defining
gesture expressions (either ground terms or composed ones), represented by the
abstract class TmpExp. The SimpleTmpExp class implements the Petri Net for
recognizing a generic basic building block, and it is a refinement of TmpExp. The
actual feature changes and the optional conditions on them (see section 3.1) are
defined by a delegate object associated to the SimpleTmpExp instances, which is
obviously device-dependent.

Therefore, the library contains an abstract interface (ExpContent) that defines the
protocol for the generic delegate. It consists of two instance methods: accept and
consume. The first one receives the current gesture recognition support state
(represented by the abstract class ExpEventArgs) and the Petri Net Token that, for

1 The GestIT library is available at http://gestit.codeplex.com/

http://gestit.codeplex.com/

convenience, contains the information on the previous gesture recognition support
state sequence. A concrete implementation of the delegate returns a boolean value
indicating whether the feature change is recognized or not, according to the parameter
values. The consume method allows the developer to specify the amount of gesture
data to be maintained during the gesture recognition, since it is not feasible to
maintain the entire sequence of feature values because of memory space. We better
detail this point in section 4.1. The possibility to combine building blocks and
composed gestures is provided by other two TmpExp subclasses: BinaryTmpExp and
ComplexTmpExp. The first one implements all Petri Nets representing binary
operators (sequence, parallel, choice, disabling). Obviously, an instance of this class
behaves differently according to the operator property and its left and right operands,
which belong to the TmpExp class (thus it is possible to connect both building blocks
and complex gestures). The N-ary versions of such operators can be obtained
associating the operands, exploiting the aforementioned associative property. The
second TmpExp subclass implements the Petri Net for the order independece and
contains a list of operands (again belonging to the TmpExp class). The iterative
operator is represented by a boolean flag on the TmpExp class.

Fig. 8. Gesture Library

A gesture definition is represented by a TmpExp tree, where all leafs are
SimpleTmpExp instances, while the other nodes belong either to the BinaryTmpExp or
the ComplexTmpExp class. At runtime, the tree is managed by a device dependent
implementation of the Emitter class. Its responsibility is to listen to device updates
and to forward them to the leafs that currently contain a token. For each one of them,
the Emitter will invoke the accept method. If the return value is true, the Emitter will
invoke the consume method. Then, the SimpleTmpExp will notify the recognition to
its parent expression that, according to the Petri Net semantics, will move the Token,
propagating the notification up to the tree hierarchy and proceeding with the gesture
recognition. In section 4.1 we provide a concrete example of this mechanism.

It is possible that the device raises an update that is not accepted by any leaf. In
this case, the gesture recognition should be interrupted, and the developer should have
the possibility to define how the interface should react to the interruption. The library
offers the possibility to associate a handler not only for the successful recognition of a
gesture (either basic or composed), but also for the recognition failure. The
recognition failure is also propagated to the upper levels of composition tree as in the
successful case.

4.1 Modelling Multitouch gestures

A multitouch screen can detect a maximum number of touches. For each touch, the
device can detect its screen position (usually expressed in pixel). In addition, it is
possible to detect the current time. According to our abstract meta-model, we will
have 𝑛 features related to the touch positions (one for each detectable touch) and a
feature related to the current time. If a touch is not currently detected on screen, we
say that its current position is the point (⊥,⊥) . We identify the feature related to the
i-th touch with 𝑝𝑖 , while we will use the 𝑡𝑖𝑚𝑒 symbol for the time. In order to have a
uniform terminology with the current multitouch toolkits, we define the simplest set
of multitouch gestures in Equation 6. Starting from these building blocks, it is
possible to define complex gestures using the composition operators. A set of
common multitouch gestures is defined in Table 2.

𝑆𝑡𝑎𝑟𝑡𝑖 = 𝑝𝑖 [𝑝𝑖(𝑡 − 1) = (⊥,⊥) ∧ 𝑝𝑖 (𝑡) ≠ (⊥,⊥)]
𝑀𝑜𝑣𝑒𝑖 = 𝑝𝑖 [𝑝𝑖(𝑡 − 1) ≠ (⊥,⊥) ∧ 𝑝𝑖(𝑡) ≠ (⊥,⊥)]
𝐸𝑛𝑑𝑖 = 𝑝𝑖[𝑝𝑖 (𝑡 − 1) ≠ (⊥ ,⊥) ∧ 𝑝𝑖 (𝑡) = (⊥ ,⊥)]

(6)

Table 2. Modelling of common multitouch gestures. In expression 2, the condition pos checks
if the sequence of touches are almost in the same position, while timeDiff checks if they are
close in time. In expression 5, the path has to be linear with a certain speed. In expression 6, the
c condition checks whether the finger movement is circular or not.

