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Abstract. The description of a gesture requires temporal analysis of values 
generated by input sensors and does not fit well the observer pattern 
traditionally used by frameworks to handle user input. The current solution is to 
embed particular gesture-based interactions, such as pinch-to-zoom, into 
frameworks by notifying when a whole gesture is detected. This approach 
suffers from a lack of flexibility unless the programmer performs explicit 
temporal analysis of raw sensors data. This paper proposes a compositional, 
declarative meta-model for gestures definition based on Petri Nets. Basic traits 
are used as building blocks for defining gestures; each one notifies the change 
of a feature value. A complex gesture is defined by the composition of other 
sub-gestures using a set of operators. The user interface behaviour can be 
associated to the recognition of the whole gesture or to any other sub-
component, addressing the problem of granularity for the notification events. 
The meta-model can be instantiated for different gesture recognition supports 
and its definition has been validated through a proof of concept library. Sample 
applications have been developed for supporting multitouch gestures on iOS 
and full body gestures with Microsoft Kinect. 

Keywords: Input and Interaction Technologies, Model-based design, Software 
architecture and engineering, Gestural Interaction. 

1 Introduction 

In recent years a wide variety of new input devices has changed the way we interact 
with computers. Nintendo Wii in 2006 has broken the point and click paradigm with 
the Wiimote controller, based on gestures in a 3D space; iPhone has shown better 
usability by means of multitouch in 2007, while Microsoft introduced Kinect in 2010 
has expressed a way of interaction without wearing sensors of any kind. All these new 
devices exploit gestures performed in different ways, such as moving a remote, 
touching a screen, or through whole-body movements.  

The introduction of these novel interaction techniques in the mass market has not 
affected current user interface programming frameworks yet: the underlying model is 
still bound to the observer pattern, where events occur atomically in time and gets 
notified through messages or callbacks. Indeed, the support for gestures has been 
mostly forced in the same paradigm by hiding the gesture recognition logic under the 
hood, which usually means providing high-level events when the gesture is 



completed, and leaving the possibility to provide intermediate feedback to the 
handling of low-level events that are not correlated with the high-level ones. The 
drawback of this approach is twofold: on the one hand the temporal extension of a 
gesture is significant with respect to the time scale of a system, a gesture may require 
in fact seconds to complete; on the other hand the set of recognizable gestures is fixed 
and inaccessible to the system unless the programmer hooks the low level events 
generated by sensors and re-implements the full gesture-recognition logic.  

Moreover, gesture interfaces exploit the movement evolution in space and time as 
argument for the interaction, therefore their effect on the UI usually changes 
according to the movement speed or the space covered, and the program has to 
perform these calculations. To better handle these problems, a framework must offer 
an extended vision of how to handle gestures allowing for sub-gesture recognition and 
concurrent recognition of multiple gestures (i.e. pinch-to-zoom and drawing with 
another finger). The state of the art tools leave the programmer with the choice 
between pre-cooked recipes and do-it-yourself with handling low level events. The 
problem with this paradigm arises when we need intermediate feedback during the 
gesture execution. With a single event notification, the developer is forced to re-
implement the low-level tracking, because it is not possible to separate the complex 
gesture in smaller constituents. In addition, it is not also possible to compose two or 
more predefined gestures. For instance, if we want to create a view that can be 
zoomed and panned at the same time for the iPhone, we have again to track the low-
level events, and hard-code the gesture composition. 

In this paper, we address such granularity problem by defining a gesture 
description meta-model that allows constructing complex gestures from a well-
defined set of building blocks and composition operators. Moreover, composition 
semantics is defined using Petri Nets and can be efficiently implemented in a 
framework. Using our model, developers can associate the UI behaviour either to 
simple or complex gestures, enabling gestures reuse and composition, which is not 
currently supported in user interface frameworks. The implementation of a proof-of-
concept library for the recognition of the modelled gestures is also described. Finally, 
we discuss two application prototypes that exploit such library, based on two different 
recognition supports: iOS devices and Microsoft Kinect. 

2 Related Work 

The attempt to create compositional representations of different event sources into 
higher-level events, have a very long research history [1] and the need of a structured 
approach is exacerbated by the new interaction devices available nowadays. In [2], 
the analysis of the various interaction techniques considered different dimensions of 
languages (lexical, syntactical, semantic and pragmatic), in order to provide designers 
with a theoretical foundation when creating interfaces based on gestures. Through the 
years, such work evolved in order to include sensors that started to be pervasively 
included in consumer devices, supporting the advancement towards the Reality-Based 
Interaction [4]. For instance, in [13] the authors characterized the physical actions 
that users need to perform to enter a command through accelerometer-based devices. 



While such categorization is useful to define how and why the user should perform an 
action rather than another, the following step is to ease the development of such kind 
of interfaces. In this regard, the support offered by frameworks has to be effective and 
uniform across the different operating systems and devices [7]. Therefore, we want to 
focus on generic and machine-understandable gesture descriptions, such as the 
Gesture Definition Markup Language (GDML) [8], which allows a declarative 
description of the sequence of events that the device senses for recognizing a custom 
touch gesture, raising a single event when the gesture completes. We overcome this 
approach supporting the association of UI behaviour also to gesture sub-parts and 
parallel gesture recognition. In [6], Kammer et al. described GeForMT, a 
formalization language for multitouch gestures defined by four components: pose 
function, atomic gestures, composition operators and the focus on a user interface 
object. We propose a more general solution that is suitable for devices different from 
touch screens.  

