
Model-based Design and Implementation of
Interactive Spaces for Information Interaction

Hans-Christian Jetter, Jens Gerken, Michael Zöllner, and Harald Reiterer

AG Mensch-Computer-Interaktion, Universität Konstanz,
Universitätsstraße 10, 78457 Konstanz, Germany
{hans-christian.jetter,michael.zoellner,

jens.gerken,harald.reiterer}@uni-konstanz.de

http://hci.uni-konstanz.de

Abstract. Interactive spaces with multiple networked devices and in-
teractive surfaces are an effective means to support multi-user collocated
collaboration. In these spaces, surfaces like tablet PCs, tabletops, or dis-
play walls can be combined to allow users to interact naturally with their
personal or shared information, e.g. during presentation, discussion, or
annotation. However, designing and implementing such interactive spaces
is a challenging task due to the lack of appropriate interaction abstrac-
tions and the shortcomings of current user interface toolkits. We believe
that these challenges can be addressed by revisiting model-based design
techniques for object-oriented user interfaces (OOUI). We discuss the po-
tential of OOUIs for the design of interactive spaces and introduce our
own object-oriented design and implementation approach. Furthermore
we introduce the ZOIL (Zoomable Object-Oriented Information Land-
scape) paradigm that we have used as an experimental testbed. While our
approach does not provide automated model-driven procedures to create
user interfaces without human intervention, we illustrate how it provides
efficient support throughout design and implementation. We conclude
with the results from a case study in which we collected empirical data
on the utility and ease of use of our approach.

Keywords: Interactive Spaces, Information Interaction, Zoomable User
Interfaces, Model-based Design.

1 Introduction

Recent work in Human-Computer Interaction (HCI) suggests the use of physical
work environments with multiple interactive surfaces (e.g. multi-touch tabletops
or walls) for the collocated collaboration of multiple users. These “interactive
spaces” are often used to support groups during the collaborative management,
presentation, and discussion of information items, e.g. in science, design, and
engineering [23, 7, 17]. Following the Weiserian vision of ubiquitous computing,
a fundamental requirement for such interactive spaces is a “natural” style of
human-computer interaction where computing interfaces ideally become invisi-
ble and unobtrusive. They vanish into the background of our familiar non-digital



2 H.-C. Jetter et al.

reality. Therefore the essential operations of our information interaction such as
viewing, editing, (re)locating, sharing, and annotating information items should
be provided by natural or “reality-based” interfaces. Following Jacob et al.’s no-
tion of reality-based interaction, such interfaces “draw strength by building on
users pre-existing knowledge of the everyday, non-digital world to a much greater
extent than before.” They attempt to make computer interaction more like in-
teracting with the real, non-digital world by employing themes of reality such
as users understanding of physical objects or their body and social skills. Fig. 1
shows an example of an interactive space and different reality-based interaction
techniques that can provide a more natural and fluid user experience that is ide-
ally not impaired by obtrusive computer user interfaces and technology-induced
barriers between them.

Fig. 1. A ZOIL-based interactive space as realized in our lab (top). Natural interaction
styles used in our ZOIL case studies, e.g. tangibles and digital pens (bottom).



Model-based Design and Implementation of Interactive Spaces 3

To this day, designing and implementing reality-based and tangible user in-
terfaces (UI) for interactive spaces is a challenging task. As discussed by Shaer
and Jacob, typical challenges are the lack of appropriate interaction abstractions,
the shortcomings of current user interface software tools to address continuous
and parallel interactions, as well as the excessive effort required to integrate
novel input and output technologies [22]. We believe that these challenges can
be addressed by viewing interaction through the lens of object-orientation. We
suggest to revisit the user interface modeling and design techniques for object-
oriented user interfaces (OOUI) from the 1990’s that have widely fallen into
oblivion and to apply them on today’s novel post-WIMP (post-“windows icons
menus pointer”) technologies and user interface toolkits. In this paper, we make
three contributions to this field of research: In chapter 2, we discuss why we
believe that this step into the past era of OOUIs has great potential for the
design of future computing environments and why this is especially true when
considering collaborative interactive spaces for reality-based information inter-
action. In chapter 3, we introduce the ZOIL (Zoomable Object-Oriented Infor-
mation Landscape) paradigm that we have used as an experimental testbed for
our model-based design and implementation approach. In chapter 4, we illustrate
and discuss our approach for modeling OOUIs in detail. While our approach does
not provide automated model-driven procedures to create user interfaces with-
out human intervention, we illustrate how it can provide efficient model-based
support throughout the design and implementation and we present results from
a case study in which we collected empirical data on the utility and ease of use
of our OOUI approach from designers and developers.