 Gesture name Expression
1 Tap 𝑆𝑡𝑎𝑟𝑡1 ≫ 𝐸𝑛𝑑1
2 Double Tap 𝑆𝑡𝑎𝑟𝑡1 ≫ 𝐸𝑛𝑑1 ≫ 𝑆𝑡𝑎𝑟𝑡1 [𝑝𝑜𝑠 ∧ 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓] ≫ 𝐸𝑛𝑑1
3 Pan 𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1∗ [> 𝐸𝑛𝑑1
4 Slide 𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1∗[𝑙𝑖𝑛𝑒𝑎𝑟 ⋀ 𝑠𝑝𝑒𝑒𝑑] [> 𝐸𝑛𝑑1
5 Pinch (𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1∗|| 𝑀𝑜𝑣𝑒2∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2))
6 Rotate (𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ (𝑀𝑜𝑣𝑒1∗[c] || 𝑀𝑜𝑣𝑒2∗[𝑐]) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)

In order to recognize multitouch gestures described with this formal definition with
our library, we need to define the concrete implementation of the abstract classes
discussed in section 4, represented as the multitouch package in Fig. 8. The first one
is TouchEventArgs, an ExpEventArgs subclass, which contains the information about
a device feature update (touch identifier, touch point, time). The instances of this class
are created by a TouchEmitter, an Emitter subclass, which translates the OS touch
screen updates into a format manageable by the library. The TouchEventArgs
instances are forwarded to the leafs of the TmpExp tree that, as already discussed in
section4, are SimpleTmpExp instances. These leafs are connected with
TouchExpContent instances, which are ExpContent refinements. The
TouchExpContent class has two instance variables, which represent the touch
identifier and the type of a basic building block for touch gestures (start, move, end).

Therefore, the accept method checks the conditions defined in Equation 6,
according to the specified type. Further conditions to be checked can be defined by
developers sub-classing TouchExpContent and overriding the accept method. The
TouchToken class contains the information on the gesture sequence, and represents
the concrete implementation of a Token. Obviously, it is not possible to store in
memory each single feature update especially when programming for mobile devices.
Therefore, it is possible to specify the maximum number of updates to be buffered
and, for convenience, if the starting point of each touch should be maintained or not.

We better clarify how a developer can use the library for providing multitouch
gesture support for a UI control with an example. We consider a pinch gesture
(defined in Table 2, expression 5) and the following are the steps that have to be
followed by the UI control initialization code.
1. Construct the tree of TmpExps represented by the UML object diagram in Fig. 9,

starting from the leafs, and then associate each SimpleTmpExp to the delegate for
recognizing the desired feature. This initialization code is generated starting from
an XML description of the gesture through an XSLT. However it is possible to
code it without the XML description. In addition, it is possible to store such code
in a separate class (e.g. PinchTmpExp) and reusing it for different UI controls.

2. Create a TouchToken instance, specifying the number of updates to be buffered and
whether the initial position of each touch has to be stored or not.

3. Create an instance of the TouchTmpEmitter class, passing the token created at step
2, and the current UI control (that will be used in order to receive the touchscreen
updates from the OS).

4. Attach the handlers to the completion and/or error event of the entire gesture
and/or its subparts, represented by the instances of TmpExps created at step 1.
The flow of notifications that allows the library to manage the recognition and to

raise the appropriate intermediate events is shown in Fig. 9. We suppose that it has
already recognized a touch start with id 1. Therefore, the net is waiting for another
touch start, this time with id 2. Such “waiting” is defined by the token position
(represented as a circle-enclosed T on the s2 object in Fig. 9). When the touch screen
senses a new touch, the TouchEmitter forwards such notification to s2, the tree leaf
that currently contains the token (arrow 1). After that, s2 tries to recognize the touch,
invoking the accept method of its TouchExpContent delegate, which will return true
(arrow 2). Then s2 notifies its successfully completion to its parent, c1, which
represents the expression (𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2).

All the building blocks enclosed in this expression are recognized, thus the order
independence expression is completed. Therefore, the event handler attached to c1 is
executed. In our example, it paints two circles on the currently visualized image in
correspondence of the touch points (A square in Fig. 9), providing intermediate
feedback to the user while executing the gesture.

