
Extending UsiXML to support User-aware

Interfaces

Ricardo Tesoriero12 and Jean Vanderdonckt1

1 Université catholique de Louvain
Place des Doyens, 1 (B-1348)
Louvain-la-Neuve, Belgium

2 University of Castilla-La Mancha
Av. España S/N. Campus Universitario de Albacete (02071)

Albacete, Spain
ricardo.tesoriero@uclm.es, jean.vanderdonckt@uclouvain.be

Abstract. Mobile and portable devices require the definition of new
user interfaces (UI) capable of reducing the level of attention required
by users to operate the applications they run to improve the calmness
of them. To carry out this task, the next generation of UIs should be
able to capture information from the context and act accordingly. This
work defines an extension to the UsiXML methodology that specifies how
the information on the user is modeled and used to customize the UI.
The extension is defined vertically through the methodology, affecting
all layers of the methodology. In the Tasks & Concepts layer, we define
the user environment of the application, where roles and individuals are
characterized to represent different user situations. In the Abstract UI
layer, we relate groups of these individuals to abstract interaction ob-
jects. Thus, user situations are linked to the abstract model of the UI.
In the Concrete UI layer, we specify how the information on the user
is acquired and how it is related to the concrete components of the UI.
This work also presents how to apply the proposed extensions to a case
of study. Finally, it discusses the advantages of using this approach to
model user-aware applications.

1 Introduction

In 1994, Mark Weiser introduced the notion of Calm Technology in [16]. The
aim of Calm Technology is to reduce the “excitement” of information overload
by letting the user select what information should be placed at the center of
their attention and what information should be peripheral. A way to support
Calm Technology is the use of the context information to reduce users’ work.

According to [11], context-aware applications [4] are characterized by a hi-
erarchical feature space model. At the top level, there is a distinction between
human factors, in the widest sense, and the physical environment. Both, the
human factors and the physical environment, define three categories of features
each. While, the human factors are defined in terms of features related to (a) the



information on the user (knowledge of habits, emotional state, bio-physiological
conditions, . . . ); (b) the user’s social environment (co-location of others, social
interaction, group dynamics, . . . ); and (c) the user’s tasks (spontaneous activ-
ity, engaged tasks, general goals, . . . ); the physical environment are defined in
terms of features related to (a) the location (absolute position, relative position,
co-location,. . . ), (b) the infrastructure (surrounding resources for computation,
communication, task performance, . . . ) and (c) physical conditions (noise, light,
pressure, . . . ).

This article explores the development of multi-modal UIs that are affected by
human factors. Concretely, it focuses on those features related to the information
on the user (i.e. emotional state, bio-physiological conditions, skills, experience,
. . . ) and the user’s tasks (i.e. , defined by the role played in the society).

The proposal is based on an extension to the UsiXML [14] methodology based
on the social model of CAUCE methodology defined in [13]. While UsiXML pro-
vides a model-based approach to design multi-modal UIs based on the Cameleon
reference framework [2], the social model provide designers with the ability ex-
press how user features affect the application UI.

The paper is organized as follows. In Section 2, we present the most rele-
vant related works on the development of multi-modal UIs. Then, the UsiXML
extension to support user awareness is exposed in Section 3. Afterwards, the ex-
tension is applied to a case of study in Section 4. Finally, in Section 5 we expose
conclusions and future works.

2 Related Work

Teallach tool and method [1] exploit three models: a task model, a domain
model as a class diagram, and a presentation model both at logical and physical
levels. Teallach enables designers to start building a UI from any model and
maps concepts from different models one to each other. However, the tool does
not support the development of context-aware UIs. Moreover, from the user
modeling point of view, Teallach does not support any type of user profile nor
awareness.

The approach exposed in [3] describes a toolkit of interactors, which are de-
signed to develop UIs that handle both input and output using multiple mecha-
nisms. The toolkit supports adaptation for a change in the resources available to
the widgets, or a change in the context the platform is situated in. However, the
approach does not support any model to capture user information from exter-
nal sources that are not directly related to the platform or the widget contents
defined in the interface.