2 Objects in Collaborative Information Interaction

There is a variety of high-level frameworks in HCI for modeling information in-
teraction, e.g. Blandford and Attfield’s “information journey” [4] or the GEMS
model from Salminen et al. [15]. Typically these models consider information
interaction as a task-oriented series of phases of higher level activities that are
separated in time, e.g. recognizing an information need, acquiring information,
interpreting information, and using interpretation. Such generic frameworks can
be used as a starting point for interaction design: During a top-down design
process, these generic high-level activities can be contextualized for the targeted
application domain and can be hierarchically decomposed into domain-specific
lower level task models (e.g. essential use cases or scenarios). These are used to
define the abstract user interface architecture (e.g. the navigation map) and to
later flesh out the details of the concrete visual design of individual pages or di-
alogs. Such a task-oriented top-down design process (e.g. usage-centered design
[6]) creates interfaces that resemble virtual pathways to guide users through all
the stages, information resources, and interaction contexts that are necessary
for completing the tasks from the application domain. These page flows or se-
ries of dialogs define the virtual routes that users can take when working with
the system. Under the influence of the page-oriented World Wide Web, inter-



4 H.-C. Jetter et al.

action designers have become very experienced in designing interfaces as such
task-oriented stepwise conversations between a single user and a system that
move along predefined paths. They achieve great usability for domains with a
finite number of clearly defined tasks or business processes (e.g. in e-commerce).
However, we believe that in the post-WIMP era such purely task-oriented think-
ing during design and implementation cannot leverage the true power of today’s
novel ways of natural and collaborative interaction.

2.1 Task-Orientation vs. Object-Orientation

In the case of collaborative information interaction in post-WIMP environments
like in Fig. 1, designers have to consider interaction not only as a task-oriented
sequential process supported by a single interface and its hard-coded functional-
ity. In such settings, information interaction becomes a distributed, concurrent,
and sometimes seemingly chaotic activity that does not follow simple task mod-
els. Instead, the users’ actions are situated in a constantly changing social and
technological setting, in which multiple users at multiple points of action si-
multaneously pick up, use, manipulate, recombine, create, and destroy virtual
information objects without following clearly defined processes that terminate at
clearly defined goals. Furthermore, such post-WIMP environments with multi-
touch or tangible user interfaces) also afford more natural interaction styles.
Instead of clicking hyperlinks or widgets as an intermediary language to sequen-
tially converse with a system about intended actions, users want to continuously
touch, grab, and manipulate physical or virtual objects from the application
domain. Ideally the application domain itself becomes directly user-accessible
and user tasks are carried out by directly manipulating the objects representing
it. Thus the user interface changes its nature from being a task-oriented inter-
mediary language medium based on widgets into a computer-mediated world of
cooperating visual and tangible objects that provide users with more means for
flexibility, improvisation, and establishing individual working styles.

The challenge of designing and programming interfaces that are entirely
based on the direct manipulation of cooperating objects instead of sequential
conversations is not new. It is similar to the challenge that designers were fac-
ing during the advent of graphical user interfaces and direct manipulation in
the 1980s [22]. At that time, Hutchins et al. referred to this new kind of direct
manipulation interfaces as “model-world interfaces” as opposed to traditional
interfaces which have been designed with a conversation metaphor of human-
computer interaction in mind [10]. Model-world interfaces provide a coherent
and consistent overall representation of the application domain in which the
user can freely navigate and directly act on domain objects using a series of low-
level direct manipulations that in sum constitute the intended high-level tasks
and activities. Essentially, the design challenges we face now in the design of
interactive spaces are the same: How can we break down an application domain
and its higher level tasks into cooperating visual and tangible objects inside an
interactive space, in which higher level tasks can be carried out in natural ways
by lower level direct manipulations of objects?



Model-based Design and Implementation of Interactive Spaces 5

2.2 Revisiting Object-Oriented User Interfaces (OOUI)

In the 1990s, IBM introduced the term Object-Oriented User Interfaces (OOUI)
to describe a new kind of direct manipulation model-world interfaces: “An object-
oriented user interface focuses the user on objects - the “things” people use to
accomplish their work. Users see and manipulate object representations of their
information. Each different kind of object supports actions appropriate for the
information it represents” [21]. At that time, OOUIs were considered as more
usable due to the closer match between the application domain and its virtual
counterpart on the screen. Furthermore, unlike application-oriented user inter-
faces, OOUIs provided greater flexibility and consistency following a “flexible
structure-by object” instead of a “rigid structure-by function” [16]. Today, this
makes OOUIs particularly interesting for post-WIMP designs that are intended
to better support the unpredictable and ill-defined needs and actions of situated
users which cannot be anticipated by the task models of the design phase.

