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Abstract. Evaluating the usability of smartphone applications is crucial for 
their success, so developers can learn how to adapt them considering the 
dynamicity of mobile scenarios. The HCI community recommends considering 
different requirements when evaluating those applications, such as quantitative 
data (metrics), subjective evaluation (users’ impressions) and context data (e.g. 
environment and devices conditions). We observed a lack in the literature of 
approaches that support those three requirements combined into a single 
experiment; generally one or a pair of them is used. Besides, performing 
usability evaluation on real mobile scenarios is hard to achieve and most 
proposals are based on laboratory-controlled experiments. In this paper, we 
present our proposal for a hybrid usability evaluation of smartphone 
applications, which is composed by a model and an infrastructure that 
implements it. The model describes how to automatically monitor and collect 
context data and usability metrics, how those data can be processed for analysis 
support and how users’ impressions can be collected. An infrastructure is 
provided to implement the model allowing it to be plugged into any smartphone 
Android-based application. To evaluate our proposal, we performed a field 
experiment, with 21 users using three mobile applications during a 6-month 
period, in their day-to-day scenarios. 

 

Keywords: Usability Evaluation, Smartphone Application, Remote Usability 
Evaluation, Usability Testing. 

1 Introduction 

In recent years, the introduction of several technologies has revolutionized society’s 
methods of communication, entertainment, and the execution of daily tasks. 
Simultaneously, the process of digital convergence has generated a great number of 



devices (PDAs, smartphones, tablets) capable of gathering different forms of user-
computer interaction in an integrated way and with reasonable processing power.  

Considering that the interaction of the user with this kind of device is extremely 
sensitive to the context in which the application is running, what constitutes the most 
adequate scenario for executing usability tests is a topic of great discussion.  The 
central question is whether these experiments should be performed in the field, or in 
the laboratory [1]. 

Another important question has to do with the kind of data that must be present in a 
usability evaluation. Besides quantitative data used to determine the quality of the 
interfaces and the usability of the applications, subjective data should also be 
considered in order to draw conclusions about the users’ satisfaction. 

The main problem when evaluating mobile applications is the development of 
approaches whose evaluations integrate quantitative, subjective and context data in 
the same experiment. Nowadays, those three points of interest are investigated in 
isolation, which makes the relationship between those results difficult to determine 
[2].  

Faced with this challenge, the objective of this study is to assess the new 
applications usability, their functionalities, how the users adapt to them to do their 
daily tasks, the satisfaction level provided and the level of external interferences. 

In order to achieve evaluations with different kinds of information, we propose an 
approach to support the evaluation of smartphone applications based on the Android 
platform. This approach blends two strategies for data capture: the first one, known as 
Logging [3], is based on the data collection related to the user interaction with an 
application, allowing statistical analysis regarding usability; it allows the use of 
sensors available in the smartphones for contextual data collection, such as luminosity 
intensity and the device´s position [4]. The second one, known as Experience 
Sampling Method (ESM) [5], is based on the collection of users’ feelings towards a 
specific product through questions. 

The main contribution of this work is to propose a new approach that is able to 
relate different types of data to evaluate the usability of embedded applications on 
smartphones. The proposed approach can contribute to the implementation of field 
and laboratory experiments, whether they are supervised or not. 

The remainder of this article is divided into six sections. Section 2 describes the 
proposed model. Section 3 presents an infrastructure that implements the model, to 
capture and evaluate usability data from Android applications. Section 4 presents a 
case study performed to evaluate the proposal and analyzes the results found on the 
experiments. Section 5 discusses related works to reinforce our contributions. Finally, 
in Section 6, we present conclusions and future work. 

2 The UEProject: A Model for Usability Evaluation on Smartphone 
Applications 

In our work, we propose the Usability Evaluation Project (UEProject), which is 
composed by a model and an infrastructure to support a hybrid approach for usability 
evaluation on Smartphone Applications. The proposed model enhances the capture of 



quantitative and subjective data, contextualized within the evaluation scenario and in 
conjunction with the identification of the users’ profiles. 

The intention is to go beyond the collection of statistical data, such as identifying 
the frequency of use, the error count or speed of execution of a task. The goal is to 
provide an infrastructure that enables the contextual factors associated with usability 
problems, and identify the user perception regarding the application. 