XIML [5] is a more general UIDL than UIML as it can specify any type of
model, any model element, and relationships between. The predefined models
and relationships can be expanded to fit a particular context of use. The term
context is interpreted as the platform of the application is running and not the
application is adapter to such platform, instead of the information that affects,



or is relevant, to the application. No other issue related to the context awareness
is taken into account by the model.

SeescoaXML [8] supports the production of UIs for multiple platforms and
the run-time migration of the full UI. However, the development does not take
into account the definition of the user-aware behavior of the UI.

The CTTE (ConcurTaskTrees Environment)[9] is a development environ-
ment to support the development and analysis of task models for interactive
systems. Based on these models, the TERESA (Transformation Environment
for inteRactivE Systems representAtions) [10] produce different UIs for multiple
computing platforms by refining a general task model. Thus, various presenta-
tion and dialog techniques are used to map the refinements into XHTML code
adapted for each platform such as the Web, the PocketPC, and mobile phones.

Although CTT (the language used to describe the task model of the applica-
tions developed using TERESA) supports the role definition and the definition
of different task models for each role, the task and role concepts are so coupled
that the definition of similar interfaces derive in different models (one for each
role). Besides, this approach does not take into account the attributes of role def-
initions, although CTT allows designers to assign values to standard attributes.
Thus, the definition of custom attributes is not supported directly.

RIML [12] consists of an XML-based language that combines features of
several existing markup languages (e.g., XForms, SMIL) in a XHTML language
profile. This language is used to transform any RIML-compliant document into
multiple target languages suitable for visual or vocal browsers on mobile devices.
Although RIML provides the ability to specify multi-modal UI, RIML is focused
on the view of the application independently of the context it is being executed.
Therefore, no context or user awareness is taken into account.

3 The user-aware UsiXML extension

UsiXML defines a development process based on the Cameleon Reference Frame-
work [2] to build multi-device interactive applications. The development process
is divided into four layers.

The Task & Concepts (T&C) layer describes users’ tasks to be carried out,
and the domain-oriented concepts required to perform these tasks.

The Abstract User Interface (AUI) defines abstract containers and individ-
ual components [7] (two forms of Abstract Interaction Objects [15]) by grouping
subtasks according to various criteria (e.g., task model structural patterns, cog-
nitive load analysis, semantic relationships identification), a navigation scheme
between the container and selects abstract individual component for each con-
cept so that they are independent of any modality. Thus, an AUI is considered
as an abstraction of a CUI with respect to interaction modality.

The Concrete User Interface (CUI) concretizes an abstract UI for a given
context of use into Concrete Interaction Objects (CIOs) [15]. It also defines
the widget layouts and the interface navigation. It abstracts a FUI into a UI
definition that is independent of any computing platform. Therefore, a CUI can



also be considered as a reification of an AUI at the upper level, and an abstraction
of the FUI with respect to the platform.

Finally, the Final User Interface (FUI) is the operational UI running on a
particular computing platform either by interpretation (e.g., through a Web
browser) or by execution (e.g., after compilation of code in an interactive devel-
opment environment).

These layers are defined by the UIModel depicted in Figure 1. Each model
that is part of the UIModel represents an aspect of the UI to be developed. Thus,
the proposal defines the User Model to represent how the features of the user
that affect the UI.

UIModel

ModelType

TransformationModel

DomainModel

TaskModel

AUIModel

CUIModel

MappingModel

ContextModel

ResourceModel

UserModel

domainModel

0..1

contextModel

0..1

taskModel

0..1

transformationModel

0..1
auiModel

0..1

cuiModel
0..1

mappingModel

0..1

resourceModel
0..1

userModel0..1

Fig. 1. UIModel models defining the UI

3.1 The Task & Concepts layer extension

The User Model is the core of the user-awareness modeling. It is defined in the
T&C layer of the UsiXML methodology. The goal of this model is the represen-
tation of the user features that affect the UI.