During OOUI design it is important to avoid unnecessary realism in interface
metaphors or an unintelligible plethora of different object types and behaviors.
To achieve this, OOUI designers employ rigid object-oriented mechanisms such
as inheritance, generalization, and polymorphism to analyze and model the es-
sential characteristics of the application domain. Thereby they view the domain
through the lens of object-orientation from a user’s perspective. Using these
mechanisms, the user-perceived similarities and differences between domain ob-
ject types are modeled in common base classes or subclasses. “Interactions should
be consistent across objects of the same class; where possible, operations should
be polymorphic - applicable to different object types. This reduces the number
of interaction behaviors and simplifies the interface” [5]. This way the mod-
eled class hierarchy can integrate very different types of domain objects into a
single model while preserving a maximum degree of consistency in interaction.
This model is then used to design and implement an interface with consistent
behavior, functionality, and appearance. If properly applied users experience a
“logical” behavior throughout the entire OOUI. Thus they can more easily apply
their previous experiences to infer their strategies for handling novel tasks.

Although OOUIs strongly influenced the design of the “desktop metaphor”
in today’s operating systems, OOUI design approaches have not been subject of
intense scientific research. Most efforts only lasted until the late 1990s (e.g. [1,
2, 16, 5, 21]) and after that there has only been some OOUI-related work in the
context of Pawson’s radical Naked Objects Pattern which tries to eliminate the
need for specific user interface design by making all code objects and data models
directly user accessible [18]. In conclusion, we are aware of only two publications
that have proposed entire OOUI design methodologies: IBM’s comprehensive
description of the OVID methodology in [21] and the brief description of Beck
et al.’s TASK methodology in [2].

The OVID methodology (Object, View, and Interaction Design) for OOUI
design was intended to bridge user interface and software engineering by using
the UML notation and modeling techniques of successful code design and com-
bine these with user interface design and usability engineering. At the heart of



6 H.-C. Jetter et al.

OVID is the designer’s model, a conceptual model that includes “descriptions of
the objects users will employ to perform their tasks, the properties of those ob-
jects, and the interrelationships between them” [21]. To identify the objects that
users have to act on and that should be provided to them on the user interface,
textual and formal notations of tasks (e.g. use case diagrams) can be used, so
that “task analysis will reveal information about what the users do and which
objects they work with”. Despite OVID’s comprehensive treatment in [21], only
high level descriptions of iterative design and prototyping are provided and many
of the necessary steps, rules, or tools remain unclear.

Before OVID, Beck et al. introduced the TASK methodology for integrating
OO analysis into graphical user interface design for desktop systems [2]. Dur-
ing TASK’s analysis activity, a task model and an initial object-oriented object
model is built, which is then refined to an object-oriented application specifica-
tion. This specification is used as a conceptual user interface model during user
interface design and the views, dialogs, and the actual screen representations
of conceptual objects are derived from it. The successful application of TASK
and its supporting tools is mentioned for the design of insurance and production
planning systems. However, the detailed tools, rules, and the amount of human
intervention for translating the conceptual user interface model into concrete
user interface design and its implementation are not revealed in detail.

3 Exploring OOUI approaches using the ZOIL Paradigm

To explore OOUI methodologies for the design and implementation of post-
WIMP collaborative information interaction, we have developed our own model-
based approach. Thereby, we have taken the promising parts from the TASK and
OVID methodologies and adapted them to the design of present-day multi-user
and multi-surface environments (see chapter 4). Three questions have been guid-
ing our work: Can we adapt OOUI analysis and design techniques and notations
to efficiently inform the domain-specific design of present-day interactive spaces?
Can we define concise translation rules for creating the initial visual and interac-
tion design for the user interface directly from our model in a simple step-by-step
process? How well can designers and programmers apply our OOUI approaches
and how do they assess their practical value?