The model uses a component-based architecture to support the reuse of the 
implemented resources and its redefinition according to evaluators’ needs. Figure 1 
presents the three high level components that represent the model and their relations: 
Mapping Unit, Traceability Unit and Assessment Unit. Arrows indicate information 
transfer between the components. 

 
Figure 1. Main components of the model 

 
The Mapping Unit is responsible to provide the necessary resources for mapping 

the tasks that will be investigated later in the application under evaluation. It 
generates the Mapped Tasks and Reference Values that provide information about the 
context in which the task was mapped and the perceptions of the person responsible 
for mapping it. The Traceability Unit provides a library of metrics that uses the 
mapped tasks, enabling an instrumentation of the application’s source code with 
metrics for the capture of quantitative, contextual, and subjective data concerning the 
user profile. The values obtained during user interactions are sent to the Assessment 
Unit. The Assessment Unit is responsible for receiving the transmitted data, 
transferring it to a database and enabling evaluations. Next subsections present the 
internal components of the model’s units. 

2.1 Mapping Unit 

This unit is subdivided into three components responsible for providing the task-
mapping functionalities. In Figure 2 the components diagram can be seen, with its 
interfaces and doors for data transfer from one component to another. 



 
Figure 2. Mapping Unit Architectural Overview  

Initially it has been planned that the applications’ source code be made available. 
The objective of this action is to allow the Source Code Analyzer component to 
identify which classes refer to the treatment of users’ interactions. These classes are 
identified and provided as a requirement for the Mapping Code Generator component 
so that it can attach information that enables the identification of tasks to the original 
source code. The result of this component’s action is to perform the instrumentation 
of the application’s original code, thereby allowing the tasks to be mapped. After the 
source code is prepared for mapping, it must be forwarded to the Mapping Device 
component where the tasks will be mapped. This device must enable the mapping of 
tasks and make them available to be used by other units in the model. 

 

 
Figure 3. Steps for application instrumentation for task mapping 

In Figure 3, the diagram portrays the sequence that enables the exchange of 
messages and data between the Mapping Unit components.  

In Figure 4 the diagram of a simplified use case is presented, where the only two 
existing interactions are shown. In the first interaction, the Evaluation Team is 
responsible for providing the application’s source code and, in the second, for 
performing the tasks’ mapping for later assessment. It is worth noting that the tasks’ 



mapping can be done by a test engineer, an experienced user, or even average users 
who are chosen according to their profile, thereby allowing future comparisons. 

 
Figure 4. Use Case of the Mapping Unit 

2.2 Traceability Unit 

This unit is responsible for collecting different types of information: (i) user profile 
(e.g. education and age); (ii) data referring to the user’s interaction, such as hits and 
time to complete a task; (iii) contextual data like luminosity and noise; and (iv) 
subjective data, related to the users’ feelings regarding the applications’ usage. 

For the instrumentation of the source code to include the code for capture metrics 
and data collection, the Traceability Unit was divided into three internal components, 
as can be seen in Figure 5: Metrics Library, Metrics Generation and Interaction 
Device. The Metrics Library is the component that provides the structure to all 
capture metrics. It uses the mapped tasks to bring together the structure of the metrics 
with information about the application source code. It generates, as result, the metrics’ 
structures adapted to the application under evaluation. In the development of the 
Metrics Library, the incorporation of three types of structure was expected: (i) the 
ones used to capture quantitative data from users interactions; (ii) the ones responsible 
for the subjective data (direct interactions with users) and; (iii) the metrics that allow 
instrumentation of the available sensors.  

 
Figure 5. Traceability Unit Architectural Overview 



The Metrics Generation component receives as input the application’s source code 
and the adapted metrics structure to be attached to this code. As result it provides a 
new source code with the inserted metrics, the Traceability Code. The component 
Interaction Device requires the installation of the application’s new code containing 
the metrics that will be used for data capture. This device should enable the user’s 
interaction while allowing data to be captured. 

 
Figure 6. Steps for the instrumentation of an application with the metrics for capturing data 

In Figure 6, the diagram presents the sequence of actions that permits the exchange 
of messages and data between the Traceability Unit components. 