To carry out this task, the model represents this information in two levels of
abstraction: the user feature level and the user profile level.

– The user feature level defines the features of the user that affect the UI.
Thus, designers are able to represent the user features that are relevant to
the application domain providing flexibility when describing user profiles.

– The user profile level is based on the information defined at the user feature
level. It characterizes the features according to runtime situations. Thus,
designers are able to identity different groups of individuals that share the
same characteristics.



Both, the user feature level and the user profile level are rooted in the User-
Model metaclass, as depicted in Figure 2. It represents the user characteristics
that affect the UI at both levels of abstraction.

TaskModelUserModelRoleSpecialization

RoleRealization

roles 1..*
realizations1..*

specializedBy

0..*

target 1..1

specializations

0..*

features 1..*

realizedBy

1..*

target

1..1source1..1

specializes
0..*

userModel

1..1

userModel
1..1

role 1..1
relizes

0..*

role

1..1

userModel
1..1

constraints

0..*feature

1..1

constraints

0..*

individual 1..1

individuals
1..*

userModel
1..1

individual
1..*

tasks

1..*

taskModel

1..1

Task

name : EString

FeatureConstraint

expression : EString

Feature

name : EString

Role

name : EString Individual

name : EString

Fig. 2. The UserModel metamodel

The user feature level defines the user characteristics in terms of Roles and
Features. We have defined Role as a set of user Features where a Feature repre-
sents an attribute related to the user playing this role in the system. For instance,
a Patient Role may define the age, cardiac pulse, temperature and glucose level
Features.

In order to represent Roles that have common Features, we have defined the
RoleSpecialization relationship between Roles. It is a directional relationship
defined by the source and the target attributes. The semantic meaning of the
RoleSpecialization relationship is defined as follows:

Let A and B be instances of the Role metaclass; Let FwoS(R) be the function
that takes the Role R as parameter and returns the set of Features defined by R

Role without taking into account the RoleSpecialization relationship.
Let F (R) be the function that takes the Role R as parameter and returns the set
of Features defined by R Role taking into account the RoleSpecialization

relationship. Finally, let S(A,B) be the RoleSpecialization relationship that
defines A as the source and B the target of the relationship.

Then,
F (B) = FwoS(B)

F (A) = FwoS(B) ∪ FwoS(A)

The user profile level defines user characteristics in terms of Individuals and
FeatureConstraints

Users are characterized according to the Features defined by the Roles they
play in the system. The characterization at this level is defined by the Feature-
Constraints metaclass that is related to an Individual playing a Role. Thus, the
RoleRealization metaclass defines the relationship between the Role and the In-
dividual. Then, the Individual defines a set of FeatureConstraints that are related
to the Features defined by the Role it plays in the system.



For instance, following the example exposed on the user feature level, the
Patient Role may be realized by the aPatientWithFever Individual that defines
a FeatureConstraint where the temperature Feature is higher than 38 Celsius
Degrees.

Thus, the same user may be a aPatientWithFever or not, according to the
body temperature of the user.

Finally, the UserModel is related to the TaskModel by the means of reflecting
how the characteristics defined by the UserModel are propagated to the UI in
the T&C layer of the UsiXML methodology. Each Task defined in the TaskModel
is affected by an Individual that describes the user situation in which the Task
is performed. Therefore, in order to perform a Task, all the FeatureConstraints
defined by the Individual that is related to the task must be satisfied.

3.2 The AUI layer extension

The AUIModel is part of the AUI layer of the UsiXML methodology. Although
the user awareness extension does not affect the AUIModel definition directly,
it introduces some modifications in the AUI layer by the means of the definition
of new inter-model relationships in the MappingModel.