As a testbed for our experimental approach, we have chosen our Zoomable
Object-Oriented Information Landscape (ZOIL) paradigm. ZOIL provides a ref-
erence interface design for interactive spaces, a reference client-server architec-
ture for distributed information interaction, and a software framework facili-
tating their implementation. Thus ZOIL provided us with the necessary infras-
tructure to efficiently explore our model-based approach. The ZOIL reference
design, architecture, and framework have been used before in different projects
to realize domain-specific prototypes for information interaction. For example
Jetter et al. have designed a ZOIL-based user interface for basic personal infor-
mation management for interactive television devices [12] and two interactive
spaces for discussion and presentation, e.g. for students of media science or for



Model-based Design and Implementation of Interactive Spaces 7

scientists in the field of nano photonics. Heilig et al. have designed an interactive
wall for a public library [9]. In future, Geyer at al. will be using ZOIL to create
collaborative design rooms for interaction design [8].1

A ZOIL-based interactive space consists of several interactive surfaces (e.g.
tabletop, tablet PC, wall-sized display) that serve as user terminals to access
the shared information space (Fig. 1 top). Each of the terminals thereby pro-
vides a window into a much larger planar visual workspace that contains all
the shared information and functionality of the application domain. This visual
workspace resembles a zoomable whiteboard of infinite size and resolution and
is called the “information landscape”. ZOIL’s zoomable information landscape
facilitates the navigation in the application domain and its information spaces
by “tapping into our natural spatial and geographic ways of thinking” [19]. All
domain objects and their relations are organized and visualized in space and
scale to foster natural visual-spatial approaches to accessing, sharing, and ma-
nipulating information. Regions of the landscape with items, piles, or clusters
can represent certain user activities, domain processes, or personal vs. shared
information repositories. The landscape is used as a flexible multi-scale medium
for visually accessing the application domain and its information spaces and ob-
jects. Content and functionality of an individual object can be accessed spatially
using panning and “semantic zooming” [19] without the need for opening folders
or dedicated applications and the then-necessary management of overlaying or
occluding windows (Fig. 2). This zoom navigation is also in line with reality-
based interaction: It draws strength from the users’ environment awareness and
skills, e.g. their familiarity with approaching, touching, moving, and organizing
objects in physical space and the simple fact that “all objects in the real world
have spatial relationships between them” [11]. Therefore visual objects at dif-
ferent locations and scales (e.g. virtual Post-It notes, project logos) can further
augment the landscape with global or relative landmarks that support orien-
tation. Furthermore, all regions of ZOIL’s landscape can be visually annotated
with ink strokes using stylus, touch, or digital Anoto pens on physical paper.
Annotations can also be made directly on objects, e.g. slides (Fig. 2).

Multi-user collaboration becomes possible by using ensembles of personal
and shared user terminals. All terminals inside the interactive space share the
same information landscape. All user-initiated changes to the content of the
landscape such as moving, resizing, rotating, or annotating information items are
immediately sent to a central server and synchronized with the other terminals in
real time (typically within 50-250 ms). However, what region of the landscape is
currently visible on each terminal can be individually controlled by the users. For
example, users can use a tabletop to interactively zoom into the tiniest details
of the landscape at many orders of magnification. At the same time they can
display the entire landscape on a peripheral wall-sized screen to provide them
with an overview for orientation when needed. The boundaries of the currently
visible regions can also be transmitted between terminals. For example, users

1 Videos of these prototypes are available at http://www.vimeo.com/12737554 and
http://hci.uni-konstanz.de/jetter/hcse2010.mp4



8 H.-C. Jetter et al.

can instruct the remote wall-sized display to zoom and pan to the region of
the landscape that is currently visible on the tabletop or vice versa. Thus, by
using terminals as “cameras”, the roles of stationary or mobile terminals can be
flexibly adjusted by the users depending on the group’s task and preference.

In large information landscapes, users also need efficient ways to find, filter,
and analyze single objects or specific clusters. For this reason, ZOIL also in-
tegrates physical and virtual “magic lenses” [3] that float above the landscape
and through which the underlying content of the landscape can be viewed (Fig.
2). These lenses provide movable filters and visualization tools such as lists, bar
charts, scatter plots, or tables to provide an analytical view on the landscape
and to facilitate the search and filtering of items using spatial metaphors.

Fig. 2. Left : Semantic zooming into objects in ZOIL uses the available screen estate
for smooth changes between iconic representations, metadata display, and full content
and functionality, e.g. for viewing, editing, or annotating the content. The example
shows a slide object (top) and a movie object (bottom) at different zoom levels. Right :
Physical or virtual magic lenses allow users to view the underlying landscape using
different information visualization tools.