Model-based approaches for user interfaces included gesture descriptions limited 
to specific supports (e.g. multitouch [11], 3D interaction [3] etc.). In our work, we 
attempt to overcome the main limitation of these description languages, which is the 
focus on a single gesture recognition support. Our paradigm aims to be more abstract 
while allowing concurrent gesture recognition, preserving composition and 
independence from concrete sensor values: our meta-model allows describing 
gestures for different recognition devices with a uniform vocabulary.  

The definition of a compositional model for complex multitouch gestures has been 
defined in [5]. The authors use regular expressions for describing gestures, where 
literals are identified by triples containing the touch event type (start, move, end), the 
touch identifier and the concerned UI object. The operators are the usual ones for 
regular expressions. Our work shares with this approach the possibility to create 
composite expressions for describing gestures, separating them from the UI control. 
However, we overcome the single gesture recognition assumption in [5], providing 
the possibility to define parallel gestures. In order to do this, we use Petri Nets for the 
definition of a gesture meta-model, a notation that has been proved to be effective for 
the description of event-driven interactive interfaces [1]. 

In addition, we provide a general solution that is applicable not only for touch 
devices, but also for different recognition supports by creating an abstract 
representation of the different features that can be observed, as happens in existing 
descriptions of multimodal interaction [14]. 

3 Gesture Description Meta-Model 

In this section, we theoretically define our gesture description meta-model. Such 
meta-model is abstract with respect to a specific gesture recognition support, which 
means that it is possible to instantiate it for different devices (e.g. multitouch screens, 
body tracking devices, remotes etc.). We start from the definition of the basic building 
blocks (ground terms), which represent the set of basic features observable through a 
specific device. Composed terms represent complex gestures (that can be further 



decomposed) and they are obtained connecting ground or composed terms through a 
well-defined set of composition operators.  

The definition of the UI behaviour can be associated to the recognition of basic or 
composed gesture definition. As we will better explain in the following sections, we 
used Non Autonomous Petri Nets [12] in order to describe the recognition process, 
since they ease the description of parallel computations driven by external events, 
such as the reaction of the user interface according to the notifications coming by the 
gesture recognition device. Once the Petri Nets for a basic building block and for all 
the composition operators have been defined, the designer can create complex 
gestures through expressions of basic building blocks and/or complex gestures 
composed through the set of operators. The actual Petri Net for the complex gesture is 
derived visiting bottom-up the complex gesture expression definition and can be 
executed by the library (see section 4.1). 

3.1 Basic Building Blocks: Ground Terms 

Ground terms of our language are the basic building blocks of our gesture description 
model, since they cannot be further decomposed. They are defined by the events that 
developers currently track in order to recognize gestures. Ground terms do not have a 
temporal extension, though their values may be obtained by computing a function of 
the raw sensor data (the current gesture support). 

For instance, if we are describing a gesture for a multitouch application, the ground 
terms are represented by the low-level events that are available for tracking the finger 
positions, which are usually called touch start, touch move and touch end. Besides, for 
creating full body gestures, the current recognition devices and libraries offer means 
for tracking specific skeleton points, such as hands, head, shoulders, elbows etc. As 
happens for multitouch gestures, also full body ones are recognized tracking the 
skeleton points positions over time.  

Here, we define an abstract building block that can be instantiated for different 
gesture recognition supports. In order to do this, we have to consider that a gesture 
support provides the possibility to track a set of features that change through the time. 
As said before, the meaning of each feature (and the associated low-level event) 
depends on the concrete gesture recognition support. 

A feature is a n-dimensional vector (e.g., the position of a finger is a vector with 
two components, the position of a skeleton joint has three components, etc.). A set of 
features can be also represented with a vector with a number of components equals to 
the sum of the dimensions of its elements. A set of features is the abstract 
representation of a gesture recognition support at a given time, since it describes the 
data provided by a given hardware and software configuration. We will provide 
examples for the definition of a gesture recognition support in the following sections. 
The state of a gesture support at a given time is represented by the current value of 
each feature. The state of a gesture recognition support over time can be represented 
by a sequence of such states, considering a discrete time sampling. Equation 1 defines 
a feature 𝑓, a gesture recognition support 𝐺𝑆, a gesture recognition support state 𝐺𝑆𝑖  
and a gesture recognition support state sequence 𝑆. 



𝑓 ∈ ℝ𝑛 

𝐺𝑆 = [𝑓1, 𝑓2, … , 𝑓𝑚]            𝐺𝑆 ∈ ℝ𝑘    𝑓𝑖 ∈  ℝ𝑛𝑖    �𝑛𝑖 = 𝑘
𝑚

𝑖=1

 

𝐺𝑆𝑖 = [𝑓1(𝑡𝑖), 𝑓2(𝑡𝑖), … , 𝑓𝑚(𝑡𝑖)]                           𝑡𝑖 ∈ ℝ 
𝑆 = 𝐺𝑆1 ,𝐺𝑆, … ,𝐺𝑆𝑛                                              𝑛 ∈ ℕ 

(1) 

A gesture building block notifies a change of a feature value between 𝑡𝑖 and 𝑡𝑖+1. 
Such notification can be optionally associated to a condition, which can be exploited 
for checking properties of the gesture state sequence such as trajectories for hand 
movements. For instance, it is possible to checks whether the path of a tracked point 
is linear or not, avoiding the notification of different movements. 

The feature change notification is accomplished by the gesture support, and it is 
external with respect to the current state of the gesture recognition.  

