
A Development Process for Usable Large
Scale Interactive Critical Systems:

Application to Satellite Ground Segments

Célia Martinie1, Philippe Palanque1, David Navarre1, Eric Barboni1
1 ICS-IRIT, University of Toulouse 3, 118 route de Narbonne,

31062 Toulouse Cedex 9, France
{martinie, palanque, navarre, barboni}@irit.fr

Abstract. While a significant effort is being undertaken by the Human-
Computer Interaction community in order to extend current knowledge about
how users interact with computing devices and how to design and evaluate new
interaction techniques, very little has been done to improve the reliability of
software offering such interaction techniques. However, malfunctions and
failures occur in interactive systems leading to incidents or accidents that, in
aviation for instance, are [22] 80% of the time attributed to human error
demonstrating the inadequacy between the system and its operators. As an error
may have a huge impact on human life, strong requirements are usually set both
on the final system and on the development process itself. Interactive safety-
critical systems have to be designed taking into account on an equal basis
several properties including usability, reliability and operability while their
associated design process is required to handle issues such as scalability,
verification, testing and traceability. However, software development solutions
in the area of critical systems are not adequate leading to defects especially
when the interactive aspects are considered. Additionally, the training program
development is always designed independently from the system development
leading to operators trained with inadequate material. In this paper we propose
a new iterative design process embedding multiple design and modeling
techniques (both formal and informal) advocated by HCI and dependable
computing domains. These techniques have been adapted and tuned for
interactive systems and are used in a synergistic way in order to support the
integration of factors such as usability, dependability and operability and at the
same time in order to deal with scalability, verification and traceability.

Keywords: Software engineering, formal methods, task modeling, safety
management, model-based design, training.

1 Introduction

Currently, most of the contributions in HCI are related to innovative interaction
techniques, reports on User-Centred Design products and systems, prototyping
techniques, usability evaluation and user experience. Most of the proposed techniques
and methods are usually targeting mass market applications. When dealing with
usability they focus on ensuring that the user will accomplish her/his goals in an

efficient way, without error and with a maximum satisfaction while when user
experience is concerned, they focus on flow, emotions, In safety-critical contexts,
effectiveness and efficiency to accomplish user tasks are also very important but there
are additional constraints to be accounted for on the system being used such as
reliability and operability. Additionally, beyond these constraints on the final
products, constraints also apply to the development process itself. Requirements for
designing and developing safety-critical systems (as defined in standard such as DO-
178B [16] or ESARR 6 [15] widely used in aeronautics) aim at ensuring that the
various steps of the process are traceable (and have been traced) and that risk analysis
has been carried out carefully demonstrating that risk of failure or malfunctions
remains at a tolerable level. On the human side, users of such systems are trained to
use the system, being required to follow operational procedures and behaving in an
appropriate way according to both safety regulations and mission constraints.

This paper proposes a new development process able to address interactive systems
issues, safety critical concerns in system development as well as human factors issues.
To this end, we integrate in this process, methods, techniques and tools which aim at
taking into account usability, reliability and operability. This process is centred on
models which are the only way to deal with large systems and complex operator
activities. In previous work we have a set of tool-supported notations that can be used
to design reliable, usable and operable interactive critical systems [26]. This process
enables seamless integration between formal behavioural models of the system
components and informal behaviours expressed in standard programming languages.
Beyond this computer science view it integrates formal and informal techniques (such
as prototyping and usability evaluation) which are necessary when dealing with
human factors aspects.

The first section of the paper highlights the key issues that need to be addressed to
design and develop interactive safety-critical systems. This section highlights
expected properties of the systems to be built (usability, operability, safety and
reliability) as well as requirements on the process itself (support for verification,
traceability, scalability and to support construction of associated material such as
training programme of operators). The second section presents existing design
processes that support the development of interactive system. The third section
presents the new development process and explains how this process produces usable,
dependable and safe interactive systems and how it meets process requirements in the
area of safety critical systems. The last section exemplifies how this process has been
implemented to design and develop a satellite ground segment application and
presents why and how requirements identified in section 2 are met.

2. Requirements for design and development of interactive
systems in safety critical contexts

We propose to analyze two kinds of concerns that are still open issues in the safety-
critical domain: nonfunctional requirements for the system, but also requirements on
the development process. These two types of requirements are detailed in the next
paragraphs.

2.1 Requirements for the system to be produced

This sub-section details which properties have to be taken into account during the
development process of a safety-critical interactive system and the reasons why.

2.1.1 Usability and operability
Safety critical systems aim at achieving safety-critical missions (e.g. controls a spatial
aircraft, carry people from a destination to another, monitoring a power plant...).
Humans that interact with such systems operate the system, i.e. they use it according
to predetermined procedures, predetermined tasks and predetermined behaviors they
have been trained to master, in contexts that have been analyzed during the system
design.

Usability term usually refers to effectiveness, efficiency and satisfaction. But,
designed safety-critical interactive systems are also required being operable, i.e. they
are required providing all of the needed functionalities so that the user is able to
control the system and to accomplish all the possible tasks she/he can be requested to
perform. Additionally, designed system has also to be error-tolerant and safe. Since a
few years, these properties have been tackled by consolidated cross-domain
taxonomies of usability, generally from a software perspective. Operability, Error
tolerance [2] and software safety [45] have been added to the usability definition.