This is the point where our approach break the standard observer pattern: the
gesture recognition is not already finished, but it is possible to define UI reactions to
the completion of its sub-parts, without re-coding the entire recognition process, as
happens for instance when a viewer has a built-in pinch for zoom gesture recognition.
After that, c1 notifies the completion to its parent, pinch (arrow 4), which represents
an enabling expression. Having completed its left operand, pinch passes the token to
its right operand b2 (arrow 5), which represents a disabling expression, and b2 passes
the token to both its operands (arrow 6), which both duplicate it (arrow 7) at next step.
The left one represents a parallel expression, while the right one represents an order
independence (see section 3.2.3 and 3.2.5). Finally, we have four different basic
gestures that can be recognized as next ones: touch 1 move, touch 2 move, touch 1
end or touch 2 end. The dotted circles in Fig. 9 represent the new token positions.

Fig. 9. Recognition of a pinch gesture. The numbered arrows represent the sequence of
notifications when the user touches the screen with the second finger, the squares represent the
handlers attached to gesture sub-components, while the circle represents the position of the
token before the second touch, and the dotted circles the position of the token after the second
touch. The lower part shows the effects of the attached handlers on the UI.

It is worth pointing out that the device dependent part of the recognition support is
concentrated on delegates for the SimpleTmpExp object (represented at the bottom of

the tree in Fig. 9). Therefore, the remaining part of the support is implemented by
classes that are not bound to a specific device (identified by the “Abstract” label in
Fig. 9) and can be exploited not only for multitouch, but also for full body gestures
and other recognition supports. The example discussed here is a part of an iOS proof
of concept application that allows zooming the current view through the pinch gesture
and drawing with a pan gesture. The application gives intermediate feedback during
the pinch, showing two divergent arrows while zooming in and two convergent
arrows while zooming out (respectively square B and C in Fig. 9). The two gestures
are composed through the parallel operator, so it is possible to draw and to zoom the
view in at the same time (e.g. using one hand for zooming and one for drawing). From
the developer point of view, the difference in handling them at the same time or
separately is a matter of selecting the choice or the parallel operator for the
composition. No further code is required, which is not the case for current multitouch
frameworks. In addition, both gestures have been defined separately from the
application (they are contained as samples in the iOS library implementation) and
nevertheless the developer can associate UI reactions at different levels of granularity
(to the whole gesture, or part of it).

4.2 Modelling Full-Body gestures

The devices that enable the recognition of full-body gestures (e.g. Microsoft Kinect),
are able to sense the 3D position of the complete skeleton joints for up to two users,
while they can sense the body centre position of up to four more users, in meters. The
SDKs provide facilities for projecting the position on the image space of the RGB
camera or depth sensor, obtaining the corresponding coordinates in pixels (obviously,
without considering the depth axis). In addition, some of them (e.g. Primesense
NITE) are also able to track the joint orientations. Finally, it is also possible to have
more information using Computer Vision techniques. For instance, it is possible to
detect fingertips if the user is really close to the sensor, or to detect if a hand is open
or not at intermediate distances (e.g. calculating the convex hull and convexity
defects).

From the point of view of our abstract meta-model, we consider as a feature the
user identifier, the 3D position of each skeleton joint (both in meters and in pixels),
the orientation of each joint (represented as 3D vectors) the time and, if present, any
additional information on the hands state (either fingertip position or a hand open or
closed flag). As should be clear from the discussion in sections 4 and 4.1, it is
possible to extend the library with an Emitter subclass (BodyEmitter) and a set of
ExpContent subclasses for recognizing each feature (see Fig. 8, fullBody package).

We implemented the library extension in C# with the Kinect for Windows SDK,
together with a sample application based on it. The application visualizes a 3D car
model, which can be moved and rotated by the user. In order to avoid unwanted
interactions, we specified that the user has to stand with the shoulders in a plane
(almost) parallel to the sensor, before starting the interaction with the car. Thus, if the
user is not in front of the device (which means most of the times in front of the
screen), the interface will not give any response. The car position can be changed with
a “on air grab” gesture (closing the right hand, moving and reopening it). In addition,

the car can be rotated performing the on air grab gesture with two hands, which
means closing two hands, moving them maintaining almost the same distance in
between, and then reopening them. We want also to display the 2D projected hand
position on the screen, in order to provide an immediate feedback to the user for each
hand movement. The resulting gesture model is defined Equation 7. The Front and
NotFront gestures respectively activate and deactivate the UI interaction. When a
change in the feature associated to the left and right shoulder (indicated as Sl and Sr)
occurs, they respectively check if the sensor parallel plane property (p) is true or false.