These relationships are established between Abstract Interaction Objects
(AIOs) and Individuals. However, they do not affect Abstract Individual Com-
ponents AIC s in the same way they affect Abstract Containers AC s.

On the one hand, AC s are directly affected by Individuals. On the other
hand, AIC s are affected through Facets that are affected by Individuals.

The Figure 3 shows the extensions of the MappingModel and how it affects
the AUIModel.

UIModel AUIModel

MappingModel

UserModel Individual

name : EString

InterModelRelationship

Observes

ContainerObservesFacetObserves

Facet AbstractContainer

AbstractInteractionComponent

AIO

IndividualObserved

auiModel

0..1

mappingModel

individuals

1..*userModel

1..1

userModel0..1

relationships

0..*mappingModel

1..1

aios
0..*

auiModel
1..1

facets
0..*

aic 1..1

target 1..1 target
1..1

source

1..1

0..1

Fig. 3. MappingModel extensions in the AUI layer



Let suppose that an Individual is related to an AC. If all the FeatureCon-
straints of the Individual are satisfied, then the AC is “active”, “enabled” or
“available”. Otherwise, the AC is “inactive”, “disabled” or “unavailable”.

AIC s define Facets. These Facets are manipulated by the FeatureConstraints
defined by the Individual they are attached to.

Let suppose that an Individual is related to a Facet. If all the FeatureCon-
straints of the Individual are satisfied, then the Facet is “active”, “enabled” or
“available”. Otherwise, the Facet is “inactive”, “disabled” or “unavailable”.

Therefore, the behavior of the UI is affected by profiles defined in the Tasks
& Concepts layer of the UsiXML methodology. This relationship is defined by
the FacetObserves and ContainerObserves submetaclasses of the Observes meta-
class, which belongs to the MappingModel.

Thus, as an AC or a Facet can “observe” many Indivuduals, a conflict among
FeatureConstraints may arise. Therefore, we enable the Facet or AC when any
of the Individuals match the user state.

Depending on the development path, these relationships can be derived from
the TaskModel and the IsExecutedIn inter-model relationships defined in the
MappingModel using transformation rules defined in the TransformationModel.

3.3 The CUI layer extension

The extension to support the user awareness in the CUI layer is depicted in
Figure 4.

UIModel

CUIModel

MappingModel

Feature

name : EString

InterModelRelationship

CIO

Sensor

Interpreter

update()

PollingInterpreter

getValue(EString)

PollingSensor

EventDrivenIntepreter

EventDrivenSensor

setValue(EString)

ComposedInterpreter

InterpreterUpdates

cuiModel

0..1

mappingModel

0..1

relationships0..*

mappingModel1..1

cios
0..*

interpreters1..*

sensors 0..*
interpreters 0..*

cui

1..1

source1..1

target1..1

Fig. 4. Relating Sensors and Interpreters to Features

The metamodel is divided into two parts:

– The CUI model extension

– The mapping model extension



The CUI extension goal is the description of the system is aware of the
information on the user. To carry out this task, we have introduced the Sensor
and the Interpreter entities that are in charge of capturing, interpreting and
providing information to be processed by the system.

The information can be perceived in different ways according to the sen-
sor it is used to capture it. Therefore, we have defined two types of Sensors:
EventDrivenSensors and PollingSensors. The information that is perceived by
sensors should be interpreted accordingly. To perform this task, we have defined
Interpreters. Interpreters are in charge of transforming information that comes
from Sensors into information that is compatible with the user environment
definition.

We have defined three types of Interpreters: the PollingInterpreter that deals
with information coming from a PollingSensor, the EventDrivenInterpreter that
is in charge of interpreting information from an EventDrivenSensor, and the
ComposedInterpreter that is responsible for the interpretation of information
coming from several sensors. The Interpreter hierarchy is an implementation of
the Composite design pattern [6].