2.1.2 Reliability
It is now widely agreed upon that in order to easier to use systems, generic and
specific functionalities have to be offered to the users of such systems. However,
increasing the number of functionalities by adding, for instance, undo/redo
mechanisms, WYSIWYG facilities increases the likelihood of system crashes. In
particular, the current reliability level of software suites proposed by main software
companies clearly show that building reliable interactive software is still a challenge
for software development teams. While rebooting the systems is the most reasonable
action in order to recover from a software crash, this is totally unacceptable in real-
time safety critical systems where people life is at stake.

2.1.3 Safety
This property aims at classifying systems which will not endanger the human life or
the environment [46]. Current User-Centred Design approaches and model-based
design methods do not explicitly account for potential erroneous human and technical
behaviour. But, particular attention is paid to the design and development of a safety-
critical system, especially with the transversal activity of safety management. Goal is
to ensure that the risk associated with the use of the system is tolerable. And risks are
usually quantified and classified to provide a common understanding of tolerance.
Safety integrity levels (SIL) enable to characterize the effects of a failure condition in
the system. The failure conditions are usually categorized by their effects on the
system, users and environment. Table 1 presents a classification of safety integrity
levels for space systems 16420-1 [20]. Another example is the classification for
aircraft software DO178-B [16], which identify 5 safety integrity levels (Catastrophic,
Hazardous, Major, Minor, No effect).

The safety expert has to analyse incidents and accidents that occurred on similar
systems, in order to prevent accidents from re-occurring. Identification of system
functions or boundaries, together with hazards and risks analysis enables to determine
required safety integrity levels for each system function. Hazards and risks analysis
are part of the safety assessment process and consists in examining the effect of a
failure condition in the system. A safety integrity level is associated to each part of
the system after that a safety analysis has been performed by an expert.

Table 1. Severity of identified hazards (ISO 16420-1)

Severity Consequence
1) Catastrophic hazards i) loss of life, life-threatening or permanently disabling injury or occupational illness, loss

of an element of an interfacing manned flight system;
ii) loss of launch site facilities or loss of system;
iii) severe detrimental environmental effects.

2) Critical hazards i) temporarily disabling but not life-threatening injury, or temporary occupational illness;
ii) major damage to flight systems or loss or major damage to ground facilities;
iii) major damage to public or private property; or
iv) major detrimental environment effects.

3) Marginal hazards minor injury, minor disability, minor occupational illness, or minor system or
environmental effects.

4) Negligible hazards less than minor injury, disability, occupational illness, or less than minor system or
environmental damage.

2.2 Requirements for the design-and-development process

This section details the concerns taken into account for the development process of a
safety-critical interactive system including support to handle scalability, verification
and traceability and training.

2.2.1 Scalability
The complete specification of interactive application is now increasingly considered
as a requirement in the field of software for safety critical systems due to their
increasing use as the main control interface for such systems. As the user interface as
a part of command and control systems may represent a huge quantity of code, User
Interface Tools must provide ways to address this complexity. Support only dealing
with code management is not enough and there is thus a critical need for addressing
this complexity at a higher level of abstraction. This paper argues that one possible
way to deal with these issues is to follow the same path as in the field of software
engineering where modeling activities and model-based approaches take the lead with
standards like UML. Several contributions argue for this approach [38], and
especially when new interaction techniques have to be addressed during the
development process (such as the so-called Post-WIMP [21] or animations [14]).

2.2.2 Verification
Verification techniques aim at providing ways for ensuring systems reliability prior to
implementation. User Interface Tools that would provide such capabilities would
empower developers by offering means for reasoning about their systems at a higher
level of abstraction.

Formal description techniques support verification and make it possible to assess
properties such as: whatever state the system is in, at least one interactive object is
enabled, mutual exclusion of actions, reachability of specific states [36]. Testing
activities also support verification and model-based approaches [8] featuring formal
description techniques can provide support to developers in the later phases of the
development process where the intrinsic nature of interactive systems makes them
very hard to address properly otherwise. For instance, the event-based nature of
interactive systems makes them impossible to test without tool support for the
generation of the possible test cases. Work in this field is still preliminary but
contributions are available for WIMP interaction techniques providing means for
regression testing [29] and coverage criteria [30].

2.3.3 Traceability
Traceability of requirements throughout the whole design and development process is
explicitly required for safety-critical systems, from system requirements to all source
code or executable object code. DO-178B [16] requires the use of methods and
techniques for systematically exploring design options and for supporting the
traceability of design decisions. Similarly, ESARR [15] on Software in Air Traffic
Management Systems explicitly requires traceability to be addressed in respect of all
software requirements. However, such standards only define what must be done in
terms of traceability but provide no information on how such goals can be reached by
analysts and developers.

2.3.4 Training
Human operating a safety-critical system has to be trained and qualified [26]. Users of
such systems have to also to be “adapted” (or prepared) to use the system. Indeed,
training is the mean to achieve this goal and is therefore mandatory for users of
critical systems. Related work presented in [1] and [43] argue that training enables:
- Ensuring that operators have reached a required level of skill and knowledge

before using the system.
- Enhancing and maintaining users’ performances.
- Decreasing the number of human errors while using the system.

Training programs of safety critical systems have to be designed in such a way that
the future user has been evaluated as being able to operate the system she/he has be
trained to use. To achieve this goal, Systematic Approaches to Training are widely
used across application domains of safety-critical systems [23] [26]. Unfortunately,
users of interactive critical systems have not always been trained on the system they
are going to use. In best cases, they have been trained on simulators of real systems
that mimic the expected system’s behavior. The development process should provide
a way to ensure that users are prepared to the complete system’s behavior.

