Can GUI Implementation Markup Languages be
Used for Modelling?

Carlos Eduardo Silva and José Creissac Campos

Departamento de Informética, Universidade do Minho & HASLab, INESC TEC
Braga, Portugal
{cems, jose.campos}@di.uminho.pt

Abstract. The current diversity of available devices and form factors
increases the need for model-based techniques to support adapting appli-
cations from one device to another. Most work on user interface modelling
is built around declarative markup languages. Markup languages play a
relevant role, not only in the modelling of user interfaces, but also in their
implementation. However, the languages used by each community (mod-
ellers/developers) have, to a great extent evolved separately. This means
that the step from concrete model to final interface becomes needlessly
complicated, requiring either compilers or interpreters to bridge this gap.
In this paper we compare a modelling language (UsiXML) with several
markup implementation languages. We analyse if it is feasible to use the
implementation languages as modelling languages.

Key words: User Interfaces, Modelling, Markup languages

1 Introduction

With the current plethora of available devices, applications need to migrate and
adapt between those different devices. This is particularly the case for Web
applications, which might be run in a diversity of browsers and form factors.
We are particularly interested in the possibility of automatically performing the
adaptation of user interfaces (UI). For example, in the context of interactive
kiosks or public screens.

Model-based User Interface Development (MBUID) is a basis for the solution
to this problem. Models (and model transformations) provide a means to both,
reason about the design of the user interface, independently from concrete im-
plementation details, and to refine the models to concrete user interfaces. Work
in MBUID is based on the existence of adequate modelling languages, known
as User Interface Description Languages (UIDLs) [1,2]. A typical UIDL will
support describing an interface at several levels of abstraction, and performing
transformations between those levels. The Cameleon Reference Framework for
model-based development of multi-target user interfaces [3] identifies four such
levels:

— Concepts and Task model — describes the tasks to be performed and the
entities users manipulate in their fulfilment;

2 Carlos Eduardo Silva and José Creissac Campos

— Abstract User Interface (AUI) — describes the UI independently of any
concrete interaction modality and computing platform;

— Concrete User Interface (CUI) — describes an instantiation of the AUI for
a concrete set of interaction modalities;

— Final User Interface (FUI) — corresponds to the UI that is running on a
computing platform either by being executed or interpreted.

A diversity of UIDLs has been proposed over the years, using different lan-
guage paradigms, and covering a variety of applications areas and interaction
styles. In [2] a number of proposals is described, with foci as diverse as user
interfaces for safety critical systems [4], tangible interaction [5], or 3D user in-
terfaces [6]. Notations used are a mix of textual markup languages and graphical
notations. Markup languages, in particular, have gained considerable popular-
ity (see [1] for a survey). Relevant languages in this category include: UIML,
which supports both device independent and modality independent UI descrip-
tions [7]; XIML, currently in development by Redwhale Software [8]; MariaXML,
the successor of TeresaXML, supports Rich Internet Applications (RIAs), multi-
target user interfaces, and applications based on the use of Web services [9]; and
UsiXML, a UIDL that aims to cover all aspects of a user interface, for instance,
portability, device independence, multi-platform support, amongst others [10].
Moreover, UsiXML is structured according to the Cameleon reference frame-
work.

Typically these languages will cover some or all the abstraction levels in
MBUID, from the Concepts and Task to the CUI models. The FUI will be
obtained either by interpretation of the CUI models, or by compilation into some
target implementation language. Since the interpreters are themselves developed
in some specific implementation technology, FUIs are in any case expressed in a
different technology from the more abstract models.

Implementation languages, however, have also been evolving from the typical
imperative languages like C or Java into declarative markup languages such as
HTML or XAML. Although markup languages are usually associated with Web
applications, other platforms are also adopting them, for example, Android.

Implementation technologies are therefore moving towards solutions that are
closer to what is used for modelling. This begs the question of whether a clear sep-
aration between modelling and implementation languages still exists, or whether
it will be possible to bridge the gap between a FUI and its models. Hence, in
this paper we analyse the feasibility of using declarative markup implementation
languages at higher levels of abstraction for MBUID.

In order to carry out this analysis, we will compare UsiXML against a number
of implementation languages. UsiXML was choosen since it follows the Cameleon
Reference Framework. The implementation languages we chose to analyse are:
MXML (Flex), XAML (Silverlight) and HTML5 (three of the most used lan-
guages in Web applications development); Android XML (to cover mobile appli-
cations); and the LZX Markup language from OpenLaszlo, an industry frame-
work that generates Flash and HTML.

Can GUI Implementation Markup Languages be Used for Modelling? 3

The remainder of the paper is structures as follows: Section 2 presents an
overview of the different markup languages we are analysing in this paper. Sec-
tion 3 compares the different languages. Section 4 presents a case study with the
markup languages. The paper ends with discussion and conclusions in Section
5.

2 Markup Languages Overview

Markup languages are declarative languages, where the code is written in the
form of annotations called tags. Building Uls with declarative languages is a
paradigm shift when comparing to imperative languages. Instead of defining
how to build the interface, we define what the interface is. For example, in
order to build, imperatively, a Ul with a window and a button, we would first
build a window, then build a button, and afterwards define that the button
is inside the window. Building the same UI declaratively we would define a
window, and a button inside the hierarchy of the window. Another aspect that
made these languages prosper is their easier understandability, especially by non
programiners.