The UI interaction consists of three gestures in parallel. The first and the second
one are simply a hand position change. The UI will react to their completion moving a
correspondent (left or right) hand icon. The Move gesture is the one associated to the
car position change, and consists of a sequence of a right hand close (represented cHr)
and a unbounded number of right hand moves (mHr

*), interrupted by the opening of
the right hand (oHr). The Rotate gesture is represented by the same sequence,
performed with both hands in parallel, almost maintaining the same distance (the d
condition).

𝐹𝑟𝑜𝑛𝑡 ≫ (𝑚𝐻𝑟
∗ || 𝑚𝐻𝑙 ∗|| (𝑀𝑜𝑣𝑒 [] 𝑅𝑜𝑡𝑎𝑡𝑒))∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡

𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[𝑝]||𝑆𝑟[𝑝])
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[!𝑝]||𝑆𝑟[!𝑝])
𝑀𝑜𝑣𝑒 = 𝑐𝐻𝑟 ≫ (𝑚𝐻𝑟∗ [> 𝑜𝐻𝑟)
𝑅𝑜𝑡𝑎𝑡𝑒 = (𝑐𝐻𝑟||𝑐𝐻𝑙) ≫ ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> (𝑜𝐻𝑟||𝑜𝐻𝑙))

(7)

The intermediate feedback associated to different sub-parts of the composed
gestures is shown in Fig. 10. When the correct pose is detected (the Front gesture is
completed), the car passes from a grayscale to a full-colour visualization, indicating
that it is possible to start the interaction (the B square in Fig. 10). When the user
“grabs” the car with one hand (completes cHr), a 4 arrow icon is shown on top of the
car (C square). The change of the car position is associated to the following hand
movements (mHr

*). When the user closes two hands in parallel (completes
(𝑐𝐻𝑟||𝑐𝐻𝑙)), a circular arrow is displayed (D square), suggesting the gesture function.
The car rotation is associated to the parallel movement of the two hands (the
completion of (𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑]) ∗). The car returns inactive when the user is not in the
front position any more (A square).

Writing such application with the support of our library has a set of advantages,
which is possible to notice also in this simple case. First of all, the defined gestures
are separated from the UI control. Indeed, the car viewer is a standard WPF 3D
viewport, enhanced with full body gestures at the application window level. Second,
the possibility to inspect the gesture definition and to attach handlers at the desired
level of granularity allowed us to define easily when and how to react to the user
input, without mixing the logic of the reactions with the conditions that need to be
satisfied for executing them. Finally, we do not define any additional UI state for
maintaining the gesture execution. Indeed, if we created such application simply with
the Kinect for Windows SDK, we would have needed at least a state variable for
maintaining what the user has already done and, consequently, for deciding what s/he
is allowed to do next (e.g. when the user closes the right hand the state has to change
for moving the car at next hand movement). Most of the times, this ends with the
implementation of a state machine inside the handler of the skeleton tracking update,
which mixes the management of all gestures together. Especially when we want to
support parallel gestures, mixing the different gestures leads to code difficult to

understand and maintain. Our approach helps the developer to separate the temporal
aspect and the UI reaction and to reuse gesture definition in different applications,
while maintaining the possibility to define fine-grained feedback.

Fig. 10. The car viewer application. The upper part of the figure shows the UI feedback
provided while performing the gestures represented in the lower part.

5 Conclusions and Future Work

The lack of proper programming models for defining gestures is a major issue in
defining gesture-based interfaces and it limits significantly the ability to fully exploit
the new multitouch and 3D input devices, now becoming widely available. The
observer pattern underlying the traditional event-based programming is largely
inadequate for tracking gestures made of multiple inputs over time, forcing the
programmer to choose between handling the complexity of this process or picking
one of a pre-defined gestures recognized by the framework used.