3 Limitations of existing design processes for interactive systems

Proposing processes for the development of software systems has been a recurring
activity of researchers and practitioners in the area of software engineering. Indeed,

managing large scale software systems requires structured and systematic approaches
for coping with the complexity.

3.1 Legacy software development processes

The early waterfall model proposed in the 70s [43] is made up of eight steps ranging
from “system requirement” phase to “operation” phase. While such structured
processes (and the following versions such as the V model from [28]) promote the
construction of reliable software by building the “system right”, they have also
demonstrated their difficulty in building the “right system” i.e. a system
corresponding to the needs of the various stakeholders especially in the context of
unstable and evolving requirements. To try to address such concerns the spiral
development process promoted by Boehm [9] has introduced the production of
specific artifacts called prototypes in order to first identify the adequacy of the current
version of the software with clients’ requirements, and second provide a framework
for handling explicitly iterations. It took nearly 10 years (and a significant increase in
software size and complexity) to understand that such iterative processes were not
delivering as expected, as demonstrated by a thorough study of more than 8000
project in 382 companies reported by the same Barry Boehm [10] in 2006. As
identified in this study, the main drawback of these early software development
processes (beyond the inherent difficulty of building large and complex system
products) was the difficulty to identify user needs and to produce software meeting
both those needs and to encompass ever evolving new technologies.

3.2 User centered software design processes

Even though it took a long time to make its way in the area of software engineering,
the necessity of designing software compliant with user need and user capabilities has
been recognized as critical in the area of Human-Computer Interaction much earlier.
The User Centered Design approach (introduced in [33]) has promoted to place user-
related consideration at the center of the development processes. Several processes
have since been proposed to take into account usability while designing an interactive
system. Hartson et al. [18] and Collins [12] identified mandatory steps to design
usable system. Curtis & Hefley [13] first tried to match software development
processes with usability engineering and techniques. Rauterberg [40] identified more
precisely design steps to involve end-users in an iterative-cyclic development process.
Goränsson et al. [17] proposed a design process centered on usability: “The usability
design process is a UCSD approach for developing usable interactive systems,
combining usability engineering with interaction design, and emphasizing extensive
active user involvement throughout the iterative process”. This work highlights that
design processes for interactive systems are required to be highly iterative and to
promote multiple designs through evolvable prototypes in order to accommodate
requirements changes and results from usability evaluations. However, such processes
have put too much emphasis on the user side forgetting the complex reality of
software development.

3.3 Agile approaches to software development

Iterative or agile approaches, such as Scrum [47], advocate that requirements tuning is
performed by means of rapid and systematic iterations. However, including the last
version of Scrum released end of 2011 there is still no reference to end user.
Validation of prototypes by clients will not provide feedback to developers about
compatibility with users’ tasks and activities for instance. This has been clearly stated
and identified in [48] where User Centered and Agile approaches where compared
and assessed. Beyond that, task/artifact lie cycle as identified in [11] adds a new
dimension to user needs evolution. Indeed, as described in the studies reported in that
paper, the fact of providing users with new tool (even if the tools are perfectly in line
with their needs) will change the needs as the work and practice of users will evolve
due to this particular new tool. This demonstrates the need to involve end users
throughout the development process to test, validate the systems and redefine their
needs, as promoted by several research contributions [19].

Another very different problem lays in the iterative nature of the agile and spiral
processes. Indeed, (as advocated by the early development processes such as waterfall
or V) without identified phases gathering in one same location all the information
required, software development will be chaotic resulting in hard to manage, test and
modify software that has been built adding regularly new functionalities without
following a global and thorough design. While this might not be a big problem when
small and rather simple applications are considered, when it comes to large scale and
complex systems (as satellite ground segments) this might have significant impacts
both in term of development costs and resources but also in terms of reliability and
dependability. To handle such complexity model-based approaches such as UML or
[37] provide abstraction and domain specific notations. However, approaches such as
Scrum or the Spiral model reject the use of models due to the cost in terms of effort
and time.

Table 2 presents a synthetic view on coverage of requirements by types of
development processes, which have been presented in this section. It highlights the
absence of appropriate development processes for interactive critical systems, as no
one of them is covering all of the requirements. During, the past 20 years, various
contributions issued by the authors targeted to create, evaluate and enhance scalable
techniques, methods, notations and tools to support the design of interactive systems
which could fulfill usability, reliability and safety properties. These contributions
support the creation of a new development process which takes into account
requirements for the system to be produced, but also requirements for the design and
development process.

Table 2. Synthesis of coverage of requirements by types of software development processes
(TIA= Taken Into Account – NA= Not Addressed)

 Requirements for the
interactive critical system to be

produced

Requirements for the design and development
process

Usability Reliability Safety Scalability Verification Traceability Training
Legacy
development
processes

NA TIA TIA TIA TIA TIA NA

User
Centered
Design
processes

TIA NA NA NA NA NA NA

Agile
approaches NA NA NA TIA TIA NA NA

Next section presents the new development process which is iterative (to support
incremental developments and evolution of needs and requirements) integrating task
models and end-user evaluation (to handle the always evolving users’ needs and to
ensure usability) while proposing extensive use of models (to ensure reliability of the
software). In this next section, at each stage of the development process, one or more
references are cited to indicate the technique, notation, tool and/or method used to
support this development process.

4. A development process for safety critical interactive systems

The proposed process takes into account previously presented system properties and
previously presented development process constraints. It leverages informal HCI
techniques (including mock-ups, low-fidelity prototyping, field studies…) and formal
HCI techniques (including formal description techniques, formal analysis,
performance evaluation…) to address usability, reliability and operability properties
that generally not targeted simultaneously.