This section presents an overview of each of the markup languages chosen
for this analysis: UsiXML, MXML, XAML, HTML5, Android XML and LZX.
These are all XML-based markup languages, providing tags for describing dif-
ferent input/output controls (buttons, labels, input fields, etc.) and containers,
supporting the definition of a Ul in terms of the components that it contains.
Usually they will be associated with some technological framework, responsible
for rendering the interface and for more advanced features such as expressing
behaviour (typically through a scripting language). Since some of these markup
languages have more than one technology available to create the UI, we chose
one of them to analyse. For example, for XAML we considered Silverlight.

2.1 Modelling languages — UsiXML

The USer Interface eXtensible Markup Language (UsiXML) [10] is a UIDL that
supports the description of user interfaces at the different levels of abstraction
identified in the Cameleon reference framework. In particular, it supports the
creation of domain models, task models, AUI models and CUI models.

The language supports multi-context and multi-target UI development throu-
gh transformations either between abstraction levels (reification/abstraction), or
through changes of context at the same abstraction level. The notion of context
is dependent on the specific details of a given development, but might include
the users, the technological platform, and/or the environment in which the in-
teraction takes place.

Available tags change between the different models, as their concepts are
different. For example, a control tag in a AUI model might correspond to a
button tag in a CUI model.

4 Carlos Eduardo Silva and José Creissac Campos

2.2 Implementation technologies

MXML (Adobe Flex) In 2004 Macromedia introduced its framework to de-
velop RIAs, named Flex. Flex can be seen as a developer driven framework to
produce Flash content. Flex applications produce as output Flash files (.swf)
and thus run just like Flash applications. In November 2011, Flex became open-
source as Adobe donated it to the Apache Software Foundation.

Flex is composed of a scripting language (ActionScript) and of an XML
markup Language (MXML). Their relationship is similar to the relationship
between JavaScript and HTML. MXML contains the tags expected of an imple-
mentation declarative language.

XAML (Silverlight) In order to merge the benefits of the Windows Presen-
tation Foundation (WPF), Microsoft’s desktop application user interface frame-
work, with the RIAs’ benefits, Microsoft developed Silverlight. It brings appli-
cations similar to the ones developed in WPF to all major platforms through
their Web browsers. Silverlight applications run in an ActiveX browser plug-in
that is installed in the local machine similarly to the Flash plug-in to run Flash
based applications.

The user interface is written in a markup language called eXtensible Appli-
cation Markup Language (XAML). XAML, although originally developed for
WPF, was also adopted as the user interface modelling language of Silverlight
and Windows 8 Metro interfaces. XAML has tags for the most common widgets
in UI development.

HTML5 HTMLS5 is the fifth major revision of HTML, the main language of
the Word Wide Web. It succeeds the previous version (HTML4), which became
a W3C Recommendation in 1997, and aims to improve over that version in order
to enable more complex Web pages to be built.

Despite the fact that the HTML5 specification is still under development,
the language has gained increased acceptance and support. One of the major
driving factors behind its development and acceptance was the increase in the
Internet quota of mobile phones.

New features in HTML5 include:

— New semantic elements to better describe a Web page (such as: nav, aside,
section, article, header, and footer), in order to diminish the use of the generic
div tag.

— New multimedia tags have been added, audio and video, replacing the object
tag. These tags enable the quick integration of videos from other resources
into a Web page. Moreover, multimedia can now be set to preload or to
autoplay and can also have integrated controls.

— New attributes were added. For example, the draggable and dropzone at-
tributes enable support for native drag-and-drop functionality. Another new
attribute is hidden indicating that the element is not yet/no longer relevant.

Can GUI Implementation Markup Languages be Used for Modelling? 5

— The canvas tag was added, which supports bitmap graphics. Most browsers
currently support 2D canvas, but there are some experimental builds with
3D canvas support.

Android XML Android is an Open Source platform (Apache License) targeting
mobile devices. It is released by Google under the Open Handset Alliance and
is based on the GNU /Linux operating system. Android applications are written
in the Java programming language. However, instead of using the Java Virtual
Machine (JVM), Android uses the Dalvik Virtual Machine, which is optimized
for mobile devices.

Unlike the other languages analysed in this document, which require a markup
language to develop the Ul or other languages in which the Ul is built program-
matically, Android allows the UI to be built both ways. The use of markup for
development is recommended since it has the advantage of separating presen-
tation from behaviour, thus making the user interface implementation easier to
understand. Nevertheless, it is always possible, even for interfaces defined via
markup, to build interface objects programmatically at runtime.

OpenLaszlo (LZX) OpenLaszlo is an Open Source platform which enables
the development of interfaces using a specific markup language called LZX. It
can then generate applications in either Flash or HTML. The goal is to, in
the future, enable the platform to produce applications in other languages, for
example, Silverlight. Thus, a user interface description in LZX can be seen as
a CUI. This makes it relevant to compare it with UsiXML since in both cases
concrete languages are intend to be used as a basis to generate Ul description
in other languages.