Figure 7 presents two use case diagrams concerning the Traceability Unit. The first 
actor (Evaluation Team) is responsible for providing files with the mapped tasks and 
the application’s source code, enabling the creation of a new application with metrics 
for capturing data. The second actor (User) uses the application while data concerning 
usability, context, profile, and feeling about application usage are captured. 

 
Figure 7. Use Cases Diagram of the Traceability Unit 

2.3 Assessment Unit 

This unit was structured in four different components that are responsible for 
infrastructure where data to be evaluated will be stored over time. Figure 8 presents 
an architectural overview of its components. To illustrate better its behavior, the 
sequence diagram in Figure 9 presents the exchange of messages and data between 
the components. 



Initially, the Data Receiver component collects the data captured during the 
execution of the user’s interactions within the application under evaluation. A second 
component, the Populate Database, performs the verification of new data arrival and 
populates it into the database. The Database component represents a Database 
Management System (DBMS) that stores persistent data. The Analysis Component 
has the responsibility to access existing data in the database and to provide resources 
that enable the extraction of usability information relevant to the evaluators. 

 
Figure 8. Assessment Unit Architectural Overview 

To make the Assessment Unit easier to understand, the diagram that follows 
(Figure 9) illustrates the exchange of messages and data between components. 

Figure 9. Actions performed by the components of the Assessment Unit 

The only direct interaction of an actor with the devised components in this unit is 
at the moment of the assessments done by the Evaluation Team. This team is 



responsible for defining data, parameters, and configurations so the information can 
be extracted according to their needs. 

3 The UEProject Infrastructure 

In this section, we describe the infrastructure implemented to verify the feasibility of 
the UEProject model. The technological aspects and techniques used in the 
implementation of the infrastructure are discussed. Additionally, the section describes 
the tools created, or used from the market, to cover all the components according to 
the model proposal. 

We defined four premises related to how technical choices will be made when 
planning the construction of the infrastructure, as follows. 

1) To propose that the data can be collected anywhere the user is interacting. To 
facilitate this, the technique Logging was chosen. This strategy consists of 
automatically monitoring and gathering data concerning the applications’ use. 

2) To define that all used software licenses should be free. To this end, we decided 
to develop the components using the Java Language, since it is platform-independent 
and free. The components obtained from the market were also chosen according to 
this premise. The objective is to make the project economically feasible. 

3) To determine that all collected data might be gathered from smartphone 
applications. For this reason, the Android platform was chosen because it uses Java 
and Android is widely used nowadays. 

4) To suggest that the applications’ source code to be instrumented should not be 
modified. Therefore the Aspect Oriented Program (AOP) [6] was chosen. AspectJ1, an 
AOP plugin for Java is used to instrument the applications with codes considered as 
transversals. In this case, the codes are needed to map the tasks and the code related to 
the metrics for data gathering.  

In this implementation of the infrastructure, the proposed way for task mapping 
was to capture the methods executed in the application after the interaction of the 
Evaluation Team. The group of interactions for a task execution is translated into a 
group of methods executed in the application. The mapped methods are used as Join 
Points so the metrics can be introduced in an application, without modifying the 
original source code. In this sense, Point Cuts are used to define the rules that validate 
the execution of the metrics built in the Advices. 

The following subsections describe the tools used to implement the components of 
the three units defined in the Model. 

3.1 Tools used in the Mapping Unit 

The first developed tool looks at the Source Code Analyzer and the Mapping Code 
Generator. This tool was called the Mapping Aspect Generator (MAG). Figure 10 
presents a workflow showing all the necessary steps for the preparation of an 
application to be mapped. 

                                                           
1 Available in http://www.eclipse.org/aspectj/ 



 

 
Figure 10. Workflow for the insertion of mapping aspects into an application 

Initially the MAG tool must receive the application’s source code to be mapped 
(step 1). After that, the tool goes through all the classes and creates a list of the classes 
that deal with users’ interactions (step 2). Afterwards the tool uses the list of classes 
and generates an Aspect to implement the onUserInteraction2 method in the classes 
that do not yet have it (step 3). This action enables the detection of users’ interactions. 
The next action is to compile the application’s source code with the generated Aspect, 
using AspectJ (step 4). The result will be that the application is ready to be mapped 
(step 5). To end the process, the application will be embedded on a device that allows 
the interactions to take place (step 6). 