We define the basic traits and the composition operators using Non-Autonomous 
Petri Nets. A Petri Net is a bipartite graph consisting of two types of nodes: 
transitions (represented as black rectangles) and places (represented as circles), which 
are connected by directed arcs. A place contains a positive number of tokens and the 
state of the net is represented by the distribution of the tokens among the places. 
When all the places that are connected to a given transition contain at least one token, 
the transition fires, withdrawing a token from all the incoming places and adding one 
token to all the outcoming ones. In this work, we consider a particular type of Petri 
Net called Non-Autonomous, in which the firing of a transition is enabled not only by 
the presence of the tokens, but also by the occurrence of an event that does not depend 
on the considered Net. Therefore, in Non-Autonomous Petri Net, the transition fires 
only if the incoming places contain a token and if an event of a given type occurs (see 
[12] for a more detailed description). We need such kind events in order to model the 
notification of a feature change by the considered gesture support.  

We define an event type for each observed feature and each optional gesture state 
sequence constraint. It is possible to model the external notification with the 
definition of a function 𝑟𝑎𝑖𝑠𝑒, which establishes if the Petri Net external event will be 
raised at a time 𝑡 as defined in equation 2. 

𝑟𝑎𝑖𝑠𝑒�𝐸𝑓𝑖,𝑃(𝑆),𝑡� ⇔ �𝑓𝑖(𝑡) ≠ 𝑓𝑖(𝑡 − 1)� ∧ 𝑝(𝑆)        𝑝: 𝑆⟶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (2) 

It states that the event 𝐸𝑓𝑖,𝑃(𝑆) at time 𝑡 is raised if the value of the feature 𝑓 is 
changed and if the property on the gesture support state sequence 𝑝(S)  is verified. In 
order to avoid a cumbersome representation, we will identify the events simply 
specifying the related feature and optionally giving a name to the gesture state 
sequence property. If no constraint has to be verified on the state sequence, we will 
simply omit it. For instance we will identify the event in Fig. 1 with 𝑓𝑖 , 𝑝(𝑆). If 
𝑝(S) is true for all 𝑆, the event will be identified as 𝑓𝑖. 

In order to model the current progress in the gesture recognition, we use a control 
state token (𝐶𝑠) on the Petri Net. The recognition of a basic block will be enabled by 
the presence of such token, and it will be inhibited by its absence. As we explain 
better in the following sections, the parallel recognition of different gestures in a 
composed Net is possible managing multiple instances of such control state token. 
The Petri Net in Fig. 1 defines a basic building block for gesture recognition. 



 
Fig. 1. Gesture recognition building block 

The two dotted arrows connect this subnet to transitions that are “externals” with 
respect to the building block, namely the previous and the following parts of the 
gesture net. The place 𝑆𝑡𝑎𝑟𝑡 𝐹1 receives the control state token from its incoming 
transition. If it is the first one in the recognition net, it will contain the token 
associated with the entire recognition process. The transition after this place fires only 
when the event 𝑓1, 𝑝(𝑆) occurs. Finally, the control state token will reach the place 
𝐸𝑛𝑑 𝐹1, concluding the basic gesture recognition. The actions to be performed in 
order to react to the basic gesture recognition are associated to the latter place. The 
out coming arrow starting from the 𝐸𝑛𝑑 𝐹1 place connects the considered block with 
the next part of the gesture net.  

In order to represent a basic building block we use the notation 𝐹𝑖[𝑝]: we assign a 
name to the considered feature (𝐹𝑖 in this case) and also to the boolean function (𝑝), 
which is omitted if it is true for every gesture support state. 

3.2 Composition Operators 

A gesture description model is based on the composition of the aforementioned 
ground terms. The connection is performed through a set of operators, which express 
different temporal relationships among them. Such set has as starting point those 
defined in CTT [11], which has been proved effective in defining the temporal 
relationship for task modelling. Some of them (sequence and choice) have been 
already defined through Petri Nets in [10]. We provide here a complete definition 
together with the support for conditions on device feature that is peculiar to gesture 
modelling. Table 1 lists the composition operators that we will describe in the next 
sections. All binary operators are associative, therefore the n-ary version of a binary 
operator (e.g. choice) is defined applying such property.  

Table 1.  List of composition operators 

Operator Notation Arity 
Iterative 𝐺∗ 1 
Sequence 𝐺1 ≫ 𝐺2 2 (n) 
Parallel 𝐺1 || 𝐺2 2 (n) 
Choice 𝐺1 [ ] 𝐺2 2 (n) 
Disabling 𝐺1 [> 𝐺2 2 (n) 
Order Independence 𝐺1 |=| 𝐺2 |=| … |=| 𝐺𝑛 n 

During the discussion in the following sections, we need also the definition of two 
different sets of ground terms, given a complex gesture definition. The first one is the 



set that containing all its ground terms. We refer such set as 𝐺𝑆 (Ground terms Set). 
Equation 3 defines how to construct the 𝐺𝑆 for a gesture 𝐺, which consists of a 
recursive set union on the sub-blocks connected through the composition operators. 

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝐺𝑆𝐺 = {𝐹𝑖[𝑝]} 
𝐺 = 𝐺1∗ ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1 
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1 ∪ 𝐺𝑆𝐺2                 𝑜𝑝 ∈ { ≫, ||, [], [>} 

𝐺 = 𝐺1 |=| 𝐺2|=| … |=| 𝐺𝑛 ⇒ 𝐺𝑆𝐺 = �𝐺𝑆𝐺𝑖

𝑛

𝑖=0

 

(3) 

The second set we need to define contains only the ground terms not appearing as 
the right operand in a sequencing temporal relation, so they are immediately 
recognizable when the gesture execution starts. The operators that express such 
relation are sequence and disabling. We will call such set starting ground terms set, or 
𝑆𝐺𝑆 and it is defined in Equation 4. Obviously 𝑆𝐺𝑆 ⊆ 𝐺𝑆. 