Fig. 1. Abstract view of the development process

Fig. 1 presents an abstract view of an iterative development process for critical
interactive applications. As stated in the introduction the models makes explicit the
design and construction of a training program and the required iterative aspect (doted
arrows) for addressing users’ needs and required changes following a usability
evaluation. It also exhibits:

- The required activity of traceability of choices and decisions throughout this
development process (by the large arrow on the right-hand side of the diagram).

- The required activity of safety management (by the large arrow on the left-hand
side of the diagram), which is also a transversal activity that starts in the early
stage of the design project with hazards and risks analysis activities and that will
end when the system will not be in use anymore.

The first phase (disc I in Fig. 1) includes safety analysis activities such as incident
and accidents analysis, existing systems analysis (or extant analysis), hazards and
risks analysis. At the end of this first phase, needs and requirements for the system
have been set, including safety integrity levels for each part of the system. The next
step of interactive critical system design (disc II in Fig. 1) is triggered and will issue a
very high-fidelity prototype as well as several types of models and descriptions for the
next phases of training program development (disc III in Fig. 1) and system
deployment (disc IV in Fig. 1).

4.1 Interactive Critical System Design

Fig. 2 presents a more detailed view of this development process making explicit
the three specific sub-phases of the interactive critical system design process:
- Task analysis and modeling phase (under discs 3 and 7 in Fig. 2, detailed in §4.2)
- Low-fidelity prototyping iterative phase (loop represented by discs 2, 3 4 and 5 in

Fig. 2, detailed in §4.3)
- Very-high fidelity prototyping iterative phase (loop represented by discs 6, 7, 8, 9

and 10 in Fig. 2, detailed in §4.4)

4.2 Task analysis and task modeling phase

Task analysis and task modeling (discs 3 and 8 in Fig. 2) aim at understanding and
describing user activities. This key step in the process enables to ensure that:
- The system is providing the complete set of needed functionality to support user

activities (related to effectiveness property of the usability factor).
- The user will be able to accomplish his/her goals in an acceptable timeframe while

using the system (related to the efficiency property of the usability factor).
Task analysis and modeling activities (discs 3 and 8 in Fig. 2) may have been started
in earlier phases (as described in paragraph “Needs and requirements analysis”),
however, this activities are central to the design phase of the proposed process. It
highly supports the design of a usable interactive system as it enables to identify
precisely goals, tasks and activities that have to be led by the operator. Task models
bring additional advantages to task analysis: the structuration of the gathered
information about operators’ activities and the possibility to use software tools to
compute, analyze and simulate these models. When supported by a task modeling
notation and tool featuring human tasks refinement (cognitive, motor, perceptive
tasks) and complex activities edition and simulation, this step enables qualitative
analysis of user or operator tasks (disc 4 and 9 in Fig. 2).

Fig. 2. Detailed view of the development process

Task analysis and modeling activities are also supports for:
- Task deviation analysis (disc 2bis in Fig. 2)

- Interactions safety analysis (disc 3ter in Fig. 2)
- Conformance analysis between prototypes and user task (disc 5 in Fig. 2)
- Conformance analysis between task models and system behavioral models by

connecting the input/output event handlers to the interactive input/output user
tasks (disc 10 in Fig. 2).

- Human error and task deviation analysis [35] in case of high safety integrity levels
(discs 2bis and 2ter in Fig. 2).

- Quantitative analysis of user performances (disc 11 in Fig. 2).

4.3 Low-fidelity prototyping iterative phase

Low-Fi iterative phase (discs 2, 3, 4, 5 and 6 in Fig. 2) aims at preparing first versions
of the interactive system and enables to evaluate first design outcomes without
engaging too much human and financial resource at this stage of the process.
Furthermore, it is also a first detection steps for potential safety issues.

Once low-fidelity prototypes are compliant with user tasks, the validated materials
can be forwarded to the next phase.

4.4 Formal modeling, informal modeling and very high-fidelity prototyping

Very Hi-Fi prototyping and modeling phase (discs 7, 7bis, 8, 9, 10 and 11 in Fig. 2) is
heavily based on two types of models: task models and system models. One of the
critical aspects of having several models for the same interactive application is to
support the resulting activity of ensuring conformance and compatibility of these
models. We already proposed several ways of addressing such compatibility in [6] but
it has been extended in order to deal also with the training and operational concerns
[26]. Formal description techniques are the only means for both modeling in a precise
and unambiguous way all the components of an interactive application (presentation,
dialogue and functional core) and to propose techniques for reasoning about (and also
verifying) the models. Applying formal description techniques can be beneficial
during the various phases of the development process from the early phases
(requirements analysis and elicitation) to the later ones including evaluation (testing).

Fig. 3 details the task allocation and integration of competencies in the process. It
shows how analysis, design and development artifacts coming from software
engineering, HCI and safety management can be used in a synergistic way to:
- Test if required usability, reliability and safety integrity levels are reached.
- Identify problems if required levels of usability, reliability and safety integrity

have not been reached.
The very high-fidelity prototyping phase produces very high-fidelity prototypes of

the system, complete and unambiguous description of the system and of safety
software barriers as well as precise description of expected user behaviors. It enables
fine tuning of these prototypes, descriptions and models to ensure that system’s
behavior will be fully compatible with user tasks and will prevent human error to
endanger the system and its environment. All of these materials are the inputs of the
next phase.