To allow the task mapping and the association of reference values and context 
during the interaction of the Evaluation Team, another tool was developed, called the 
Automatic Task Description (ATD). This tool must be embedded on the device on 
which the application will be mapped and executed simultaneously with the 
application (Device Mapping component). Therefore, as the Evaluation Team 
interacts with the application, the executed methods are automatically captured as the 
concluding steps of a task.  

The main point of this tool is to act as a filter that identifies when a user interaction 
occurs. Also, the filter identifies which classes, methods, and application parameters 
were used. 

3.2 Tools used in the Traceability Unit 

The tool proposed to implement the Metrics Library and the Metrics Generation 
components was named Usability Metrics Generation. This tool contains a library that 
has the structure of the metrics that are available to perform measurements. Figure 12 
shows a workflow of necessary actions for the automatic generation of the Aspects 
and its association with the source code of the application. 

 

                                                           
2 Available in http://developer.android.com/reference/android/app/Activity.html 



 
Figure 12. Workflow for the insertion of the aspects of traceability in an application 

The tool receives as input the XML file generated in the Mapping Unit (step 1). 
Next, the existing methods in the XML, along with the information contained in the 
Metrics Library (step 2), will be used to generate the Aspects responsible for the 
capture, transmission, and persistency of the data (step 3). Afterwards, the source 
code of the application (step 4) and the generated Aspect (step 3) must be compiled 
using AspectJ (step 5). The result is the generation of an application with the metrics 
(step 6). Later, the Application will be loaded onto the device with which the user will 
interact. 

The efficiency and effectiveness of the users’ interactions are measured through 
usability metrics described in Table 1. All the measurements take into consideration 
the mapping of a task, where all the steps to its conclusion are described. Thus, the 
errors, for instance, are identified every time the user interacts with the application 
that is not in the previous mapping.  

Table 1. Usability Metrics 

Usability Metrics Objectives 
Metrics for the capture of assertiveness 

Actions in conformity Quantify the difficulty of interaction for the 
user in a task using the interface. Actions in violation 

Metrics for the search and use of tasks 
Unfinished task An unfinished task can mean that the user is 

lost or searching for a desired task.  
The use/nonuse of a task indicates if the user 
found what s/he was searching for. 

Finished tasks 
Finished and used tasks 
Finished and unused tasks 

Metrics related to performance 
Average time for task completion Indicate the need for improvements that 

minimize the time and actions for the 
execution of tasks. 

Average number of actions for task 
completion 
Number of tasks concluded without errors 

Metrics for the use of help 

Frequency of the use of help Measure the level of difficulty faced by the 
user. Identify if the help available provides 
the desired effect. Violations made after the use of help 



The sensors used to capture the contextual data were the accelerometer (to capture 
the horizontal or vertical position), GPS (to capture movement), Luminosity Sensor 
(to capture the environment’s luminosity), and the microphone (to capture noise in the 
environments). 

It is important to stress that the infrastructure uncovers new metrics to be 
incorporated in the Metrics Library, which increases its adoption in different 
scenarios, contexts, and with the use of other sensors. For example, specific metrics 
could be incorporated in an application for the spatial orientation of people. 
Therefore, such metrics could be associated with the data provided by a mobile 
device’s GPS, enabling the comparison of the user’s interactions with information 
regarding positioning, speed, and route taken. In that case, the usability analysis 
would take into account not only how a user performs a task but also how the 
environment influences the user’s interactions. 

The subjective metrics are used to measure the emotional state of the users during 
their experiences with an application. The approach chosen for representing these 
metrics is known as the Experience Sampling Method (ESM) [5]. 

ESM was chosen because of the following aspects: (i) it is appropriate for use on 
devices with relatively small screens; (ii) it is intuitive and doesn’t take much mental 
effort to be interpreted; and (iii) it is capable of being answered with entry modes 
provided by different mobile devices. 

ESM measures two dimensions, the kind of emotion (positive or negative) and the 
intensity of the emotion. To do this, a group of pictures is displayed indicating 
emotional states associated with a question, as can be seen in Figure 13. The sequence 
of the pictures represents varying degrees of emotional intensity and can be 
interpreted from left to right as: very displeased, displeased, indifferent, pleased, very 
pleased. These questions are defined by the evaluators during the execution of the 
Usability Metrics Generation Tool.  