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝑆𝐺𝑆𝐺 = {𝐹𝑖[𝑝]} 
𝐺 = 𝐺1∗ ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1                   𝑜𝑝 ∈ { ≫, [>} 
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 ∪ 𝑆𝐺𝑆𝐺2    𝑜𝑝 ∈ {||, []} 

𝐺 = 𝐺1 |=| 𝐺2|=| … |=| 𝐺𝑛 ⇒ 𝑆𝐺𝑆𝐺 = �𝑆𝐺𝑆𝐺𝑖

𝑛

𝑖=0

 

(4) 

3.2.1 Iterative Operator 
The iterative operator repeats the recognition of gesture subnet for an indefinite 
number of times. In order to avoid an infinite gesture definition, each iterative basic 
block should also be coupled with a disabling operation. As already specified in Table 
2, we will use the ∗ symbol in order to represent the iterative operator (e.g. 
𝐹∗ recognizes an infinite number of value changes for the feature one). It is possible 
to define this operator simply creating a cycle from the ending transition of a gesture 
subnet to its starting place. In this way, the recognition subnet will be fed again with 
the control state token, immediately after the gesture has been recognized. Fig. 2 
shows the Petri Net definition of the iterative operator. The thicker arrow represents 
the operator definition. 

 
Fig. 2. The iterative operator 

3.2.2 Sequence Operator 
This operator simply defines that two gesture subnets should be performed in 
sequence. We use the ≫ symbol in order to represent this operator. It is possible to 
define such operator connecting the last transition of the first gesture with the starting 



place of the second one. Fig. 3 shows a gesture consisting of the sequential 
composition of two basic feature recognizers. The thicker arrow represents the 
sequence operator. 

 
Fig. 3. The sequence operator 

3.2.3 Parallel Operator 
The parallel operator defines the recognition of two or more different gestures at the 
same time. We use the || symbol in order to represent the parallel operator.  

From the Petri Net definition point of view, the blocks representing the parallel 
gestures should be simply put in different recognition lines. In order to do this, we 
assign a different control state token to each line. This can be obtained, as shown in  
Fig. 4, inserting a transition that “clones” the control state token and dispatching a 
copy to the starting place of each different recognition lines. We add a place at the 
end of each recognition line that forwards the “cloned” control state token to the last 
transition that, once all gestures terminated, restores only one token in the net. 

 
Fig. 4.  The parallel operator 

3.2.4 Choice Operator 
The choice operator defines a gesture that is recognized if exactly one between its 
first and its second component is detected (either one or the other). We use the 
symbol [] for representing it. The net can be defined as it is shown in Fig. 5, and its 
construction is similar to the parallel operator. The transition after the 𝐶ℎ𝑜𝑖𝑐𝑒 𝑆𝑡𝑎𝑟𝑡 
place splits the control state token between two subnets, each one representing a 
component involved in the choice. The two lines cannot evolve independently as 
happens for the parallel operator. Therefore, when one subnet starts its recognition, 
the other one should be interrupted. In order to do this, it is sufficient to connect the 
first place of the first gesture subnet with the first transition of the second one and 
vice versa. In this way, once one of the two feature events is raised, the control state 
token from the other gesture subnet is deleted. 



 
Fig. 5.  The choice operator 

More precisely the steps to be followed for constructing a Petri Net for 𝐺1[ ]𝐺2 in 
the general case are the following: 
1. Calculate 𝑆𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2 
2. Connect the first place of each element of 𝑆𝐺𝑆𝐺1 with the first transition of each 

element in 𝑆𝐺𝑆𝐺2 
3. Connect the first place of each element of 𝑆𝐺𝑆𝐺2 with the first transition of each 

element in 𝑆𝐺𝑆𝐺1 
The last transition of each gesture subnet is connected to the 𝐶ℎ𝑜𝑖𝑐𝑒 𝐸𝑛𝑑 place, 
which forwards the control state token to the following part of the recognition net. 

3.2.5 Disabling 
The disabling operator defines a gesture that stops the recognition of another one, 

thus “disabling” it. The operator symbol is [>. It is typically needed when a gesture is 
iterative, in order to define the condition that stops the loop. Fig. 6 shows the 
definition of the disabling operator using Petri Nets for 𝐺1[> 𝐺2. The basic idea is to 
connect the first place of each basic component belonging to 𝐺1 to a “copy” of the 
first transition of the starting blocks of the second one. In Fig. 6 we can see an 
example of this kind of net, where the first gesture is composed by only one building 
block. This gesture can be disabled by the second one, which starts with an event 
related either to the feature 𝑓2 or 𝑓3. In order to obtain the desired effect, we connect 
the 𝑆𝑡𝑎𝑟𝑡 𝐹1 place with a copy of both the transitions after the 𝑆𝑡𝑎𝑟𝑡 𝐹2 and 
𝑆𝑡𝑎𝑟𝑡 𝐹3. In order to construct the net for 𝐺1[> 𝐺2 in the general case, we need to 
perform the following steps: 
1. Calculate the sets 𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2 
2. Connect the starting place of each element of 𝐺𝑆𝐺1 with a copy of the first 

transition of each element in 𝑆𝐺𝑆𝐺2 , possible duplicates (transitions that have the 
same incoming places and the same external event) are merged. In case of order 
independence operator, a transition duplicate is added also to each 𝑂𝐼 𝐹𝑙𝑎𝑔 and 
𝑂𝐼 𝐸𝑛𝑑 (see section 3.2.6) 

3. Connect the second place of each element in 𝑆𝐵𝑆𝐺2 with the transitions generated 
at step 2. Such connection has to preserve the single control state token property 
for each sub-gesture, so we need to collapse recursively the recognition lines with 



an ad-hoc net in the case 𝐺1 sub-components contain the parallel or the order 
independence operator.  