The information processed by the CUI extension is propagated through the
rest of the model by the mapping model extension. Therefore, the connection
between the CIOs and the rest of the models is performed through the inter-
preterUpdates submetaclass of the intermodelRelationship defined by the Map-
pingModel. This relationship is used to define the relationship between Features
defined in the user environment model and the Interpreters.

Thus, Individuals are notified of the changes of the information on the user
through FeatureConstraints.

3.4 The transformation process and the FUI

In this section, we point out some issues related to the transformation process
that takes place between the abstract user interface AUI and the concrete user
interface CUI. The way the information captured by the models is translated to
source code depends on the AIO we are dealing with.

If we are dealing with abstractContainers, the translation of an Individual
that matches the state of the user usually results in the modification of a prop-
erty in the CIO that represents it. For instance, the visible, enabled or opaque
property of the CIO is set to true.

However, the mechanism used by AIC s is not the same because Individuals
are related to Facets. Therefore, some aspects of the AIC s may match some
Individuals and some of them may not.

Suppose that an AIC defines the following Facets: Input, Output and Nav-
igation. In addition, each Facet is related to different Individuals: I1 ↔ input,
I2 ↔ output and I3 ↔ navigation.

Thus, if I1 is the unique Individual that matches the user environment, then
the AIC may be represented by a TextField. However, if I2 is the unique Indi-
vidual that matches the user environment, then the AIC may be represented by a



Label. Finally, if I3 is the unique Individual that matches the user environment,
then the AIC may be represented by a Button or a Link.

Therefore, the same AIC can be turned into different CIOs, at runtime,
according to the user state. The Figure 5 represents the possible results of the
transformation, according to the interface specification taking into account the
user environment.

The situation is solved using different mappings for the same AIO. Thus, the
user state defines which component is available according to the user environ-
ment.

FormForm

input

output

navigation

I1

I2

I3 Text

Text

Text

Fig. 5. Possible results on the Final User Interface

4 Case of study

The application that will serve as case of study is the “Healthy Menu”. The
goal of the application is the presentation of dishes according to the role and the
biophysical state of the user. Thus, views and controls are customized to provide
the user with Calm UIs.

The explanation is focused on issues related to the definition of the user
environment and the relationships between this environment and the UI. Other
issues are left behind for the sake of clarity.

4.1 The user model

The application defines five roles: Users, Patients, Doctors, Nurses and Visitors.
The Users of the application are identified by the idNumber, roleName and

userName features.
As all other roles are specializations of the User role, these roles inherit User

features. Besides these features, Patients are characterized by the age, temper-
ature and glucose features; Doctors by the specialty ; Nurses by the experience
(in years); and Visitors by the patient they are visiting (the patientId feature).

As we will focus on the Patient role, we have defined five Individuals for this
role (aPatient, NormalPatient, PatientWithHyperGlycemia, PatientWithHipo-
Glycemia and PatientWithFever); and only one for each remaining role (anUser,
aPatient, aNurse, aDoctor and aVisitor).



Each Individual is defined by a set of FeatureConstraints. For instance, we say
that a Patient is normal, if the body temperature is between 36.5 and 38 Celsius
degrees and the Sugar level in blood is between 70 and 110 millimoles/liter.

The Figure 6 shows the user model of the application. Rounded rectangles
represent Roles, the dashed rectangles defined inside them represent features,
the specialization of roles is represented by a triangle-ended arrow pointing to
the role that is being specialized, circles represent instances and the rectangles
on drawn on the right of these circles represent feature constraints.

User

idNumber

roleName

userName

anUser

aPatient 

With 

Fever

temperature > 38

Visitor

patientId

Patient

temperature

glucose

age

Doctor

specialty

Nurse

experience

aVisitor aDoctor aNurse

aPatient 

With Hipo 

Glycemia

Glucose < 70

aPatient

aPatient 

With Hyper 

Glycemia

Glucose > 110

aNormal 

Patient

Glucose > 70

Glucose < 110

temperature < 38

temperature > 36.5

Fig. 6. Healthy screen user model

4.2 The task model

The simplified version of the task model for the Healthy screen application is
defined in Figure 7.