The LZX language is an XML-based language, with JavaScript as the script-
ing language. It was developed to be similar to HTML and JavaScript. However,
the declarative language includes some object-oriented programming features
such as: inheritance; encapsulation; and polymorphism. Therefore, LZX can have
objects, attributes, events and methods like any object-oriented programming
language. Moreover, LZX eases data manipulation by allowing data binding to
XML elements.

3 Comparing the Languages

When comparing the languages, we were interested in assessing to what level
the implementation languages provide features that are similar to the modelling
language in question. The goal was not to assess the quality of each language
per se, but to compare their expressive power and usefulness.

With this goal in mind, two orthogonal dimensions can be considered: the
level of abstraction at which it is possible to use a language, and the coverage
provided by the language for modelling the different architectural layers of a
user interface (Presentation, Dialogue and Functional core — cf. the Arch/Slinky

6 Carlos Eduardo Silva and José Creissac Campos

model [11]). Additionally, from a more practical perspective, we were interested
in analysing the technological availability and applicability of the languages.

Regarding the level of abstraction, by definition UsiXML covers all levels,
while the implementation languages are used to develop actual user interfaces.
For the current analysis we will mainly focus on the CUI level. The most obvious
candidate for an intersection between the two worlds.

Regarding user interface layers, markup languages are typically used to de-
scribe structure. In this case, the presentation layer. Hence, that will be the
focus of the analysis. Nevertheless, we mention other aspects where relevant. In
particular, support for expressing behaviour. Hence, in comparing the languages
the following criteria were considered:

— Behaviour: This criterion captures the different actions that can be per-
formed using the declarative language only, with no scripting involved.

— Style: This criterion defines the type of styling associated with the technol-
ogy.

— Vector graphics: In the last few years, the availability of a canvas to enable
drawing vector graphics has become increasingly important.

— Tags: A comparison of the tags available in each language, taking UsiXML
as the reference. The tags we chose to analyse were the ones present in the
CUI examples of the FlashiXML tool (a UT renderer for UsiXML).

Regarding technological availability and applicability we choose to consider:

— License type: Depicts the accessibility of the technology.

— Tools: This criterion considers the different tools associated with the lan-
guages.

— Targets: These technologies can be available in a single or in several plat-
forms.

Table 1 compares the different languages according to these criteria.

In terms of license, although some of these technologies started as proprietary
software, currently the only proprietary one is Silverlight. The tools criterion is
the one that differs most from language to language. The only language that
simply requires a Web browser to run is HTML5. Flex and Silverlight both
require a plug-in to be installed. UsiXML and LZX have tools that either compile
the models to other languages, or perform runtime interpretation and rendering.
Target technologies include Flash and DHTML in the case of LZX; and Flash
(FlashiXML [12]), Flex (FlexiXML [13]), OpenLaszlo (UsiXML2OpenLaszlo),
Tcl/Tk (QTKiXML [14]), and Java (InterpiXML [15]), amongst others, in the
case of UsiXML. Android applications are the only ones that do not run as, or
compile to, Web applications, they run in the Android OS. Therefore, Android
is the only analysed technology that is single platform.

Regarding styling capabilities, all the technologies either have CSS styling,
or a specific styling done exclusively using markup. UsiXML has a stylesheet
tag in its specification. There are tools, such as FlexiXML that support CSS for
styling. However, the tool we used, FlashiXML does not support styles. All the
languages analysed had Vector graphics support.

Can GUI Implementation Markup Languages be Used for Modelling?

Table 1. Markup Languages Comparison

uorjisuel eorydeisd
UoT)ISURI)
wreIe J[[e)porjout
[reopoyiou
uorjor
UOAD
IOTARTDq
uojnqoipel uojngoipey orpel,=adL) ndur uojngorpey uoyngoIipey uojngorpelr
uojnq uojng uojng wong uojng uojnq
WII)SI[FX0Y WL uorpdo wejXOgOqUIO) eechle
X0 OqUIOd Jouurdg 199108 xXogoquio)) Xogoquio)) Xogoquiod
ogeur MOTASTe] Sut o8ew] ofew] Jyuonoduwo))yodeurt
1X01)1po XOLNPH %0} ,=odA)} yndur X0g)X9], mdupgxa], xo,ndur
%09 MOTA XA, [Pqer PqeT PqeT 1xa1 mdino
1%} MOTA XA, Pael YoorgIxa], PqeT yuenodmo))1xa)
pus qnoderpa[qeq, a[qey pPLD PLD xog3eqpiad
MITA JNOAeRTIROUIT ATp [PuegoRIS dnoin) x0q s3e],
SOX SOX SOx Sox SOx SO |soryderr) 10900
SSO dnyjrepy SSO dmsjrey SSO ESSRENIERTN SSJESTN
BIPOWNNIN BIpoWMN BIpoWnIMIN RIPOWINY RIPOWIHNIN SUOIISURI], “BIPIWIMIN qnotaeyosq
urioyyerdiny urioyyerdsidurg urtoyyerdiniy uniopyerdinpy woyyerdiny urioyyerdiny sje3Ie],
TINLHA
pue yse[q seidwoy)) gO proipuy Tosmorxg oA\ ur-8npd Jy3ireaqrg ur-3nyd yseyq sioiduwod pue siojeidiojuy s[o0T,
oomoguad() eomogued() aomoguad() Arejorrdorg eomnogued() aoamoguad() 9SULOIT]
XZ1 proipuy STALLH 1YSII2ATIG pt | TAXISN sodenguery