 
Fig. 6. The disabling operator 

3.2.6 Order Independence 
The order independence operator is used when two or more gestures can be performed 
in any order. The composed gesture is recognized when all of its subcomponents have 
been recognized. We will use the symbol |=| for this operator. It is worth pointing out 
that such operator is not strictly needed, because it is possible to derive it according to 
the following property in Equation 5. 

𝐺1 |=| 𝐺2 = (𝐺1 ≫ 𝐺2)[ ](𝐺2 ≫ 𝐺1) (5) 

In general, we can define an order independence composition of a set of n gestures 
as a choice between all the permutations of its elements. Inside each permutation the 
gesture set elements are connected through the sequence operator. Obviously, such 
kind of definition creates n! options for the choice that makes it too expensive both 
from the space and time point of view. It is possible to provide a more compact net 
for defining this operator, which is shown in Fig. 7. The idea is to create a Petri Net 
that repeats 𝑛 times the choice between the composed subnets, removing one option 
at each iteration. 

The steps to construct this net for 𝐺1|=|𝐺2|=|. . .|=|𝐺𝑛 are the following: 
1. Calculate 𝑆𝐺𝑆𝐺𝑖∀𝑖 ∈ [1,𝑛] 
2. Create an 𝑂𝐼 𝐹𝑙𝑎𝑔 place for each 𝐺𝑖 and connect it with its last transition. 
3. Create an 𝑂𝐼 𝐸𝑛𝑑 place for each 𝐺𝑖 and connect it with the same transition at the 

end of the net. 
4. Connect the transition after the 𝑂𝐼 𝑆𝑡𝑎𝑟𝑡 place with each starting place of all 

elements in 𝑆𝐺𝑆𝐺𝑖 and with all the 𝑂𝐼 𝐹𝑙𝑎𝑔 places. 



5. For each 𝑖 ∈ [1,𝑛] , connect the starting places of each element of 𝑆𝐺𝑆𝐺𝑖  with all 
the starting places of each element in ⋃ 𝑆𝐵𝐺𝐺𝑗  𝑗 , with j ∈ [1, i − 1] ∪ [i + 1, n]  

6. For each ∈ [1,𝑛] , connect the event-driven transitions of each element of 𝐺𝑆𝐺𝑖  
with 𝑂𝐼 𝐹𝑙𝑎𝑔𝑖and vice versa. 

7. For each 𝑖 ∈ [1,𝑛] connect the ending transition of the net associated to 𝐺𝑖 with all 
the elements in 𝑆𝐺𝑆𝐺𝑖  

8. For each 𝑖 ∈ [1,𝑛], connect the starting places of each element of 𝑆𝐵𝑆𝐺𝑖  with the 
last transition of the order independence net. 

 
Fig. 7. The order independence operator 

4 Library Support 

In this section we detail the implementation of GestIT1, a proof of concept library that 
allows the development of gesture interfaces according to our meta-model definition. 
The library class diagram is shown in Fig. 8. It has a core independent from the actual 
gesture recognition support (core package), plus a set of extensions, which deal with 
the actual devices that currently are iOS devices (multitouch package) and Microsoft 
Kinect (fullBody package). The library core contains the classes for the defining 
gesture expressions (either ground terms or composed ones), represented by the 
abstract class TmpExp. The SimpleTmpExp class implements the Petri Net for 
recognizing a generic basic building block, and it is a refinement of TmpExp. The 
actual feature changes and the optional conditions on them (see section 3.1) are 
defined by a delegate object associated to the SimpleTmpExp instances, which is 
obviously device-dependent. 

Therefore, the library contains an abstract interface (ExpContent) that defines the 
protocol for the generic delegate. It consists of two instance methods: accept and 
consume. The first one receives the current gesture recognition support state 
(represented by the abstract class ExpEventArgs) and the Petri Net Token that, for 

                                                           
1 The GestIT library is available at http://gestit.codeplex.com/  

http://gestit.codeplex.com/


convenience, contains the information on the previous gesture recognition support 
state sequence. A concrete implementation of the delegate returns a boolean value 
indicating whether the feature change is recognized or not, according to the parameter 
values. The consume method allows the developer to specify the amount of gesture 
data to be maintained during the gesture recognition, since it is not feasible to 
maintain the entire sequence of feature values because of memory space. We better 
detail this point in section 4.1. The possibility to combine building blocks and 
composed gestures is provided by other two TmpExp subclasses: BinaryTmpExp and 
ComplexTmpExp. The first one implements all Petri Nets representing binary 
operators (sequence, parallel, choice, disabling). Obviously, an instance of this class 
behaves differently according to the operator property and its left and right operands, 
which belong to the TmpExp class (thus it is possible to connect both building blocks 
and complex gestures). The N-ary versions of such operators can be obtained 
associating the operands, exploiting the aforementioned associative property. The 
second TmpExp subclass implements the Petri Net for the order independece and 
contains a list of operands (again belonging to the TmpExp class). The iterative 
operator is represented by a boolean flag on the TmpExp class. 

 
Fig. 8. Gesture Library 

 



A gesture definition is represented by a TmpExp tree, where all leafs are 
SimpleTmpExp instances, while the other nodes belong either to the BinaryTmpExp or 
the ComplexTmpExp class. At runtime, the tree is managed by a device dependent 
implementation of the Emitter class. Its responsibility is to listen to device updates 
and to forward them to the leafs that currently contain a token. For each one of them, 
the Emitter will invoke the accept method. If the return value is true, the Emitter will 
invoke the consume method. Then, the SimpleTmpExp will notify the recognition to 
its parent expression that, according to the Petri Net semantics, will move the Token, 
propagating the notification up to the tree hierarchy and proceeding with the gesture 
recognition. In section 4.1 we provide a concrete example of this mechanism. 