Fig. 7. Healthy screen task model



The UserLogin task allows the system to identify the user that is using the
application. The information that is retrieved from the system is exposed to the
user by the means of the ShowInfo system task. Then, the user is able to choose
the menu (SelectMenu task). To improve task model readability, the menu is
divided into three types of selection defined under the SelectDrink, SelectMeal,
SelectDesset task. Each task represents a possible menu option. For instance,
SelectWater (to select water as a drink) is available to all users. However, Se-
lectWine (to select wine as a drink) is available for normal patients only. It is
also possible to assign more than one individual for each task. Therefore, it is
available if any of the involved individuals match the “user state”.

4.3 The AUI model

Once the user model was defined, we define the AUI model. The AUI model
defines the UI without taking into account its modality.

Although the AUI layer introduced two new types of mappings to describe
the relationship between AIOs and Individuals, the extension does not introduce
new elements to AUIModel. Therefore, AUIs are described in the same way they
are described traditionally.

The Figure 8 depicts a partial view of the AUI model focused on the Patient
Role. On the left, we show an overview of the containers that are related to the
roles defined in the user environment. On the right, we show a detailed view of
the Patient role AUI.

Healthy Menu

Visitor Menu Doctor Menu Nurse Menu

Patient Menu

Patient Menu

idNumber

oIdNumber

desease

oDesease

drink

oDrink

iDrink

meal

oMeal

iMeal

dessert

oDessert

iDessert

accept

nAccept

cAccept

reject

nReject

cReject

Fig. 8. Partial Healthy Menu AUI model

Then, these AUI s are linked to Individuals to reflect the modifications in the
“user state” accordingly.

The Table 1 shows the Observes relationships that relate AC s and Facets to
Individuals . These relationships are defined in the mapping model and described
in terms of the Oc(I, AC) and the Of (I, F ) functions. While the Oc function
represents the ContainerObserves relationship, which relates an Individual I to
an AbstarctContainer AC, the Of function represents the FacetObserves rela-
tionship, which relates an Individual I to a Facet F .



AUI mappings

Containers

Oc(aPatient, PatientMenu)
Oc(aNurse,NurseMenu)
Oc(aDoctor,DoctorMenu)
Oc(aV isitor, V isitorMenu)

Facets

Of (anUser, nAccept) Of (anUser, oIdNumber)
Of (anUser, cAccept) Of (anUser, oDesease)
Of (anUser, nReject)
Of (anUser, cReject)
Of (aPatientWithHipoGlycemia, oDrink) Of (aPatientWithFever, iDrink)
Of (aPatientWithHipoGlycemia, oMeal) Of (aPatientWithFever, oMeal)
Of (aPatientWithHipoGlycemia, oDessert) Of (aPatientWithFever, iDessert)
Of (aPatientWithHyperGlycemia, oDrink) Of (aNormalPatient, iDrink)
Of (aPatientWithHyperGlycemia, oMeal) Of (aNormalPatient, iMeal)
Of (aPatientWithHyperGlycemia, oDessert) Of (aNormalPatient, iDessert)
Of (aPatientWithFever, oDrink) Of (aNormalPatient, oDrink)
Of (aPatientWithFever, oMeal) Of (aNormalPatient, oMeal)
Of (aNormalPatient, oDessert)

Table 1. AUI mappings

To conclude this section, we analyze the drink AIC defined in Figure 8 to
show an example of how to define the AUI and how to link it to the Individuals
defined in the user model.

From the AUI perspective, the drink AIC represents the component that is
in charge of providing users with the information about drinks. This information
may be input and output information (if the user is able to select the drink, i.e.
aNormalPatient), or may be output information only (if the user is not able to
select the drink, i.e. aPatientWhyHyperGlycemia). Therefore, two Facets (oDrink
and iDrink) were defined for this AIC.