Fig. 3. Task allocation and integration of competencies in the process

4.5 Selective formal modeling
The safety analysis activity at the beginning of the development process has

enabled to determine the boundaries between different parts of the system and the
required safety integrity level (SIL, presented in section 2.1.3) for each of these parts.
Associating a SIL to parts of the system allow to characterize the impact of a fault,
failure or error on the system and its environment. When the required SIL is high, the
use of models is easily justified and the use of formal models is recommended to
verify and validate the system’s behaviour avoiding fault occurrence by additional
work at design time. For low SIL, standard development methods (involving either
semi-formal approach like UML or programming languages) are adequate.

4.6 Training program development
The integration of the training program development as a phase of the system

development process itself (disc III in Fig. 1) aims at producing the most optimized
possible training program w.r.t. the designed system. Training program is based on
the complete and unambiguous description of the system’s behavior (very high-
fidelity prototype and models). Model-based approaches provide a unique opportunity
for integrating, in a unified iterative process, the four main artifacts i.e. tasks models,
operational procedures, training scenarios and interactive system models required to
be designed for usable, learnable and reliable command and control systems. This
phase of the proposed development process has been detailed in [26].

4.7 Human error and safety management
The process is compliant with existing human error and safety management

activities. Indeed, it supports human error and task deviation analysis (Task Analysis
for Error Identification technique) [35] and software safety barriers modeling [20].
And, the task error models could be reused as safety management artifact (task error
pattern) from one version of the system to the next and from one system to another.
These task error patterns would contribute to the next hazards and risks analysis.

4.8 Traceability
The proposed process supports the traceability of requirements and design choices

throughout the whole design process. Previous work on design rationale and
traceability of requirements [25] can be integrated to this development process in
order to support the record and analysis of design choices. Functional and
nonfunctional requirements can be traced w.r.t. this design choices to perform
coverage analysis. This work can be fully integrated within this approach and
furthermore, as well as design artifacts (such as task models, scenarios, system
models) can be bound to design choices, task models with error patterns and software
safety models can also be bound to requirements and design choices.

4.9 Tools supporting the development process

As we mentioned in sections 2 and 3, supporting notation and tools for user tasks and
system behavior are needed to handle usability within large-scale systems. In order to

apply the development process we used two existing notations, one for task modeling
and one for system behavior modeling.

An expressive and scalable task modeling notation is required to support the design
of a usable interactive application. HAMSTERS [24] (Human-centered Assessment
and Modeling to Support Task Engineering for Resilient Systems) is a task modeling
notation designed for representing the decomposition of human goals into activities
(perceptive, cognitive, motor, interactive…). It supports the description of large-scale
and complex tasks and its associated software tool (also called HAMSTERS) enables
to edit task models and simulate their execution.

A formal notation is required to support the design of a dependable system,
especially when high safety integrity levels have to be reached. ICO formalism [32]
and associated Petshop IDE also provides support for specifying entirely an
interactive system behavior (scalability) and for integrating software components to
ICO formal models and then enabling:
- The integration of low safety integrity level components with high safety integrity

level components.
- The integration of models of software safety barriers [20].

The last element highlighted by the development process is the need for
performance evaluation for assessing the actual performance of the application (and
the interaction techniques, disc 10 on Fig. 2). Here again the Petri net based
description technique of ICOs is very useful as Petri nets are one of the very few
formalism providing both verification and performance evaluation supports as
demonstrated by [34].

Furthermore, the two tools, HAMSTERS and Petshop have been integrated in a
software development framework, which provides support for correspondence
matching between the two types of models and co-execution of the very high-fidelity
prototype with the underlying system and task models [3].

5. Application of the development process to satellite monitoring
and control applications

In order to ensure its feasibility, the proposed development process has been
applied to large scale ground segment applications. This section summarizes the
results from the application of this process and highlights how requirements for
designed product and for design and development process have been met.

5.1 Context in which the process has been applied

This case study is part of the work that has been done for the TORTUGA1 research
and technology initiative, which aims at improving the reliability of both ground
segment systems and users involved in the operation of such systems. Many models
and prototypes have been produced for different industrial case studies accomplished

1 http://www.irit.fr/recherches/ICS/projects/tortuga/

within this research project but only a few are shown, due to space constraints.
Different entities are involved in the satellite application domain: the space segment
(including the spacecraft) and the ground segment (made up of antennas for
communication and the mission control system). Our focus is the operation control
system. This system is in charge of maintaining the spacecraft in operation. During
early validation phases of various ground segment applications, operators have
encountered usability issues. CNES (French National Space Studies Center) Ground
segment products department and Operations department agreed to study the
feasibility of approaches developed within Tortuga project on a monitoring and
control application of a ground segment. For this purpose, we applied the
development process exposed in previous section to design and develop a very high-
fidelity prototype for a new ground segment application and associated training
sessions. We only provide here the excerpt necessary to discuss the application of the
proposed development process. Indeed, tasks and operations of a mission control
system are more numerous than what is presented here.