It is possible that the device raises an update that is not accepted by any leaf. In 
this case, the gesture recognition should be interrupted, and the developer should have 
the possibility to define how the interface should react to the interruption. The library 
offers the possibility to associate a handler not only for the successful recognition of a 
gesture (either basic or composed), but also for the recognition failure. The 
recognition failure is also propagated to the upper levels of composition tree as in the 
successful case. 

4.1 Modelling Multitouch gestures 

A multitouch screen can detect a maximum number of touches. For each touch, the 
device can detect its screen position (usually expressed in pixel). In addition, it is 
possible to detect the current time. According to our abstract meta-model, we will 
have 𝑛 features related to the touch positions (one for each detectable touch) and a 
feature related to the current time. If a touch is not currently detected on screen, we 
say that its current position is the point (⊥,⊥) . We identify the feature related to the 
i-th touch with 𝑝𝑖 , while we will use the 𝑡𝑖𝑚𝑒 symbol for the time. In order to have a 
uniform terminology with the current multitouch toolkits, we define the simplest set 
of multitouch gestures in Equation 6. Starting from these building blocks, it is 
possible to define complex gestures using the composition operators. A set of 
common multitouch gestures is defined in Table 2. 

𝑆𝑡𝑎𝑟𝑡𝑖 =  𝑝𝑖  [𝑝𝑖(𝑡 − 1) = (⊥,⊥) ∧  𝑝𝑖  (𝑡) ≠ (⊥,⊥)] 
𝑀𝑜𝑣𝑒𝑖 = 𝑝𝑖  [ 𝑝𝑖(𝑡 − 1) ≠ (⊥,⊥) ∧ 𝑝𝑖(𝑡) ≠ (⊥,⊥)] 
𝐸𝑛𝑑𝑖 = 𝑝𝑖[ 𝑝𝑖  (𝑡 − 1) ≠ (⊥ ,⊥) ∧ 𝑝𝑖  (𝑡) = (⊥ ,⊥)] 

(6) 

Table 2. Modelling of common multitouch gestures. In expression 2, the condition pos checks 
if the sequence of touches are almost in the same position, while timeDiff checks if they are 
close in time. In expression 5, the path has to be linear with a certain speed. In expression 6, the 
c condition checks whether the finger movement is circular or not. 

 Gesture name Expression 
1 Tap 𝑆𝑡𝑎𝑟𝑡1 ≫  𝐸𝑛𝑑1 
2 Double Tap 𝑆𝑡𝑎𝑟𝑡1 ≫  𝐸𝑛𝑑1 ≫ 𝑆𝑡𝑎𝑟𝑡1 [ 𝑝𝑜𝑠 ∧ 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓 ] ≫  𝐸𝑛𝑑1 
3 Pan 𝑆𝑡𝑎𝑟𝑡1 ≫  𝑀𝑜𝑣𝑒1∗ [>  𝐸𝑛𝑑1 
4 Slide 𝑆𝑡𝑎𝑟𝑡1 ≫  𝑀𝑜𝑣𝑒1∗[𝑙𝑖𝑛𝑒𝑎𝑟 ⋀ 𝑠𝑝𝑒𝑒𝑑] [>  𝐸𝑛𝑑1 
5 Pinch ( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1∗|| 𝑀𝑜𝑣𝑒2∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) 
6 Rotate ( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ (𝑀𝑜𝑣𝑒1∗[c] || 𝑀𝑜𝑣𝑒2∗[𝑐]) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2) 



In order to recognize multitouch gestures described with this formal definition with 
our library, we need to define the concrete implementation of the abstract classes 
discussed in section 4, represented as  the multitouch package in Fig. 8. The first one 
is TouchEventArgs, an ExpEventArgs subclass, which contains the information about 
a device feature update (touch identifier, touch point, time). The instances of this class 
are created by a TouchEmitter, an Emitter subclass, which translates the OS touch 
screen updates into a format manageable by the library. The TouchEventArgs 
instances are forwarded to the leafs of the TmpExp tree that, as already discussed in 
section4, are SimpleTmpExp instances. These leafs are connected with 
TouchExpContent instances, which are ExpContent refinements. The 
TouchExpContent class has two instance variables, which represent the touch 
identifier and the type of a basic building block for touch gestures (start, move, end). 

Therefore, the accept method checks the conditions defined in Equation 6, 
according to the specified type. Further conditions to be checked can be defined by 
developers sub-classing TouchExpContent and overriding the accept method. The 
TouchToken class contains the information on the gesture sequence, and represents 
the concrete implementation of a Token. Obviously, it is not possible to store in 
memory each single feature update especially when programming for mobile devices. 
Therefore, it is possible to specify the maximum number of updates to be buffered 
and, for convenience, if the starting point of each touch should be maintained or not. 

We better clarify how a developer can use the library for providing multitouch 
gesture support for a UI control with an example. We consider a pinch gesture 
(defined in Table 2, expression 5) and the following are the steps that have to be 
followed by the UI control initialization code. 
1. Construct the tree of TmpExps represented by the UML object diagram in Fig. 9, 

starting from the leafs, and then associate each SimpleTmpExp to the delegate for 
recognizing the desired feature. This initialization code is generated starting from 
an XML description of the gesture through an XSLT. However it is possible to 
code it without the XML description. In addition, it is possible to store such code 
in a separate class (e.g. PinchTmpExp) and reusing it for different UI controls. 

2. Create a TouchToken instance, specifying the number of updates to be buffered and 
whether the initial position of each touch has to be stored or not. 