In this paper we have proposed a declarative, compositional meta- model for
defining gestures, addressing this key issue allowing for simultaneous recognition of
multiple gestures and sub-gestures under control of the programmer rather than the
framework. The meta-model elements contain ground terms and composition
operators that have been theoretically defined using Non Autonomous Petri Nets. It
allows reusing and composing the definition of gestures in different applications,
providing the possibility to define UI reactions for the recognition not only for the
entire gesture, but also for its sub-components. Moreover, we reported a proof-of-
concept library, which has been exploited for managing two different gesture
recognition supports (iOS and Microsoft Kinect), showing the flexibility and the
generality of the approach. We developed two sample applications for demonstrating
the advantages of the proposed modelling technique in reusing gesture definitions,
which can be exploited at the desired level of granularity.

Now that we have a well-define model we will continue our research by studying
both implementation efficiency and effectiveness in real world scenarios. Moreover
we will use the ability of the model to recognize many gestures at once to study what
we call posturing, which is the analysis of user postures while interacting with a
system in order to adapt the interface without explicit commands.

In addition, we also plan to provide an authoring environment for the gesture
definition, providing testing and simulation capabilities, in order to ease the
development of gestural interfaces based on our model and library.

Acknowledgements. This work has been partially supported by the SERENOA
project, http://www.serenoa-fp7.eu/.

6 References

1 Accot, J., Chatty, S., Palanque, P. A formal description of low level interaction and its
application to multimodal interactive system 3rd DSVIS EUROGRAPHICS, pp. 92-105,
Springer Verlag, 1996

2 Bastide, R. Palanque P. A., A Petri-Net based Environment for the Design of Event-driven
Interfaces, In Proc. of 16th International Conference on Application and Theory of Petri-
Nets, (Torino, Italy, June 1995), Springer.

3 Buxton, W. Lexical and pragmatic considerations of input structures. SIGGRAPH Comput.
Graph., 17(1):31-37, 1983.

4 González-Calleros, J.M., Vanderdonckt, J., 3D User Interfaces for Information Systems
based on UsiXML. In Proc. of 1st Int. Workshop on User Interface Extensible Markup
Language UsiXML’2010 (Berlin, Germany, June 2010), Thales Research and Technology
France, Paris, 2010

5 Jacob, R.J.K., Giroaud, A., Hirshfield, L.M., Horn, M.S., Shaer O., Solovey, E.T.,
Zingelbaum, J. Reality-based interaction: a framework for post-WIMP interafaces. In CHI
2008, (Florence, Italy, April 2008), ACM Press, 201-210

6 Kin, K., Hartmann B., DeRose. T., and Agrawala, M., Proton: multitouch gestures as
regular expressions. In CHI 2012 (Austin, Texas, U.S. May 2012)., 2885-2894

7 Kammer, D., Wojdziak, J., Keck, M., Groh, R., Taranko, S. Towards a formalization of
multi-touch gestures. In ITS ’10, ACM International Conference on Interactive Tabletops
and Surfaces (Saabrucken, Germany, November 2010), ACM Press, 49-58.

8 Luyten, K., Vanacken, D., Weiss, M., Borchers, J., Izadi, S., Wigdor, D. Engineering
patterns for multi-touch interfaces. In EICS 2010, Proceedings of the 2nd ACM SIGCHI
symposium on Engineering interactive computing systems. (Berlin, Germany, June 2010),
ACM Press, 365-366

9 NUI Group, Gesture Recognition., http://wiki.nuigroup.com/Gesture_Recognition, Website
retrieved: 2012-05-27

10 Palanque, P., Bastide, R., Sengès, V.: Validating interactive system design through the
verification of formal task and system models. In EHCI 1995, (Yellowstone Park, USA,
1995), pp. 189-212, Chapman & Hall.

11 Paternò, F. Model-based design and evaluation of interactive applications. Applied
Computing, Springer 2000

12 Paternò, F. MARIA Paternò, F., Santoro, C., Spano, L.D.: MARIA: A Universal Language
for Service- Oriented Applications in Ubiquitous Environment. ACM Transactions on
Computer- Human Interaction 16(4), 1–30 (2009)

13 René, D. Alla, H. Discrete, Continuous and Hybrid Petri Nets, Springer 2005.
14 Scottidi, A, Blanch, R., Coutaz, J. A Novel Taxonomy for Gestural Interaction techniques

based on accelerometers. In IUI ’11, Proceedings of the 16th international conference on
intelligent user interfaces, (Palo Alto, CA, USA, February 2011), ACM Press, 63-72.

15 Vanacken, D., Boeck, J.D., Raymaekers, C., Coninx, K.: NIMMIT: A notation for
modeling multimodal interaction techniques. ;In GRAPP 2006, (Setubal, Portugal, 2006),
224-231