 

 
Figure 13. Example of an ESM 

3.3 Tools used in the Assessment Unit 

To devise the components defined in the Assessment Unit, the following processes 
were performed: (i) to create and configure a FTP and database server (DB) and to 
make them available on the internet; (ii) to model a database capable of storing the 
captured information about the usability of the instrumented applications; (iii) to 
create tools for detecting the presence of new files on the FTP server and populate the 



DB; and (iv) to choose an Online Analytical Processing (OLAP) tool to analyze the 
data. 

In order to transmit and store data on the mapping of tasks and the results of users’ 
interactions, it is necessary to have a FTP and a DB available. For this, a micro 
instance of the service known as Amazon Elastic Compute Cloud (Amazon EC2) was 
contracted with Amazon, running on the Ubuntu operating system, version 11.10 
Oneiric Server, with 613 Mbyte RAM memory and a 16 Gbytes hard drive. 

To study the Data Receiver component, the FTP server ProFTPd, version 1.3.4, 
was installed to manage and control the transfer of files. 

To devise the Database component, the DBMS MySql Community Server, version 
5.1.58 was installed to store the data. 

To devise the Populate Database component, a tool called Data Loader was 
developed. The steps executed by this tool are: (i) to detect the arrival of new files on 
the FTP server; (ii) to extract the data; and (iii) to load the data into the database. 

To devise the Analysis component, the Pentaho Analysis Services, version 3.9.0, 
was chosen. It offers two possibilities for data analysis currently used in usability 
evaluations, OLAP and data mining tools. 

4 Case Studies 

This section describes the case studies performed to evaluate the functionalities and 
identify the potentials of the UEProject Model and the Infrastructure with the tools 
that give support to its implementation. 

4.1 Methodology 

The first step taken to carry out the experiments was the completion of an 
exploratory research on the internet with the objective to find applications with 
attractive functionalities that could be easily introduced into people’s lives. Also, it 
was taken into consideration in the applications selection the compliance to the 
Android platform and the use of software modularization, allowing the application’s 
source code to be instrumented with AOP. 

Following those requirements, three applications were chosen: Mileage, ^3 
(Cubed), and Shuffle3. 

The use of these applications in the case studies is based on two important aspects: 
(i) to show that the infrastructure can be used in usability experiments for Android 
applications; and (ii) to show that, although the originating process of the application 
has no connection with the proposed usability evaluation model, the aspects of 
mapping the tasks and the metrics can be easily integrated into its source code. To 
enable the investigations, tasks were chosen for each application that would be 
interesting to evaluate and that would offer more possibilities for interaction. Thus, 
the model can be tested with a varied group of actions. 

The purpose of Mileage is to help users to control the money used on fuel and 
automotive maintenance services. Eight tasks were mapped in this application to 
complete the experiments. Some of the mapped tasks for the execution of the Mileage 



experiments were, for example: to register a vehicle, to add a new maintenance 
control, and to visualize the graph showing fuel price variation.  

^3 Cubed is a music and video clip manager. In this application, six tasks were 
mapped. Some of the mapped tasks in the experiments were: to choose a song from a 
playlist, to change the appearance of the application, and to activate the equalizer. 

The Shuffle application is an activity scheduler that can manage daily tasks. Ten 
tasks were used from this application in completion of the experiments. Some 
examples of mapped tasks in this application are: to insert a new activity, to download 
a copy (backup) of the data, and to create a new project so that new activities can be 
linked to it. 

It is important to note that, independent of the tasks chosen for the evaluation, the 
user should not perceive any change in the functionality or appearance of the 
application. The only change implemented is the presentation of subjective questions 
to the user. 

The applications instrumented with the traceability metrics were made available 
for download on the internet by users who are interested in collaborating with the 
experiments3. 

The experiments started in December 2011. About thirty two users downloaded 
the applications; however, only twenty one of them are frequent and contribute 
effectively to the investigations. They were categorized according to age, educational 
grade, field of academic study, work type and social class. The context data being 
collected to associate to the users’ experiences are: environment luminosity, device 
position (vertical, horizontal and mixed) and user´s movement. In addition to these 
data, the screen size and resolution of the used device are identified. 