To realize ZOIL’s distributed multi-user and multi-device ZUI, the refer-
ence architecture is based on a client-server architecture that provides and syn-
chronizes the data model of the information landscape for all user terminals or
clients within an interactive space (Fig. 1). Inspired by Prante et al.’s i-Land
with its COAST framework for object distribution [20], we have implemented
a dedicated ZOIL server and a client-side data backend as part of our ZOIL
software framework for C#/.NET that is based on the db4o object database
and its mechanism of transparent persistence2. For peer-to-peer communication
between clients and for input device connectivity, we have chosen the simple but
robust stateless Open Sound Control (OSC) protocol that can be used for UDP
broadcasting within the subnet of an interactive space and enables developers to

2 http://www.db4o.com/



Model-based Design and Implementation of Interactive Spaces 9

easily integrate novel input devices (e.g. Nintendo Wiimote Controllers or Anoto
digital pens) by connecting to input device middleware such as OpenInterface
[14] or Squidy [13]. Equally important for ZOIL’s realization is the framework’s
support for fast client-side rendering of complex rich-media zoomable user in-
terfaces. For ZOIL, we have chosen Microsoft’s Windows Presentation Founda-
tion (WPF) technology because of following reasons: First, the technology must
support high-performance hardware-accelerated renderings of vector-based user
interface components, so that smooth zooming animations over many orders of
magnification become possible without pixelation. Second, an initial set of fun-
damental user interface widgets such as buttons or sliders, but also more complex
widgets such as video players, document viewers of web browsers should be avail-
able from the start to accelerate implementation. Third, a declarative language
for user interface definition should be available that supports a clear separation
between business logic and visual presentation. In the following we discuss the
central role of WPF’s declarative XAML language in our model-based design
and implementation approach.

4 Model-based Design and Implementation with ZOIL

Fig. 3. An object-oriented conceptual model of a ZOIL user interface.

For our model-based design and implementation approach, we have employed
an object model similar to the designer’s model in OVID or the conceptual user
interface model in TASK as a core artifact. The model uses a UML-like nota-
tion to define what kind of information objects are visually exposed to the user
and become user manipulatable on the different terminals inside the interactive
space. Furthermore it reveals what attributes or metadata these objects carry
for the user, and what operations or behaviors these objects share and provide.



10 H.-C. Jetter et al.

Fig. 3 shows an example conceptual model for an interactive space in which users
can collaboratively explore hotel objects that are contained in ZOIL’s zoomable
information landscape using semantic zooming. Hotels carry (meta)data such as
the name of the hotel, a photo of the hotel, the country of the hotel, etc. Users
can add images from the Web or textual comments as user generated content.
Users can explicitly connect all hotels, images, and comments with visual links
to structure, annotate, or discuss. It is important to notice that Fig. 3 is not
representing the programmer’s model of the user interface or its code objects
and methods, but that it describes the classes, attributes, and operations of the
domain objects and conceptual objects that the user will perceive and act on
when interacting with the system’s OOUI. “The primary distinction that design-
ers and programmers must keep in mind is that OOUI design concentrates on
objects that are perceived by users. OO programming focuses on implementation
details that often need to be hidden from the user” [21]. Since the conceptual
model is used to inform design and implementation based on human interven-
tion, it is not necessary that the notation completely complies with the UML
standard and covers all details. It only has to cover the essentials of the UI from
a user’s perspective using a notation that has been agreed on and is intelligible
for all designers and programmers. In our exploration, we have experienced that
our UML-like notation used in Fig. 3 has met these requirements.

We have based our example of a conceptual model on typical user tasks
during collaborative holiday planning and an OO analysis of the surrounding
information space. Task analysis and OO analysis of the information space re-
vealed the objects and their relations, e.g. whether an object of a certain class
should contain or refer to one or many objects of a different class. These relations
are specific to the application domain and information space, e.g. the landscape
in our example contains 0-n objects of the class ContentItem, i.e. hotels, com-
ments, or images. Furthermore, all ContentItem objects can be linked to other
ContentItem object via a Link object. The OO analysis of the information space
also helps to identify the task-relevant metadata or attributes of an class that
should be provided to the users, e.g. alphanumeric fields such as Name and
Country of a hotel, or visual images such as the Photo of an hotel. In a ZOIL
user interface, objects also carry implicit visual properties such as position, size,
and rotation angle that are not provided to the user as numeric values but are
used to place and render objects. In Fig. 3 all these different attributes are listed
in the middle section of each UML class definition.