8 Carlos Eduardo Silva and José Creissac Campos

Regarding supported tags, the first conclusion when looking at Table 1 is
that, unlike UsiXML, the implementation markup languages are not prepared
to handle behaviour tags. They handle behaviour by using a non-markup script-
ing language. On the contrary, UsiXML does not have an associated scripting
language. However, UsiXML’s behaviour tags handle basic generic behaviour sit-
uations, like window transitions, only. Therefore, if more complex behaviour is
needed, it falls to the developer of the interpreter or compiler to choose whether
or not to support a scripting language. For example, FlashiXML uses Action-
Script as the scripting language.

Moreover, the layout tags are the ones that are prone to having most dif-
ferences between the languages. Languages like HTML do most layout by using
CSS, while other languages have styling options and different layout options. For
instance, Android has tags for Linear Layout, Relative Layout, Table Layout,
Grid View, Tab Layout and List View.

Aside from the behaviour tags, all other tags have correspondence between
the markup languages. The only exception is the item tag in Flex, which handles
combobozes by binding to data collections only, and does not allow the explicit
declaration of single items. Therefore, we can do a direct and easy translation
between the different markup languages. Such translation would also need to
have in consideration the different attributes of the tags.

However, the translation between the languages is not always unidirectional.
For instance, the bor tag in UsiXML corresponds better to the div tag in
HTML5. Nevertheless there are other tags, specifically since HTML version 5,
that also correspond to a box in UsiXML but have specific semantic meanings
such as the nav, aside, section, article, header, and footer tags.

Moreover, some tags can be changed according to the styling they are given.
For example, the span tag in HTMLS5 is an inline element whereas a div tag is a
block-level element. By changing the styling, we can have a span tag behaving
as a div tag and vice-versa. This aspect is quite difficult to address in these
languages translation.

4 Case Study

Since in theory the translation seemed to be feasible, we decided to investi-
gate the issue further by developing a small example application in each of the
languages. The goal was to evaluate the markup languages’ strengths and weak-
nesses through a case study. The example application simulates a Web store
that sells CDs, called Music Store, and is based on a similar application from
the FlashiXML examples suite. The customer is able to add CDs to a shopping
cart, by selecting them from a list of available CDs, and afterwards fill his/hers
personal details to buy the chosen CDs.

The application is composed of two main frames (see Figure 1). The initial
frame (Shop Frame), depicted in Figure 1-a), comprises a list of the albums in
the music store (left), and a basket (another list) to keep track of the customer’s
selected items (right). Each album has a preview button which enables a small

Can GUI Implementation Markup Languages be Used for Modelling? 9

Music Store

Name: The Dark Side of The Moon

Artist: Pink Floyd L=t e s et e s e S s 1
Price: 6 € Name: Hindsight
P] Artist: Anathema
B | AddioCan Price: 4€
(.) Preview)
Name: Hindsight

Artist: Anathema

Price: 4 € Name: The King of Limbs

B\ Bkl E
Tlf’ﬂﬂ.‘lll UHIIP Frice: 3€ : Music Store

L‘ Add to Cart
() Preview)

Name: The King of Limbs Name: .
b W Artist: Radiohead Street: l—
LALAT Price:s€ o
) H\‘;) { f‘ City:
NEWIRS | Addrocan Country: [
Email:
e = = -
Name: The XX Total Price: 9€ Proceed o Checkout felepbrnsiinmiess
Artist: The XX |oceecho e
Card Type: Visa -
Price: 3 €
e Total Price: 9 €
@ - Preyite s Confirm | | Back |
b eeee——— 000
a) Shop frame b) Checkout frame

Fig. 1. Music Store Application

preview of the album to be played. The customer can buy an album either by
clicking on the “Add to Cart” button next to the album, or by dragging and
dropping the album cover into the basket area. When an album is added to the
basket, the total value of the shopping cart is updated accordingly.

Once the desired alguns have been selected, the customer can move on to
Checkout by clicking on the “Proceed to Checkout” button. This button replaces
the Shop frame with the Checkout frame, depicted in Figure 1-b).

The Checkout frame comprises several text boxes and a listbox, which enable
customers to fill in their details, specifically, the name, address and credit card
type. Afterwards, the user can confirm the transaction or go back to the previous
frame, where he can rebuild the basket list again.

The application screen size is kept small so that the example can also cover
mobile applications. This is relevant because we are considering Android XML,
which is used for applications running on smartphones and tablets.