The first results of the analyses indicate the possibility for different methods of 
analysis, such as: to verify the applications usability, to analyze the experiences 
provided for the users and to relate their interactions to the context of use. 

 To exemplify, we would like to answer three questions in this preliminary study: 
1) What can be concluded regarding the users´ performance over time? 
2) What kind of information the context can offer to improve the usability 

analysis? 
3) What is the users´ satisfaction level with the applications proposed in the 

experiment? 

4.2  Analyzing Users’ Performance on Interacting with the Applications 

To analyze users’ performance over the period when the experiments were carried 
out, the average speed to execute the tasks was evaluated. Figure 14 presents the 
average time, in seconds, used to conclude the tasks available in the three 
applications. 

                                                           
3 Available in ueproject.no-ip.org 



 
Figure 14. Average time to execute tasks (in seconds) 

It is possible to see that, in the first month, there is a discrepancy in the average 
time when set against the other months. In December, we can see that the users need 
more time to conclude the tasks than in the following months. This draws to the 
conclusion that, after the first month, the users show they are more familiar with the 
available resources. 

4.3 Analyzing the Potential of Considering Contextual Information 

It was observed in the analyzed data that the occurrence of errors in the low-income 
class is greater than in the other classes. To find an explanation to this result, the type 
of device used by those people was investigated. 

 It was found that the error rate was not related to the users’ purchasing power, but 
to the low resolution of the devices used. So, as the low resolution devices are more 
frequently used in the low-income class, a wrong result might be found without the 
evaluation of a contextual factor. 

 In Figure 15, the relation between the purchasing power and the smartphones 
screen resolution is presented. It shows that the errors are more frequent when low 
resolution smartphones are used, regardless the purchase power. 

Figure 15. Relation between the error rate and the social class and screen resolution 

Another relevant factor regarding the applications’ context of use is that 
approximately 70% of the interactions occur when the users are still, having the 
device in a single position and under normal environment luminosity. However, when 
those contextual factors change, the users make more mistakes and take longer to 



execute the tasks. This information suggests that the applications should, for example: 
(i) make the interaction impossible in positions where there is greater probability of 
errors, forcing the user to interact in the proper position; (ii) detect the external 
luminosity and try to balance the luminosity radiated by the device in order to 
guarantee a good visualization; and (iii) identify the user movement and make the 
most usual functionalities available, decreasing the visual pollution. 

4.4  Analyzing Users’ Feelings Related to Using the Applications 

In order to cover the last question proposed in this study, the ESM technique was 
used, presenting the questions in Table 2. The aim was to collect subjective data from 
the users’ feelings related to using each application. The analysis of such kind of 
information allows to detect problems that generate either discomfort or 
dissatisfaction to users, as well as to learn what attracts users the most to insert 
applications into their daily routine. 

Table 2. Questions submitted to users. 
ID Questions 
1 How satisfied are you with the interface? 
2 How satisfied are you with learning new functionalities? 
3 How satisfied are you with using this application in your daily routine? 
4 How satisfied are you with the application functionalities? 
5 How will you feel when using this application again? 
 
Figure 16 presents the percentages concerning users’ answers to the questions 

made in the experiment for the application Cubed, according to the description and 
identification (ID) presented in Table 2.  

 
Figure16. ESM answers associated to the application Cubed. 

A fact that deserves to be highlighted is that the distribution of satisfaction level is 
maintained constant and increasing from very displeased to very pleased. This trend is 
observed in all questions submitted to users in the three applications. 

Another relevant aspect is that the group of pleased and very pleased users is 
higher than 50% in all items evaluated. This reveals one of the reasons for the success 
of the experiment in maintaining the users utilizing the applications during the six 
months. It is essential that the applications are interesting, useful, attractive, 
rewarding and easy to interact with. After the findings presented, it is possible to say 



that the users are satisfied with the applications used in the experiments, answering, 
thus, the last question asked. 

5 Related Works 

In this section, we describe and discuss some works related to our research that uses 
at least one of the chosen collecting data used in our proposal to support evaluating 
mobile applications that is Logging, Devices’ Sensors and Online Interviewing with 
users.  
 The systems evaluation through Logging is not a new strategy as it has been used 
for over two decades [3]. However, it has gained strength over the last years with the 
use of AOP to develop it [7][8][9] and the possibility to be applied in smartphones 
[4][10][11]. 