After having identified the task-relevant classes, relations and attributes of
objects, the bottom section of the UML class definition is used to specify the
functions or operations that objects of this class should expose to the user.
Based on the task analysis, basic operations such as creating, editing or deleting
an object have to be identified and have to be attached to the object itself or
to other user interface objects. For example a virtual Post-It note as Comment
object should become editable after zooming in to modify its content. Further-
more users should be able to delete outdated comments. Therefore a Delete()
function should be provided to the user that is attached to the object, e.g. a



Model-based Design and Implementation of Interactive Spaces 11

delete button similar to the close button of a GUI window. However, the func-
tionality to create a new comment CreateComment(...) must be attached to the
enclosing visual workspace or screen as the create-functionality must be acces-
sible before the Comment object itself exists. Other operations can be mod-
eled for facilitating the zooming navigation, e.g. an object can be assigned a
ZoomItemToFullScreen() functionality to offer an automated zooming that re-
veals all attributes, metadata, and operations by a simple tap or click on the
object. While modeling the operations of objects, further design decisions have
to be made, e.g. whether an object is movable, resizable, or rotatable. Also the
functionality that should be executed when using drag-and-drop manipulations
can be modeled. For example, the behaviors section of a class can define what
should happen as soon as an object of a certain class has been dropped onto it,
e.g. creating a link to the dropped object in CreateLinkToDroppedObj(...).

The design of the conceptual model should be accompanied by two continu-
ous activities to ensure its quality: First, choosing appropriate class hierarchies is
essential for the OOUI’s coherence and consistency. Therefore the model should
be continuously checked if all new commonalities in attributes and operations
have been modeled in common base classes. Second, during OOUI design the
higher level task models have to be decomposed into sequences of lower level
direct manipulations of objects and other invocations of their operations. In
many cases it is not immediately visible if a model covers all required tasks and
therefore this should be frequently verified. This can be achieved by manually
simulating a user task and using the conceptual model for a sequential walk-
through that checks if all necessary objects, attributes, and operations for all
tasks are available.

4.1 Model-based Design and Implementation of UI Objects

ZOIL’s reference design and architecture provide a generic design and implemen-
tation framework in which only the application-specific details of the user inter-
face and interaction design have to be fleshed out. Our model-based approach
provides the necessary translation rules in a simple step-by-step process, thereby
allowing designers to create initial sketches of visual and interaction design from
the conceptual model of the user interface. It furthermore enables designers and
programmers to easily turn the resulting sketches into an implementation model
for the user interface object based on XAML. This XAML code can then be
used to test the design as an interactive prototype. Our model-based translation
process can be described as a four phase process and is visually illustrated in
Fig. 4 for the example of a Hotel object.

The first step of the translation process is to decide which attributes and
operations of an object should appear on which level of semantic zooming. At-
tributes or operation can either appear globally at all zoom levels or they can be
assigned to different zoom levels, so that they only appear or become active after
the user has zoomed in. In Fig. 4, the Delete() function is global and appears at
all levels of detail. This is also true for the manipulation of the object’s position,
rotation angle, or size (Move(), Rotate(), Resize()) and its functionality to react



12 H.-C. Jetter et al.

to objects that have been dropped onto it such as CreateLinkToDroppedObj().
The most important attributes that a user frequently needs to recognize or re-
call an object (e.g. Photo or Name of an hotel) already appear at small zoom
levels in the early stages of zooming. The attributes only necessary for more in-
depth exploration (e.g. Stars, Country, Price) appear after enough screen estate
is available, e.g. on zoom level 3. This is also true for advanced functions like
ShowOnWallScreen() that shows a hotel on a shared wall-sized display.

In the second step, this assignment is used to sketch the global appearance
and behavior of the object (Fig. 4 top right). The different operations and their
triggering manipulations or widgets are modeled using simple sketches: In our
example, the typical multi-touch gestures known from tabletops or smart phones
are used for Move(), Rotate(), and Resize(). A zoom-to-full-screen animation is
issued by a single tap with the finger on an object (ZoomItemToFullScreen()).
Another item can be dragged on the object with the finger, activating the Cre-
ateLinkToDroppedObj() functionality if the item is of the type ContentItem.

In the third step, the individual zoom levels are sketched based on the as-
signments of attributes and operations from step one (Fig. 4 right). These sketch
models are created for each zoom level to move from conceptual design to the
concrete design of the visual appearance of objects. Since the necessary attributes
and operations for each zoom level are known, the complexity of the design task
is minimized and can be carried out with standard techniques.