With this example we intend to analyse both the languages’ capabilities in
the context of developing traditional Web applications, with buttons and forms
to interact with the user, but also some more advanced RIAs features. RIAs,
in comparison to traditional Web applications, present a number of improve-
ments: no page refreshing; shorter response times; drag-and-drop capabilities;
multimedia animations. From these improvements, we chose to implement in
our application two frames without page refreshing, drag-and-drop, and multi-
media, by allowing previewing an album by playing a small audio sample. Next

10 Carlos Eduardo Silva and José Creissac Campos

we will present the main aspects that differ in building the application for each
language.

4.1 UsiXML

Regarding UsiXML, we developed a CUI model, taking as a basis the original
Music Store application. The final user interface will have to be generated using
an appropriate renderer. In this case, we chose to use FlashiXML.

UsiXML has several types of layouts for CUI modelling, such as: box, group-
Boz, flowBozx, gridBoz, gridBagBox, and listBox. However, the FlashiXML ren-
derer seems to work with only a few of them, therefore, we built the entire
application with the boz tag. This tag is flexible since it has an attribute called
type that defines the orientation of the child elements.

FlashiXML cannot handle styling, which is aggravated as in this language
every element requires quite a few attributes. For example, the labels for the
name and street in the Checkout frame were coded as follows:

<textComponent id="name" defaultContent="Name:" width="100"
height="25" borderWidth="0" fgColor="000000" isBold="true"
textSize="16" textHorizontalAlign="right" numberOfLines="1"/>

<textComponent id="address" defaultContent="Street:" width="100"
height="25" borderWidth="0" fgColor="000000" isBold="true"
textSize="16" textHorizontalAlign="right" numberOfLines="1"/>

By looking at the code it is noticeable that style sheets would make a signif-
icant impact in the coding. Moreover, the same pattern is repeated throughout
the whole application.

In terms of behaviour, UsiXML does not have tags for drag-and-drop. There-
fore, the drag-and-drop was implemented entirely using ActionScript. The tran-
sition between the Shop frame and the Checkout frame, however, was entirely
implemented through the declarative language, as depicted in the following code
(that models the Checkout button in the Shop frame):

<button width="100" height="25" isEnabled="true" isVisible="true"
defaultContent="Checkout" id="button_go" name="button_go">
<behavior id="behavI8">
<event id="evtI8" eventType="depress" eventContext="button_go"/>
<action id="actI8">
<transition transitionIdRef="Tr1"/>
<transition transitionIdRef="Tr2"/>
<transition transitionIdRef="Tr3"/>
<transition transitionIdRef="Tr4"/>
</action>
</behavior>
</button>

Four transitions are used (see the transition tags): Trl and Tr2 are fade-out
transitions (of the Shop frame and of the background) and TR3 and TR4 are
fade-in transitions (of the Checkout frame and of the new background). These
transitions are defined elsewhere in the model.

Can GUI Implementation Markup Languages be Used for Modelling? 11

Another issue is that UsiXML has a videoComponent tag but not a audio-
Component one. Thus, we assumed that like some other languages, the video-
Component is used in both cases. Nevertheless, the tag was not tested since
FlashiXML does not handle these components. A possibility to add multimedia
in FlashiXML is to use ActionScript to do the entire process. However, in that
case we are relying in a specific implementation technology. Arguably, we would
have something closer to a FUI.

4.2 MXML (Flex)

In Flex layout is defined using containers: Group behaves like a simple box,
HGroup arranges the elements horizontally, and VGroup arranges the elements
vertically. Elements can also be arranged according to relative or absolute co-
ordinates. The code bellow shows the coding of the two labels and the button
below the drop area in the Shop.

<s:HGroup x="444" y="491">
<s:Label text="Total Price" styleName="labelS"/>
<s:Label id="totP" text="0 €" styleName="labelT"/>
</s:HGroup>
<s:Button x="578" y="486" label="Proceed to Checkout"
click="buttonl_clickHandler (event)"/>

In terms of multimedia elements, these can be handled with tags if using the
Flash library which has a Sound and a Video tag for audio and video respectively.
Drag-and-drop is supported exclusively through ActionScript.

4.3 XAML (Silverlight)

Layout design in Silverlight is very flexible. There are built-in layouts like grids,
stackpanels or listboxes, but there is also the option of controlling the elements’
position by using margin, padding or horizontal and vertical alignments.

Adding multimedia is very straightforward. We add a media element in the
XAML, as follows:

<MediaElement x:Name="media" AutoPlay="False"
Source="Sounds/05LotusFlower.mp3" />

Afterwards, the event handler uses the following C# code to start playing the
audio.

media.Position = TimeSpan.Zero;
media.Play();

This example also shows that to access a XAML element in C# we just need to
invoke his name.

Silverlight drag-and-drop has some disadvantages. For instance, only a few
elements can have drag-and-drop action controls. Specifically there are the fol-
lowing controls (the names identify their purpose):

12 Carlos Eduardo Silva and José Creissac Campos

— ListBoxDragDropTarget,
TreeViewDragDropTarget,

— DataGridDragDropTarget, and
— DataPointSeriesDragDropTarget.