5.2 Artifacts produced during the application of the process

The first steps in applying this process have been to analyze existing documentation
about the procedures operators have to follow, about the system they were using and
their associated user manuals. Several observations of operators in command and
control rooms have been conducted (for two different satellite missions). Operators
have been interviewed and have been filled in questionnaires. The analysis of these
artifacts led to produce a list of user needs as well as scenarios and task models. A
human error analysis also led to produce task models of operators’ potential
interaction errors. Fig. 4 a) presents an extract of the task model describing the setup
of a redundant solar panel of the satellite (SADA2) if a failure on the in charge solar
panel (SADA1) has occurred. It indicates that the operator has to select a particular
procedure “Switch ON SADA2” while using the ground segment application. Then,
the operator has to activate the procedure. This will send a particular Telecommand to
the satellite, which will start to rotate the solar panel. Then the operator will have to
confirm the stop of the solar panel rotation. In this example, we focus on one type of
error but an example of a complete case study of task analysis for error identification
can be found in [35]. Human errors can occur while accomplishing this procedure to
setup the redundant solar panel. For example, Fig. 4 b) presents the task model of
erroneous actions performed by the operator in that case. From the Human Error
Reference Table [35], an interference error [41] or associative-activation error [39]
can occur if the operators click on “YES” while they had decided not to confirm stop
or if they click on “NO” while they had decided to confirm stop (confirmation pop up
in Fig.6).

Five low-fidelity prototypes have been produced and confronted to task models

and to operators, then very-high fidelity prototyping phase started. This phase led to
produce formal models (11 ICO models) of the ground segment application prototype
and presentation part of the user interface (a screenshot of the UI is presented in Fig.
6), but also formal behavioral models (15 ICO models) of the procedures executed by

the operators. Fig. 5 shows an excerpt of the ICO model corresponding to the
procedure of switching to the redundant solar panel. This excerpt describes the
system’s behavior when it displays the message pop up to confirm that solar panel
rotation will be stopped.

The presented notation and tool framework enables the binding of task models,
system models and very Hi-Fi prototype. For example, task “Confirm stop, click

a) b)

YES” in Fig. 4 a) corresponds to transition “msgYES_stopSADA2Rotation” in Fig. 5
and to “Yes” button of the confirmation pop up in Fig. 6.

Fig. 5. Extract of the ICO model for switching to the redundant solar panel

Formal behavioral models of the system and of the procedures are put in
correspondence with task models in the HAMSTERS-Petshop IDE. These models co-
execute with the presentation part of the user interface (Fig. 6). Conformance and
consistency between operators’ tasks and prototype has been validated and training
sessions have been developed and executed thanks to these produced artifacts.

Fig. 6. Excerpt of the last iteration of the very high-fidelity prototype

Table 3 presents statistics about the artifacts produced while applying the
development process. It is important to note that we only addressed in the project the
most common functions in the ground segment applications deployed at CNES. We
consider here neither mission-related functions nor specific aspect of the ground
segments related to a specific satellite.

Table 3. Artifacts produced during the application of the development process

Artifacts of the ground segment application Numerical values
Number of task models 20

Number of tasks per task model 12 to 20
Number of Low-Fi prototypes 5
Number of Hi-Fi prototypes 2

Number of ICO behavioral models 26

ICO models
places per model 15 to51

transitions per model 10 to 36
arcs per model 35 to 233

Number of training sessions 2
Number of scenarios per training session 3 to 5

5.3. How requirements are met throughout the development process

5.3.1 Presented in this article
The application of the development process to industrial projects proves the
scalability of the proposed tool-supported approach. Task analysis and modeling
supports the usability and operability of the designed and developed applications.
Formal descriptions of the application behavior and of the operational procedures
provide support for reliability. Safety concerns are addressed through the
identification of human errors and tasks deviations (represented in the tasks models).

5.3.2. Not presented in this article
Going further in supporting usability, fine logging techniques, introduced in [34],
enables quantitative analysis of user performance while using the system. These
logging techniques can support in a very efficient way standard usability evaluation
techniques especially when new and complex interaction techniques (such as
multimodal ones) are considered [7].

Training is integrated as first class citizen in the development process. A detailed
case study describing the training program development process and underlying
concepts (such as Systematic Approach to Training), as well as the way our model-
based approach can be used to leverage this process is described in [26]. Tasks
models and system models are extremely useful for assessing the coverage of the
training program and its adequateness to both the operators’ tasks and system
behavior.

Safety management phases are not described in details in this case study but
complete examples can be found in previous work [35] [4] and can be fully integrated

in the proposed process. In particular, hazards and risk analysis techniques as well as
safety integrity levels identification techniques [46] can be used within the proposed
process. Additionally, It has been demonstrated in previous work that safety modeling
[4] and software barrier modeling [5] phases can be plugged-in directly in the
proposed process, as part of an integrated framework. Training is also linked to those
aspects as many operations are defined for managing incidents and failures that by
definition have a low probability of occurrence and thus require regular re-training in
order not to be forgotten.

Traceability of the needs and requirements throughout the whole development
process and design choices can be achieved [25] using adequate notations and tools
which are complementary to those presented in this article.

Verification of the application can be achieved through applying formal
techniques related to Petri nets (which are the underlying formalism of ICO) [36].

7. Conclusion

This paper proposed a development process for the design, implementation and
evaluation of safety critical interactive systems. It deals explicitly with requirements
that target interactive critical systems (requirements for the system and requirements
for the development process). Beyond that it integrates the training program within
the process providing a unique opportunity to deliver timely and with a perfect match
both a system and its training material. It also explicitly describes the articulation
between high-level SILs and low-level ones and thus provides integration for formal
and informal approaches.

The excerpts from the industrial application of the process are presented to show
what the various products of the development process are and do not aim at being
comprehensive. While it is very difficult (not to say impossible) to demonstrate the
validity of a development process we have tried to report at each step its advantages
and its limitations. To go beyond this case study we would like to emphasize the fact
that this contribution is built upon several contributions and comes from the outcomes
of the implementation of these contributions in several critical application domains
such as space ground segments applications, interactive cockpits of large civil
aircrafts and air traffic control management.