In the final step, the sketch models of the different zoom levels are trans-
lated into the implementation model of the user interface object (Fig. 4 bot-
tom). This translation is supported by ZOIL’s software framework that extends
the declarative XAML user interface description language of WPF with ZOIL-
specific elements. By introducing ZOIL’s ZComponent user interface control, an
object’s appearance at different semantic zoom levels can be defined entirely us-
ing declarative approaches (similar to HTML) without the need for procedural
programming. The different zoom levels are managed by ZOIL’s ZComponent-
Frames container that selects the appearance of an object depending on the
available render size. To avoid harsh visual changes, zoom levels smoothly blend
between two appearances using an opacity animation. Furthermore designers
and programmers can easily assign predefined ZOIL behaviors to an object us-
ing the attached behavior software pattern3. This pattern helps to encapsulate
frequently used ZOIL-specific behaviors (e.g. “object can be manipulated with
multi-touch”, “object zooms to full-screen after tap”, “object is a target for drop-
ping another object”) in a central behavior library. Behaviors from the library
can be easily attached to classes or individual instances of objects using declara-
tive XAML code without the need to know procedural programming or to fully
understand the underlying class hierarchies. We believe that this combination of
the ZComponent object and the attached behavior pattern introduces a great
expressive power to the declarative XAML language and a very natural view of
interactive behavior into user interface programming. It greatly facilitates the

3 http://blogs.msdn.com/b/johngossman/archive/2008/05/07/the-attached-
behavior-pattern.aspx



Model-based Design and Implementation of Interactive Spaces 13

translation of sketch models with their visual appearance and behavioral proper-
ties into implementation models. As illustrated in the implementation model in
Fig. 4, the process of translating a sketch model in XAML is thereby a straight-
forward task that does not rely on advanced programming skills.

4.2 Case Study

In order to investigate the utility and applicability of our OOUI approach in
practice, we conducted a case study with 11 participants (9 graduate-level and
2 undergraduate students of computer science). The question guiding our study
was how well participants can apply our approach and how they assess its prac-
tical value during a small-scale project. We divided the participants into five
teams (4 teams with 2 members, 1 team with 3 members). In a first one-hour
session we presented our modeling approach to all teams: We created and ex-
plained a conceptual model of a ZOIL user interface for accessing a fictitious
image database. The teams were then given the assignment to create an own
conceptual model for a different ZOIL user interface until the next session in
two weeks. The user interface to model should allow users to explore and discuss
hotels as described in the example in the previous sections. We provided the
teams with the same input for their modeling and design activity that we used
ourselves to create the example model in Fig. 3, i.e. all teams were handed 8
informal functional requirements (e.g. “user must be able to add a textual com-
ment to the workspace”) and a list of 22 required object properties (e.g. “each
Comment has an Author”, “each Image carries Tags”).

Two weeks later, we carried out individual one-hour team sessions during
which each team completed three tasks. First, each team presented and explained
their prepared conceptual model. Then we asked the team to check if their model
really supports the 8 functional requirements by carrying out a walkthrough.
We then presented the team our alternative model (Fig. 3) and asked them to
validate this unknown model by another walkthrough. After this, each team
member filled out a questionnaire to rate the difficulty of the three tasks. At
the end of the sessions, the teams were instructed to design and implement a
user interface with the ZOIL framework based on Fig. 3 until the next sessions
in the following week. In these last sessions, each team individually presented
the resulting interactive prototype and each team member filled out a further
questionnaire to rate the overall usefulness of the modeling approach and the
difficulty to apply it on user interface design and implementation.

During the case study, all teams presented conceptual models that were for-
mally correct and supported the 8 functional requirements. All teams were able
to carry out a walkthrough to validate their own and unknown models. Fur-
thermore, the presented interactive prototypes covered the requested function-
ality. However, during the first and second session participants reported initial
problems regarding the unfamiliar use of UML class diagrams to model user
interfaces. Repeatedly participants mentioned that they sometimes had fallen
back into the familiar modeling of code objects and lost track of their original
intention to model the user interface from a user’s perspective. However, the



14 H.-C. Jetter et al.

Fig. 4. ZOIL’s translation process and rules to translate the object model to user
interface design and implementation.