Thus, for an element to be draggable, it has to necessary be a child element of
one of the previous layouts. A second option would be to achieve drag-and-drop
by manually implement the click handlers. A third option would require the use
of an external library called Drag and Drop Manager. In our implementation we
chose to use the ListBoxDragDropTarget control, as follows:

<toolkit:ListBoxDragDropTarget AllowDrop="True"
AllowedSourceEffects="Copy">
<ListBox x:Name="Listbox">
<StackPanel Name="spPF">

Therefore, every album is a StackPanel inside a Listbox. A difference between this
implementation and the applications from the other languages is that instead of
dragging just the image, it is possible to drag anywhere in the album area.

4.4 HTMLS5

The layout in HTML5 is clearly more difficult to define than in most other
languages tested in this document. By using CSS, developing the layout feels
less natural than using boxes and predefined layouts.

On the contrary, drag-and-drop is easy to implement in HTML5. Just by
adding the draggable attribute to an element, that element can be dragged across
the application. Nevertheless, in order to define where the elements could be
dropped (in this case, the shopping basket) a small amount of JavaScript was
required.

The new multimedia tags, in this case the audio tag, are very useful. Just by
adding the following code:

<audio controls="controls" hidden>
<source src="sounds/O5LotusFlower.ogg" type="audio/ogg"/>
<source src="sounds/05LotusFlower.mp3" type="audio/mpeg"/>
</audio>

the audio file is available in the application, and playback and volume controls
are added. The controls are depicted in Figure 1, in the black box at the bottom
of the main frame. Controls are browser specific. In this particular case the
Firefox browser controls are being shown.

A problem with building an application in HTML is the different browsers’
reactions to the same code. Furthermore, with HTML5, the browsers have even
more differences. For example, in the previous audio tag, both an ogg and an mp3
file were added, since neither the current version of Opera nor of Firefox play
mp3 files. Moreover, browsers are still updating to add the new HTML elements.
For example, in Internet Explorer the hidden tag does not set the elements to
invisible, thus, both frames and controls appear when the application starts.
This is expected to improve with time.

Can GUI Implementation Markup Languages be Used for Modelling? 13

4.5 Android XML

Despite mobile phones’ screen sizes being much smaller than a traditional com-
puter’s screen, we opted to keep the application exactly the same. To compensate
for the screen size, we added vertical scrollbars to navigate up and down the al-
bums list, the shopping basket list, and the entire form in the second frame.
Another development decision was to keep the layout as the default Android
light layout. The major difference from the applications modelled in the other
languages is the form, which now has a different look, more appropriate for
mobile systems.

The Android XML seems to be more verbose than all the other markup
languages analysed in this document. As an example, a simple label would be
defined as follows:

<TextView android:id="@+id/nameLabell"
android:layout_width="50dp"
android:layout_height="wrap_content"
android:text="@string/namelabel" />

Another interesting characteristic in Android development is that it encour-
ages keeping an XML file name strings.xml where all the strings should be stored.
For instance, the string for the label in the above example (namelabel) is stored
in that file as follows:

<string name="namelabel">Name:</string>

This separation between the strings and the actual interface’s source code, en-
ables one to easily change the strings’ contents in the future.

In terms of multimedia, Android doesn’t have a tag for audio. Nevertheless
it has a tag for video called Video View.

Drag-and-drop in Android is achieved by using the setOnTouchListener method
in the elements that should be dragged, and then using the method startDrag()
to enable the drag. The elements that are expecting drops should implement the
onDragListener. This listener uses a method called getAction() which retrieves
the current action of the drag. This action can be whether the drag element has
entered or exited the drop area, or whether the drag element has been dropped
in the drop area. This last action is the one we are interested in in this particular
application.

4.6 LZX

The layout and design process in Laszlo is easy both to accomplish and to learn.
The main component is called ” view” which visually is a rectangular container.
Obviously there can be nested views, and they are used to organize the elements
on the rendered application. Moreover, application elements can be arranged
easily on the page, by using layouts. For instance:

<simplelayout axis="x" spacing="6"/>

14 Carlos Eduardo Silva and José Creissac Campos

arranges all elements according to the “z” axis and with a spacing value of 6
between them. Furthermore, elements can also be placed with relative and ab-
solute positioning like in HTML. Nevertheless, using the boxes for arrangement
is more understandable.

Openlaszlo has a multimedia tag for both audio and video called videoview.
Moreover, we can also add video and audio as resources of regular views. How-
ever, in the current version, multimedia only works when the application is
compiled to Flash.

The drag-and-drop of the albums was hard to implement. In Laszlo, we had
to implement the methods to start and stop the dragging and also the methods
to check if the element where we dropped the image was the correct one. For
example, the code for the last method was the following:

<method name="droppedInView" args="theView">
<! [CDATAL
var absX = theView.getAttributeRelative("x", canvas);
return (this.x > absX && this.x < absX+theView.width);

11>
</method>

The method determines whether the place where an object has been dropped
is inside the view sent as a parameter. In this particular case this is calculated
by looking at the absolute coordinates of the X axis. The <! [CDATA[and]1>
tags allow us to write characters that would otherwise not be possible in XML
files (for example the '<’ and >’ signs).

4.7 Applications’ Comparison

After all the applications were built, we analysed them according to a number of
metrics. The results are depicted in Table 2. The first criterion was the number
of different tags present in each applications. UsiXML is clearly the one with
a greater diversity of tags. Nevertheless, that greater number can be related to
having behaviour tags also, which can also be seen in Table 1. HTML5’s high
value is related to this new version featuring new tags to bring more expressive-
ness to the language.