Future work is directed towards multi-users interactions and activities as well as
computer mediated communication with remote users thus handling explicitly the
issues related to team work both in a local setting and remote. We also focus our work
on the issues related to automation and more precisely at providing means for
designing automation in a user-centered way and to ensure that safety critical
requirement are taken into account throughout the development process.

Acknowledgments

This work has been partly funded by R&T CNES (National Space Studies Center)
Tortuga R-S08/BS-0003-029 and Airbus under the contract CIFRE PBO D08028747-
788/2008.

References

1. Aguinis H., Kraiger K. Benefits of Training and Development for Individuals and Teams,
Organizations, and Society. Annual Review of Psychology, pp. 451-475, vol. 60, 2009.

2. Alonso-Rios D., Vasquez-Garcia A., Mosqueira-Rey E., Morey-Bonillo V. Usability: A
Critical Analysis and Taxonomy. Intl. Journal of Human–Computer Interaction, 26(1), 53–
74, 2010.

3. Barboni E., Ladry J-F., Navarre D., Palanque P., Winckler M. Beyond Modelling: An
Integrated Environment Supporting Co-Execution of Tasks and Systems Models. In Proc.
of EICS ‘10. ACM, 143-152.

4. Basnyat S., Chozos N., Johnson C., Palanque P. Incident and Accident Investigation
Techniques to Inform Model-Based Design of Safety-Critical Interactive Systems. DSV-IS
2005,pp. 51-66.

5. Basnyat S., Palanque P., Schupp B., Wright P. Formal socio-technical barrier modelling for
safety-critical interactive systems design, Safety Science, vol. 45, issue 5, June 2007, pp.
545-565.

6. Bastide R., Navarre D. & Palanque P. A Tool-Supported Design Framework for Safety
Critical Interactive Systems in Interacting with computers, Elsevier, vol. 15/3, pp. 309-328,
2003.

7. Bernhaupt R., Navarre D., Palanque P., Winckler M. Model-Based Evaluation: A New Way
to Support Usability Evaluation of Multimodal Interactive Applications. In “Maturing
Usability: Quality in Software, Interaction and Quality” Springer Verlag series on HCI,
April 2007.

8. Bodart F., Hennebert A.-M, Leheureux J.-M. & Vanderdonckt J. Encapsulating Knowledge
for Intelligent Automatic Interaction Objects Selection. in Human Factors in Computing
Systems INTERCHI'93, Addison Wesley, 424-29, 1993.

9. Boehm B. A spiral model of software development and enhancement, ACM SIGSOFT
Software Engineering Notes, v.11 n.4, p.14-24, August 1986.

10. Boehm B. A View of 20th and 21st Century Software Engineering. Invited talk, IEEE Int.
Conf. on Software Engineering 2006, http://www.isr.uci.edu/icse-
06/program/keynotes/boehm.html.

11. Carroll, J.M., Kellogg, W.A., and Rosson, M.B. The Task-Artifact Cycle. In J.M. Carroll,
ed., Designing Interaction: Psychology at the Human-Computer Interface. Cambridge
University Press, Cambridge, UK, 1991.

12. Collins, D. Designing Object-Oriented user interfaces. Readwoods City, CA:
Benjamin/Cummings Publishing, Inc, 1995.

13. Curtis, B., Hefley, B. A WIMP no more: the maturing of user interface engineering.
Interactions, 1(1), 1994.

14. Esteban O., Chatty S., Palanque P. Whizz'Ed: a Visual Environment for building Highly
Interactive Software INTERACT,1995, Lillehammer, Norway, p. 121-127.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chozos:Nick.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Johnson:Chris.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Palanque:Philippe_A=.html
http://www.informatik.uni-trier.de/~ley/db/conf/dsvis/dsvis2005.html#BasnyatCJP05
http://www.informatik.uni-trier.de/~ley/db/conf/dsvis/dsvis2005.html#BasnyatCJP05
http://www.isr.uci.edu/icse-06/program/keynotes/boehm.html
http://www.isr.uci.edu/icse-06/program/keynotes/boehm.html

15. Eurocontrol, ESARR 6, Eurocontrol Safety Regulatory Requirement 6, Software in ATM
Functionnal Systems, version 2.0, 2010.

16. European Organisation for Civil Aviation Equipment. (1992). DO-178B, Software
Consideration in Airborne Systems and Equipment Certification. EUROCAE.

17. Göransson B., Gulliksen J., Boivie I. The Usability Design Process - Integrating User-
Centered Systems Design in the Software Development Process. Software Process:
Improvement and Practice, 8(2), 111-131, 2003.

18. Hartson, H., Hix, D. Human-computer interface development: concepts and systems for its
management. ACM Computing Surveys, 21(1), 1989.

19. Hussain Z., Slany W., Holzinger A. Investigating Agile User-Centered Design in Practice:
A Grounded Theory Perspective. USAB 2009, pp. 279-289, Springer LNCS.

20. International Standard Organisation. Space systems safety requirements. Part 1: System
safety. ISO 16420-1, April 2004.

21. Jacob R. A Software Model and Specification Language for Non-WIMP User Interfaces.
ACM Transactions on Computer-Human Interaction 6, n°. 1, 1-46, 1999.

22. Johnson, C. On the over emphasis of human error as a cause of aviation accidents: systemic
failures and human error in US NTSB and Canadian TSB aviation reports 1996-2003,
Ergonomics, 2006.

23. Martinie C., Palanque P., Navarre D., Winckler M. A formal approach supporting effective
and efficient training program for improving operators’ reliability. Safety and Reliability
for managing Risk (ESREL 2010), p. 234-243.