From the Mapping perspective, lets analyze the individual aPatientWith-
HipoGlycemia and its relationship with the drink AIC. The Of (aPatient With
Hipo Glycemia, oDrink) is the only relationship between individuals and facets
of the drink AIC. Therefore, the drink AIC is an output control. However, if
we analyze the aNormalPatient individual, we see that the Of (aNormal Pa-
tient, iDrink) and the Of (aNormal Patient, oDrink) relationships define an in-
put/output relationship.

4.4 The CUI model

The CUI definition is based on two sensors: PollingGlucoseSensor and Polling
TemperatureSensor. Both of them are instances of the PollingSensor metaclass.
It also defines two instances of the PollingInterpreter metaclass, the GlucoseIn-
terpreter and TemperatureInterpreter.



Table 2 shows the mapping between the Patient role features and sensors.
The function Rp(Sp, Ip) represents the relationship between a PollingSensor (Sp)
and a PollingInterpreter(Ip). The function U(I, F ) represents an instance of the
InterpreterUpdates submetaclass of Updates, which relates an Interpreter to a
Feature.

CUI mappings

Sensors

Rp(PollingGlucoseSensor,GlucoseInterpreter)
Rp(PollingTemperatureSensor, TemperatureInterpreter)

Features

U(GlucoseInterpreter, Patient.glucose)
U(TemperatureInterpreter, Patient.temperature)

Table 2. CUI mappings

To illustrate the use of the elements defined in the CUIModel, we will expose
how the temperature feature is related to the environment.

The temperature is captured from the environment through a Polling Tem-
perature Sensor. To poll the sensor, we have to link it to a Polling Temperature
Interpreter in charge of requesting the sensor status and propagating it to the
rest of the system.

Finally, the Polling Temperature Interpreter is linked to the temperature fea-
ture of the Patient role to propagate the changes from the environment.

4.5 The HealthyScreen FUI

The result of the FUI of a Patient is depicted in Figure 9. The first capture
shows the UI for a Patient whose vital parameters are considered normal, the
second one shows the UI for a Patient whose body temperature is above normal,
and the third capture shows the UI for patients affected with HipoGlycemia or
HyperGlycemia.

Finally, we show how the elements defined by the user awareness extension
work together in this case of study. To see the effect of the user awareness, we
set the initial state of the individual as aNormal Patient. Then, we modify the
temperature feature of the individual, and we set it to 39 Celsius degrees.

This change in the temperature is captured by the Polling Temperature In-
terpreter that is constantly polling the Polling Temperature Sensor to be aware
of the changes in the environment (in this case the user). Once the interpreter
captures the information, it is propagated to the temperature feature defined by
the Patient role. All features are linked to the features constraints that reference
them. Thus, the chance is captured by the individual that is defined by these
constraints. If all the feature constraints that are defined by the individual are
satisfied then the individual is able to propagate this information through the



Fig. 9. Healthy Menu GUIs

IndividualObserves mappings to the AUI. Consequently, the UI is aware of the
changes produced by the change on the temperature level.

5 Conclusions and Future Work

This work exposes a model-based approach to develop user-aware multi-platform
and multi-modal UIs based on the UsiXML methodology. It encourages the
separation of the user modeling from the application domain to improve the
model reuse during the development of UIs.

The approach embraces all steps of the application. It means that covers from
conceptual modeling of the user environment to the specification of the sensing
infrastructure to support the different user profiles dynamically.

In the “Tasks & Concepts” step of the methodology, we introduced two lev-
els to define custom characterizations of the users. While the first level allows
designers to specify the user features that are taken into account by the appli-
cation, the second one allows designers to quantify these characteristics in order
to characterize a group of individuals that have common characteristics.