Table 2. Application Comparison

Languages UsiXML Flex Silverlight HTML5 Android LZX
Number of Different Tags 23 14 12 18 12 17
Total Number of XML lines 215 139 182 182 189 187
Total Number of Scripting lines|70 102 128 85 98 33
Total Number of styling lines |0 [§ 0 93 0 0
Total Number of lines 285 247 310 360 287 220
Percentage of Scripting lines 24,56 41,3 41,29 23,61 34,15 15
Total Number of Tags 141 107 139 106 132 146
Total Number of Attributes 653 236 646 121 572 186

Can GUI Implementation Markup Languages be Used for Modelling? 15

The second criterion defines the total number of XML lines. The two outliers
are UsiXML with the biggest number of lines, and Flex with the lowest number.

The third criterion is the total number of scripting lines. In this criterion
LZX is clearly the language that requires less scripting. Mostly due to the fact
that the scripting code in LZX is greatly embedded with the XML code. For
instance, the code for the Back button in the Checkout frame is the following:

<button onclick="back() ;">
Back
<method name="back">
shop.setAttribute(’visible’ ,true);
payment.setAttribute(’visible’,false);
</method>
</button>

This code shows that not only is the script written inside the method tag but
also that the elements (shop and payment) are easily invoked and altered.

The forth criterion shows the total number of styling lines. We decided to do
styling only when needed. HTMLS5 is the language that normally requires styling,
mostly for layout purposes. It is also interesting to notice that, although such a
high number of lines were used in styling, the XML file size is still similar to that
of Silverlight, Android and LZX which had no styling in this implementation.

This leads to the fifth criterion, total number of lines, where HTMLS5 is clearly
the one that requires more lines. While LZX and Flex took the least amount of
coding.

The percentage of scripting lines criterion show us how much imperative
programming we need comparing with the whole application. Both Flex and
Silverlight require a high amount of imperative programming comparing with
the rest of the technologies analysed.

In terms of the total number of tags, UsiXML and LZX have more tags than
the rest. It is interesting to note HTML5’s behaviour since it was one of the
languages with most XML lines, but is the one with less total number of tags.

The last criterion is the total number of attributes. In this criterion, UsiXML,
Silverlight and Android clearly use many more attributes than the other lan-
guages. HTML5, although the language with the higher total number of lines, is
in this criterion the one with lowest number of attributes, reflecting the styling
effect in these metrics.

While the above numbers do not provide a objective measure of quality of the
different languages, they are useful in showing that no obvious differences can be
seen between the model developed in UsiXML and the applications developed in
the other languages. This corroborates our belief that it is possible to use markup
implementation languages as modelling languages at (at least) CUI level.

Another important aspect regards which language to choose. For that choice,
aspects such as the learnability of the languages are relevant. The Cognitive
dimensions of notations proposed by Green and Petre [16] would be useful to
make such analysis. That however was not the specific aim of our study. In
any case, if we had to choose an implementation language for modelling, LZX

16 Carlos Eduardo Silva and José Creissac Campos

and HTML5 look the most promising since when comparing the percentage of
scripting lines required they had even better results than UsiXML.

5 Conclusions

In this paper we have compared different declarative GUI implementation lan-
guages with a declarative modelling language. The motivation behind the work
is the possibility of performing adaptation of web applications’ user interfaces to
different devices and form factors. Given that the implementation technology has
moved towards declarative markup languages, we were interested in analysing
the viability of using the interfaces expressed in those languages as models of
the user interfaces.

Looking at the results, we see that not all aspects of a user interface can be
handled declaratively. In particular, implementation languages are not prepared
to handled behaviour declaratively. This limits the specification of the interface
we can perform using declarative languages only. To be fair, this is an issue also in
terms of the modelling language, as UsiXML provides few behaviour specific tags
too (e.g. transitions). In fact markup languages are, in general, geared towards
describing the structural aspects of the user interface.

Some of the languages have several tags to define the same concept. Although
this increases the expressiveness of the language, it also decreases the level of
abstraction of an hypothetical model. For instance, in HTML5 we can have div,
nav, aside, section, article, header, and footer tags, all corresponding to a box
at a higher level of abstraction. Nevertheless, regardless of the lager number
of tags in a language, it still falls to the developer the decision to use them
or not. Hence, we can think of defining profiles or dialects of the language for
CUI (AUI) modelling. It can be decided, for example, that a box should always
be modelled by a div tag. This will allow us to embed a modelling language
inside a implementation language, taking advantage of all the tool support that
is available.

This embedding of a modelling language inside an implementation language
is particularly relevant when it comes to animating the models. As the analysis
has shown, the fact that specific players are needed for modelling languages,
raises a number of issues in terms of support for specific languages features and
language versions. While this also happens for the implementation languages,
the industry and community support behind languages such as HTML means
that evolution of those technologies will be much faster. However, it must be
noted that regarding aspects as model transformation and context adaptation,
the tool support provided by UsiXML related tools will be lost.