The data collection through Logging and sensors in smartphones is the focus of 
many tools [12][13][14]. These tools, in general, aim to identify the users’ behavior 
and to associate contextual information to its use. The captured data are sent to 
available servers in the Web for later analysis. The tools LiveLab [11], SystemSens 
[12] e AnonySense [14] are examples of systems that encompass uncountable logs 
records, with the objective of monitoring the incoming calls, network traffic, data 
sharing, battery level, user location, frequency of application use, and CPU and 
memory use. MobileSens [13] differentiates itself from the previous tools because it 
uses log records to optimize some smartphones resources in real time such as, 
reconfiguring the system in order to minimize the battery waste when it is low and 
indicate more appropriate networks to be used based on the user location. Although 
the described tools are useful to evaluate users’ behavior, they do not enable Online 
Interviewing with users to identify their satisfaction with the used applications.  

The MyExperience [4] stands out in this sense since it uses direct interactions to 
obtain subjective data that refers to users’ satisfaction. The study proposed by Ickin et 
al [15] presents a mixed methodology to evaluate the user experience, using three 
different resources: (i) a tool named CSS Application, to capture the log records 
related to the system use; (ii) ESM, to identify the satisfaction and obtain information 
about the user interaction context, such as location, social context and mobility level 
(still, walking, motorized) and (iii) DRM (Day Reconstruction Method), a 
questionnaire that helps identifying the relationships and results of the Quality of 
Experience (QoE). Although those tools allow evaluating the user satisfaction, they 
do not enable identifying specific usability problems, as they don’t encompass 
particular tasks of available applications.  

In this context, Paterno et al. [16] proposed a methodology and environment that 
allows the remote evaluation of mobile applications. The system features a Mobile 
Logger that collects the information from the mobile device, and a tool called 
MultiDevice RemUsine that processes the logged information and provides the 
necessary visualizations to analyze the application usability.  

Another similar approach by Au et al [17] was done to test usability of handheld 
applications. Different aspects considered in testing the usability of handheld device 
applications and a proposed a list of functional requirements that automated usability 



testing tools should have in order to be effective were discussed. The Handheld 
device User Interface Analysis (HUIA) testing framework was then developed and 
meets most of the requirements proposed.  

The EvaHelper [10] framework is another proposal for usability evaluation. Its 
structure is divided in three aspects: preparation of applications to be tracked, 
extraction of data obtained and results evaluation. Whilst its structure is similar to the 
one proposed in this paper, many differences can be highlighted: (i) it does not use 
AOP, which generates direct intrusion in the application original source code; (ii) it 
does not have a tool to automatically map the tasks; (iii) it does not have a tool to 
instrument the code automatically, without the knowledge of APIs and programming 
in the Android platform and, finally, (iv) it is restricted to statistical evaluations, that 
is, it does not make the contextual and subjective data capture possible. 

6 Conclusions 

This article presented a hybrid model to capture and assess data from smartphones 
applications. The units of the model were structured in components that can be 
redefined according to evaluators’ needs. Basically, the model can be described in 
three units: Mapping Unit, Traceability Unit, and Assessment Unit. 

The proposal has as main contributions the possibility to evaluate the smartphone 
applications’ usability by integrating, in the same experiment, metrics data, contextual 
data and users’ feelings according to the used applications. In the literature, there is a 
lack of proposals that relate those three types of data and that support the performance 
of field experiments with users using the applications in their daily lives. 

Other contributions that can be highlighted are:  
• The implementation of the components that interfere in the source code of the 

applications using AOP, so the aspects can be inserted and removed according to 
evaluators’ needs. 

• The creation of tools that enable the use of the infrastructure and the 
instrumentation of applications without the need for programming.  

• The provision of a database that allows continuous assessments in order to 
identify usability problems with a large number of users and for long periods of time. 

For future research, new metrics must be developed, prioritizing common attributes 
of certain groups of applications. Moreover, there is an intention to incorporate to the 
infrastructure interactions with users that permit to identify their location and social 
context. Other studies will be published to present the results of the experiments 
carried out with the objective of contributing to new findings in the Mobile HCI area. 
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