3. Create an instance of the TouchTmpEmitter class, passing the token created at step 
2, and the current UI control (that will be used in order to receive the touchscreen 
updates from the OS). 

4. Attach the handlers to the completion and/or error event of the entire gesture 
and/or its subparts, represented by the instances of TmpExps created at step 1.  
The flow of notifications that allows the library to manage the recognition and to 

raise the appropriate intermediate events is shown in Fig. 9. We suppose that it has 
already recognized a touch start with id 1. Therefore, the net is waiting for another 
touch start, this time with id 2. Such “waiting” is defined by the token position 
(represented as a circle-enclosed T on the s2 object in Fig. 9). When the touch screen 
senses a new touch, the TouchEmitter forwards such notification to s2, the tree leaf 
that currently contains the token (arrow 1). After that, s2 tries to recognize the touch, 
invoking the accept method of its TouchExpContent delegate, which will return true 
(arrow 2). Then s2 notifies its successfully completion to its parent, c1, which 
represents the expression ( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2).  



All the building blocks enclosed in this expression are recognized, thus the order 
independence expression is completed. Therefore, the event handler attached to c1 is 
executed. In our example, it paints two circles on the currently visualized image in 
correspondence of the touch points (A square in Fig. 9), providing intermediate 
feedback to the user while executing the gesture. 

This is the point where our approach break the standard observer pattern: the 
gesture recognition is not already finished, but it is possible to define UI reactions to 
the completion of its sub-parts, without re-coding the entire recognition process, as 
happens for instance when a viewer has a built-in pinch for zoom gesture recognition. 
After that, c1 notifies the completion to its parent, pinch (arrow 4), which represents 
an enabling expression. Having completed its left operand, pinch passes the token to 
its right operand b2 (arrow 5), which represents a disabling expression, and b2 passes 
the token to both its operands (arrow 6), which both duplicate it (arrow 7) at next step. 
The left one represents a parallel expression, while the right one represents an order 
independence (see section 3.2.3 and 3.2.5). Finally, we have four different basic 
gestures that can be recognized as next ones: touch 1 move, touch 2 move, touch 1 
end or touch 2 end. The dotted circles in Fig. 9 represent the new token positions.  

 
Fig. 9. Recognition of a pinch gesture. The numbered arrows represent the sequence of 
notifications when the user touches the screen with the second finger, the squares represent the 
handlers attached to gesture sub-components, while the circle represents the position of the 
token before the second touch, and the dotted circles the position of the token after the second 
touch. The lower part shows the effects of the attached handlers on the UI. 

It is worth pointing out that the device dependent part of the recognition support is 
concentrated on delegates for the SimpleTmpExp object (represented at the bottom of 



the tree in Fig. 9). Therefore, the remaining part of the support is implemented by 
classes that are not bound to a specific device (identified by the “Abstract” label in 
Fig. 9) and can be exploited not only for multitouch, but also for full body gestures 
and other recognition supports. The example discussed here is a part of an iOS proof 
of concept application that allows zooming the current view through the pinch gesture 
and drawing with a pan gesture. The application gives intermediate feedback during 
the pinch, showing two divergent arrows while zooming in and two convergent 
arrows while zooming out (respectively square B and C in Fig. 9). The two gestures 
are composed through the parallel operator, so it is possible to draw and to zoom the 
view in at the same time (e.g. using one hand for zooming and one for drawing). From 
the developer point of view, the difference in handling them at the same time or 
separately is a matter of selecting the choice or the parallel operator for the 
composition. No further code is required, which is not the case for current multitouch 
frameworks. In addition, both gestures have been defined separately from the 
application (they are contained as samples in the iOS library implementation) and 
nevertheless the developer can associate UI reactions at different levels of granularity 
(to the whole gesture, or part of it).  

4.2 Modelling Full-Body gestures 

The devices that enable the recognition of full-body gestures (e.g. Microsoft Kinect), 
are able to sense the 3D position of the complete skeleton joints for up to two users, 
while they can sense the body centre position of up to four more users, in meters. The 
SDKs provide facilities for projecting the position on the image space of the RGB 
camera or depth sensor, obtaining the corresponding coordinates in pixels (obviously, 
without considering the depth axis). In addition, some of them (e.g. Primesense 
NITE) are also able to track the joint orientations. Finally, it is also possible to have 
more information using Computer Vision techniques. For instance, it is possible to 
detect fingertips if the user is really close to the sensor, or to detect if a hand is open 
or not at intermediate distances (e.g. calculating the convex hull and convexity 
defects).  

From the point of view of our abstract meta-model, we consider as a feature the 
user identifier, the 3D position of each skeleton joint (both in meters and in pixels), 
the orientation of each joint (represented as 3D vectors) the time and, if present, any 
additional information on the hands state (either fingertip position or a hand open or 
closed flag). As should be clear from the discussion in sections 4 and 4.1, it is 
possible to extend the library with an Emitter subclass (BodyEmitter) and a set of 
ExpContent subclasses for recognizing each feature (see Fig. 8, fullBody package). 

We implemented the library extension in C# with the Kinect for Windows SDK, 
together with a sample application based on it. The application visualizes a 3D car 
model, which can be moved and rotated by the user. In order to avoid unwanted 
interactions, we specified that the user has to stand with the shoulders in a plane 
(almost) parallel to the sensor, before starting the interaction with the car. Thus, if the 
user is not in front of the device (which means most of the times in front of the 
screen), the interface will not give any response. The car position can be changed with 
a “on air grab” gesture (closing the right hand, moving and reopening it). In addition, 



the car can be rotated performing the on air grab gesture with two hands, which 
means closing two hands, moving them maintaining almost the same distance in 
between, and then reopening them. We want also to display the 2D projected hand 
position on the screen, in order to provide an immediate feedback to the user for each 
hand movement. The resulting gesture model is defined Equation 7. The Front and 
NotFront gestures respectively activate and deactivate the UI interaction. When a 
change in the feature associated to the left and right shoulder (indicated as Sl and Sr) 
occurs, they respectively check if the sensor parallel plane property (p) is true or false. 