24. Martinie, C., Palanque, P., Winckler, M. Structuring and Composition Mechanism to
Address Scalability Issues in Task Models. Proceedings of the IFIP TC 13 INTERACT,
LNCS Springer Verlag, 2011.

25. Martinie C., Palanque P., Winckler M., Conversy S. DREAMER: a design rationale
environment for argumentation, modeling and engineering requirements. SIGDOC 2010:
pp. 73-80.

26. Martinie C., Palanque P., Winckler M., Navarre D. & Poupart E. Model-Based Training:
An Approach Supporting Operability of Critical Interactive Systems: Application to
Satellite Ground Segments. In Proc. of EICS 2011, p. 53-62.

27. Mayhew DJ., The Usability Engineering Lifecycle, A practitioner’s handbook for User
Interface Design. Morgan Kaufmann Publishers, San Francisco, CA.

28. McDermid, J., & Ripken, K. Life cycle support in the Ada environment. ACM SIGAda Ada
Letters, III (1), 1983.

29. Memon A. M. & Soffa M. L. Regression testing of GUIs. 9th European Software
Engineering conf., pp. 118 – 127, 2003.

30. Memon A. M., Soffa M. L. Pollack M.E. Coverage criteria for GUI testing. 8th European
Software Engineering conference, pp. 256 – 267, 2001.

31. Navarre D., Palanque P., Martinie C., Winckler M., Steere S. Formal Description
Techniques for Human-Machine Interfaces - ModelS-Based Approaches for the Design and
Evaluation of Dependable Usable Interactive Systems. Handbook of HMI, A Human-
Centered Approach, USA, Ashgate.

32. Navarre, D., Palanque, P., Ladry, J., and Barboni, E. ICOs: A model-based user interface
description technique dedicated to interactive systems addressing usability, reliability and
scalability. ACM Trans. Comput.-Hum. Interact. 16, 4 (Nov. 2009), pp. 1-56.

33. Norman, D. & Draper S. (eds.) (1986): User Centered System Design: New Perspectives on
Human-Computer Interaction. Hillsdale, NJ, Lawrence Erlbaum Associates.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gulliksen:Jan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boivie:Inger.html
http://www.informatik.uni-trier.de/~ley/db/journals/sopr/sopr8.html#GoranssonGB03
http://www.informatik.uni-trier.de/~ley/db/journals/sopr/sopr8.html#GoranssonGB03
http://www.dblp.org/db/indices/a-tree/p/Palanque:Philippe_A=.html
http://www.dblp.org/db/indices/a-tree/w/Winckler:Marco.html
http://www.dblp.org/db/indices/a-tree/c/Conversy:St=eacute=phane.html
http://www.dblp.org/db/conf/sigdoc/sigdoc2010.html#MartiniePWC10

34. Palanque P., Barboni E., Martinie C., Navarre D., Winckler M. A model-based approach for
supporting engineering usability evaluation of interaction techniques, EICS 2011, pp. 21-
30, ACM SIGCHI.

35. Palanque, P., & Basnyat, S. Task Patterns for Taking Into Account in an Efficient and
Systematic Way Both Standard and Erroneous User Behaviours. HESSD 2004, pp. 109-
130,. Toulouse, France.

36. Palanque P., Bastide R. Verification of an Interactive Software by analysis of its formal
specification INTERACT 1995, Lillehammer, Norway, pp. 191-197.

37. Palanque P., Bernhaupt R., Navarre D., Ould M., Winckler M. Supporting Usability
Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment
Applications Using Petri net Based Formal Specification. Ninth International Conference
on Space Operations, Rome, Italy, June 18-22, 2006. CD-ROM proceedings.

38. Paternò F. Santoro C. Spano L. D. MARIA: a universal, declarative, multiple abstraction-
level language for service-oriented applications in ubiquitous environments. In: ACM
Transactions on Computer-Human Interaction, vol. 16 (4) article n. 19. ACM, 2009.

39. Preece J., Rogers Y., Sharp H., Benyon D., Holland S., Carey T. Human-Computer
Interaction. Addison-Wesley, UK.

40. Rauterberg M. An Iterative-Cyclic Software Process Model. International Conference on
Software Engineering and Knowledge Engineering. Capri, Italie: IEEE, 1992.

41. Reason J. Human Error, Cambridge University Press.
42. Rettig M. 1994. Prototyping for tiny fingers. Commun. ACM 37, 4 (April 1994), 21-27.
43. Royce W. Managing the Development of Large Software Systems. IEEE Wescon, pp 1-9,

1970.
44. Salas E., Cannon-Bower J. The Science of Training: A Decade of Progress. Ann. Review of

Psychology, pp. 471-499, 2001.
45. Seffah A., Donyaee M., Kline R.B., Padda H.K. Usability measurement and metrics: A

consolidated model. Journal of Software Quality Control, vol. 14, issue 2, June 2006.
46. Storey, N. Safety-critical computer systems. Addison-Wesley, 1996.
47. Schwaber K. Agile Project Management with Scrum, Microsoft Press, February 2004.
48. Sy D., Miller L. Optimizing Agile User-centred design. In CHI '08 extended abstracts on

Human factors in computing systems (CHI EA '08). ACM, New York, NY, USA, 3897-
3900..

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Palanque:Philippe_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Barboni:Eric.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Winckler:Marco.html
http://www.informatik.uni-trier.de/~ley/db/conf/eics/eics2011.html#PalanqueBMNW11