Another aspect that might create difficulties, in particular if we consider
deploying the models to different languages, relates to managing layout and ex-
pressing behaviour. The languages are very different in terms of these aspects.
In fact, the amount of layout options differ significantly from language to lan-
guage, and while they all resort to scripting to express behaviour, the scripting

Can GUI Implementation Markup Languages be Used for Modelling? 17

languages used differ. The answer here might be to look for behaviour oriented
languages to complement the models with behavioural information.

In terms of limitations of the analysis, it must be recognised that our analysis
was focused mainly in CUIs. The capabilities of implementation languages at
higher levels of abstraction, like AUIs, requires further consideration. Moreover,
our analysis was targeted specifically at graphical user interfaces (i.e. we have
not considered what issues might be raised by other interaction technologies
such as the use of multimodality). This happens because the notion of context
that interests us the most relates to the form factor of the device displaying the
interface.

Another aspect is that nowadays a relevant number of Web applications is
built dynamically. That is, the markup used to generate the interface is not
written directly by the developer. Instead, code is written that generates (or, at
least, manipulates) the markup. This means the markup will only be available
at run time, which in turn means that we need dynamic code analysis techniques
to be able to obtain and transform the user interface.

Hence, as future work we intend to, on the one hand further develop the
notion of embedding a modelling language in a implementation language, and
on the other hand, study techniques for the dynamic analysis of the interface in
order to extract and transform the models.

Acknowledgments

This work is funded by the ERDF — European Regional Development Fund —
through Programme COMPETE, and by the Portuguese Government through
FCT - Foundation for Science and Technology, project ref. FCOMP-01-0124-
FEDER-015095. Carlos Eduardo Silva is further funded by the Portuguese Gov-
ernment through FCT, grant SFRH/BD/71136/2010.

The authors wish to thank the anonymous reviewers for their helpful com-
ments on an earlier version of this paper.

References

1. Guerrero-Garcia, J., Gonzalez-Calleros, J.M., Vanderdonckt, J., Munoz-Arteaga, J.:
A theoretical survey of user interface description languages: Preliminary results. In:
Proc. of the 2009 Latin American Web Congress. LA-WEB 09, Washington, DC,
USA, IEEE Computer Society (2009) 36-43

2. Shaer, O., Jacob, R.J.K., Green, M., Luyten, K., eds.: ACM Transactions on
Computer-Human Interaction Special issue on UIDL for next-generation user in-
terfaces. Volume 16(4)., New York, NY, USA, ACM (November 2009)

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi-target User Interfaces. Interacting
with Computers 15 (2003) 289-308

4. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.: ICOs: A model-based user
interface description technique dedicated to interactive systems addressing usability,
reliability and scalability. ACM Transactions on Computer-Human Interaction 16(4)
(November 2009) 18:1-18:56

18 Carlos Eduardo Silva and José Creissac Campos

5. Shaer, O., Jacob, R.J.: A specification paradigm for the design and implementa-
tion of tangible user interfaces. ACM Transactions on Computer-Human Interaction
16(4) (November 2009) 20:1-20:39

6. Wingrave, C.A., Laviola, Jr., J.J., Bowman, D.A.: A natural, tiered and executable
uidl for 3d user interfaces based on concept-oriented design. ACM Transactions on
Computer-Human Interaction 16(4) (November 2009) 21:1-21:36

7. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A.,
Vanderdonckt, J.: Human-Centered Engineering Of Interactive Systems With The
User Interface Markup Language. In Seffah, A., Vanderdonckt, J., Desmarais, M.,
eds.: Human-Centered Software Engineering. Human-Computer Interaction Series.
Springer London (2009) 139-171

8. Puerta, A., Eisenstein, J.: XIML: a common representation for interaction data.
Proceedings of the 7th international conference on Intelligent user interfaces (2002)
214-215

9. Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Transactions on Computer-Human Interaction 16(4) (2009) 1-30

10. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lépez-Jaquero, V.:
UsiXML: a language supporting multi-path development of user interfaces. In: En-
gineering Human Computer Interaction and Interactive Systems. Volume 3425 of
LNCS., Springer-Verlag (2005) 200-220

11. Gram, C., Cockton, G., eds.: Design Principles for Interactive Software. Chapman
& Hall (1996)

12. Berghe, Y.V.: Etude et implémentation d’un générateur d’interfaces vectorielles &
partir d’un langage de description d’interfaces utilisateur. Master’s thesis, Université
catholique de Louvain (2004)

13. Campos, J.C., Mendes, S.A.: FlexiXML - A portable user interface rendering engine
for UsiXML. In: User Interface Extensible Markup Language - UsiXML’2011, Thales
Research and Technology (2011) 158-168

14. Denis, V.: Un pas vers le poste de travail unique: QTKiXML, un interpréteur
d’interface utilisateur a partir de sa description. Master’s thesis, Université
catholique de Louvain (2005)

15. Goffette, Y., Louvigny, H.: Development of multimodal user interfaces by interpre-
tation and by compiled components: a comparative analysis between InterpiXML
and Openlnterface. Master’s thesis, Université catholique de Louvain (2007)

16. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7
(1996) 131-174