The UI interaction consists of three gestures in parallel. The first and the second 
one are simply a hand position change. The UI will react to their completion moving a 
correspondent (left or right) hand icon. The Move gesture is the one associated to the 
car position change, and consists of a sequence of a right hand close (represented cHr) 
and a unbounded number of right hand moves (mHr

*), interrupted by the opening of 
the right hand (oHr). The Rotate gesture is represented by the same sequence, 
performed with both hands in parallel, almost maintaining the same distance (the d 
condition).  

𝐹𝑟𝑜𝑛𝑡 ≫ (𝑚𝐻𝑟 
∗ || 𝑚𝐻𝑙 ∗||  ( 𝑀𝑜𝑣𝑒 [ ] 𝑅𝑜𝑡𝑎𝑡𝑒))∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 

𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[𝑝]||𝑆𝑟[𝑝]) 
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[!𝑝]||𝑆𝑟[!𝑝]) 
𝑀𝑜𝑣𝑒 =  𝑐𝐻𝑟 ≫ (𝑚𝐻𝑟∗ [>  𝑜𝐻𝑟 ) 
𝑅𝑜𝑡𝑎𝑡𝑒 =  (𝑐𝐻𝑟||𝑐𝐻𝑙) ≫ ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> (𝑜𝐻𝑟||𝑜𝐻𝑙)) 

(7) 

The intermediate feedback associated to different sub-parts of the composed 
gestures is shown in Fig. 10. When the correct pose is detected (the Front gesture is 
completed), the car passes from a grayscale to a full-colour visualization, indicating 
that it is possible to start the interaction (the B square in Fig. 10). When the user 
“grabs” the car with one hand (completes cHr), a 4 arrow icon is shown on top of the 
car (C square). The change of the car position is associated to the following hand 
movements (mHr

*). When the user closes two hands in parallel (completes 
(𝑐𝐻𝑟||𝑐𝐻𝑙)), a circular arrow is displayed (D square), suggesting the gesture function. 
The car rotation is associated to the parallel movement of the two hands (the 
completion of (𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑]) ∗). The car returns inactive when the user is not in the 
front position any more (A square).  

Writing such application with the support of our library has a set of advantages, 
which is possible to notice also in this simple case. First of all, the defined gestures 
are separated from the UI control. Indeed, the car viewer is a standard WPF 3D 
viewport, enhanced with full body gestures at the application window level. Second, 
the possibility to inspect the gesture definition and to attach handlers at the desired 
level of granularity allowed us to define easily when and how to react to the user 
input, without mixing the logic of the reactions with the conditions that need to be 
satisfied for executing them. Finally, we do not define any additional UI state for 
maintaining the gesture execution. Indeed, if we created such application simply with 
the Kinect for Windows SDK, we would have needed at least a state variable for 
maintaining what the user has already done and, consequently, for deciding what s/he 
is allowed to do next (e.g. when the user closes the right hand the state has to change 
for moving the car at next hand movement). Most of the times, this ends with the 
implementation of a state machine inside the handler of the skeleton tracking update, 
which mixes the management of all gestures together. Especially when we want to 
support parallel gestures, mixing the different gestures leads to code difficult to 



understand and maintain. Our approach helps the developer to separate the temporal 
aspect and the UI reaction and to reuse gesture definition in different applications, 
while maintaining the possibility to define fine-grained feedback.  

 
Fig. 10.  The car viewer application. The upper part of the figure shows the UI feedback 
provided while performing the gestures represented in the lower part. 

5 Conclusions and Future Work 

The lack of proper programming models for defining gestures is a major issue in 
defining gesture-based interfaces and it limits significantly the ability to fully exploit 
the new multitouch and 3D input devices, now becoming widely available. The 
observer pattern underlying the traditional event-based programming is largely 
inadequate for tracking gestures made of multiple inputs over time, forcing the 
programmer to choose between handling the complexity of this process or picking 
one of a pre-defined gestures recognized by the framework used. 

In this paper we have proposed a declarative, compositional meta- model for 
defining gestures, addressing this key issue allowing for simultaneous recognition of 
multiple gestures and sub-gestures under control of the programmer rather than the 
framework. The meta-model elements contain ground terms and composition 
operators that have been theoretically defined using Non Autonomous Petri Nets. It 
allows reusing and composing the definition of gestures in different applications, 
providing the possibility to define UI reactions for the recognition not only for the 
entire gesture, but also for its sub-components. Moreover, we reported a proof-of-
concept library, which has been exploited for managing two different gesture 
recognition supports (iOS and Microsoft Kinect), showing the flexibility and the 
generality of the approach. We developed two sample applications for demonstrating 
the advantages of the proposed modelling technique in reusing gesture definitions, 
which can be exploited at the desired level of granularity. 

Now that we have a well-define model we will continue our research by studying 
both implementation efficiency and effectiveness in real world scenarios. Moreover 
we will use the ability of the model to recognize many gestures at once to study what 
we call posturing, which is the analysis of user postures while interacting with a 
system in order to adapt the interface without explicit commands.  



In addition, we also plan to provide an authoring environment for the gesture 
definition, providing testing and simulation capabilities, in order to ease the 
development of gestural interfaces based on our model and library.  
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