As consequence, designers are able to specify customized user characteristics
instead of standard characteristics that are difficult to interpret because of their
general nature. Besides, it provides designers the ability to characterize differ-
ent groups of individuals that define the same characteristics, and so the user
characterization can be easily reused.

This separation also allows the definition of static and dynamic characteris-
tics at the same time in the same space of definition.

Finally, another advantage of using the UsiXML methodology is the separa-
tion of the definition of concepts and tasks from the definition of UIs. Thus, the



characterization of users can be modified without having to modify the abstract
user interface model, and vice versa.

As future work, we are actually working in the definition of an extension of
the user awareness in order to model the social awareness of the user interfaces.
The social awareness allows the UI to be aware not only of the user is operating
it; it makes the UI be aware of other users that are part of the system. Thus, we
cover the description of the social environment of context aware applications.

Another issue we have considered as part of future works is the inclusion
of the location awareness as part of the UI specification to cover other context
aware characteristics of the UI, such as the infrastructure environment, user
position, etc.

Finally, we are also working on the definition of a common feature-based
framework allowing designers to express characteristics that are related to the
combination of the social and location features of context-aware UIs, such as the
co-location.

References

1. Barclay, P.J., Griffiths, T., McKirdy, J., Kennedy, J.B., Cooper, R., Paton, N.W.,
Gray, P.D.: Teallach - a flexible user-interface development environment for object
database applications. J. Vis. Lang. Comput 14(1), 47–77 (2003)

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting with
Computers 15(3), 289–308 (2003)

3. Crease, M., Gray, P.D., Brewster, S.A.: A toolkit of mechanism and context inde-
pendent widgets. In: Proceedings of DSV-IS. pp. 121–133 (2000)

4. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing
5, 4–7 (2001)

5. Eisenstein, J., Vanderdonckt, J., Puerta, A.R.: Applying model-based techniques
to the development of uis for mobile computers. In: IUI. pp. 69–76 (2001)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading/MA (1995)

7. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:
USIXML: A language supporting multi-path development of user interfaces. In:
Bastide, R., Palanque, P.A., Roth, J. (eds.) EHCI/DS-VIS. LNCS, vol. 3425, pp.
200–220. Springer (2004)

8. Luyten, K., Laerhoven, T.V., Coninx, K., Reeth, F.V.: Runtime transformations
for modal independent user interface migration. Interacting with Computers 15(3)
(2003)

9. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for developing and analyzing
task models for interactive system design. IEEE Trans. on Soft. Eng. 28, 797–813
(2002)

10. Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G., Sansone, S.: Authoring pervasive
multimodal user interfaces. Int. J. Web Eng. Technology 4(2) (2008)

11. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location.
Computers & Graphics 23(6), 893–901 (1999)



12. Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M., and, G.D.: A single
source authoring language to enhance the access from mobile devices to web en-
terprise applications. In: WWW2003 Developers Day Mobile Web Track. p. (not
printed). Springer Verlag, Heidelberg etc., Germany (2003)

13. Tesoriero, R.: CAUCE: Model-driven Development of context-aware applications
for ubiquitous computing environments. Ph.D. thesis, University of Castilla-La
Mancha (December 2009)

14. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces of
information systems. In: Proc. of 17 th Conf. on Advanced Information Systems
Engineering CAiSE’05. pp. 13–17. Springer-Verlag (2005)

15. Vanderdonckt, J.M., Bodart, F.: Encapsulating knowledge for intelligent automatic
interaction objects selection. In: Ashlund, S., Mullet, K., Henderson, A., Hollnagel,
E., White, T. (eds.) Proc. of the Conf. on Human Factors in computing systems.
pp. 424–429. ACM Press, New York (April 1993)

16. Weiser, M., Brown, J.S.: The coming age of calm technology. In: Denning, P.J.,
Metcalfe, R.M. (eds.) Beyond Calculation: The Next Fifty Years of Computing,
pp. 75–85. Copernicus (1997)