Model-based Design and Implementation of Interactive Spaces 15

Fig. 5. Collected feedback from the questionnaires of the case study.

participants reported that they got increasingly used to the approach and found
it useful to support the design and implementation. Fig. 5 shows the results from
the questionnaires: the creation of a model (mean=3.45, sd=0.93) and checking
the own or someone else’s model with a walkthrough (mean=3.1, sd=2.9 and
mean=2.9, sd=1.14) was not considered as particularly difficult nor very easy.
This is rather encouraging, as the students were given only a very brief intro-
duction to the approach without any proper training phase. Furthermore, the
overall utility of the modeling technique was considered as useful (mean=4.1,
sd=0.99) by the participants. Regarding the early stage of our approach and
the unfamiliar use of object-oriented modeling and design for user interfaces, we
consider these results as a promising first evidence that OOUI approaches can
be indeed useful for designing interactive spaces.

5 Conclusion and Future Work

We have discussed why we believe that revisiting OOUIs has a great potential
for the design of future post-WIMP environments, particularly for collaborative
information interaction. We have introduced our ZOIL paradigm that we have
used as an experimental testbed for creating and evaluating our OOUI approach.
We have illustrated and discussed our approach in detail and have shown how
it can efficiently inform the design and implementation of user interface objects
following simple translation rules. Furthermore, we have presented promising
results from a first case study on the practical utility of our approach. At the
current stage, we consider our approach as a successful first step. However, ZOIL-
based interactive spaces offer a great design space and currently only small parts
of it have been covered by our approach. For example, the design of ZOIL’s
magic lenses, visualization tools, or the integration of physical objects or paper
is not covered yet. Therefore we will investigate how new and extended modeling
notations and translation rules can be used to cover these aspects in future.

References

1. Common User Access Guide to User Interface Design. IBM Corporation (1991)



16 H.-C. Jetter et al.

2. Beck, A., Janssen, C., Weisbecker, A., Ziegler, J.: Integrating object-oriented anal-
ysis and graphical user interface design. In: Software Engineering and Human-
Computer Interaction. vol. 896, pp. 127–140. Springer Berlin / Heidelberg (1995)

3. Bier, E.A., Stone, M.C., Pier, K., et al.: Toolglass and magic lenses: the see-through
interface. In: Proc. SIGGRAPH ’93. pp. 73–80. ACM, New York, NY, USA (1993)

4. Blandford, A., Attfield, S.: Interacting with information. In: Carroll, J.M. (ed.)
Synthesis Lectures on Human-Centered Informatics. Morgan & Claypool (2010)

5. Collins, D.: Designing object-oriented user interfaces. Benjamin Cummings, Red-
wood City, CA (1995)

6. Constantine, L.L., Lockwood, L.A.D.: Software for use. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA (1999)

7. Fitzmaurice, G.W., Khan, A., Buxton, W., Kurtenbach, G., Balakrishnan, R.:
Sentient data access via a diverse society of devices. Queue 1(8), 52–62 (2003)

8. Geyer, F., Reiterer, H.: A cross-device spatial workspace supporting artifact-
mediated collaboration in interaction design. In: Proc. CHI EA ’10. pp. 3787–3792.
ACM, New York, NY, USA (2010)

9. Heilig, M., Mischa, D., Rexhausen, S., Huber, S., Runge, O.: Search, explore and
navigate - designing a next generation knowledge media workbench. In: Proc.
SIDeR ’09. pp. 40–43. Eindhoven University of Technology, Eindhoven, NL (2009)

10. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Hum.-
Comput. Interact. 1(4), 311–338 (1985)

11. Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T.,
Zigelbaum, J.: Reality-based interaction: a framework for post-wimp interfaces. In:
Proc. CHI ’08. pp. 201–210. ACM, New York, NY, USA (2008)

12. Jetter, H.C., Engl, A., Schubert, S., Reiterer, H.: Zooming not zapping: Demon-
strating the zoil user interface paradigm for itv applications. In: Adjunct Proceed-
ings of EuroITV 2008. Springer (2008)

13. König, W.A., Rädle, R., Reiterer, H.: Interactive design of multimodal user inter-
faces. Journal on Multimodal User Interfaces 3(3), 197–213 (Feb 2010)

14. Lawson, J.Y.L., Al-Akkad, A.A., Vanderdonckt, J., Macq, B.: An open source work-
bench for prototyping multimodal interactions based on off-the-shelf heterogeneous
components. In: Proc. EICS ’09. ACM, New York, NY, USA (2009)

15. Lehikoinen, J., Aaltonen, A., Huuskonen, P., Salminen, I.: Personal Content Ex-
perience: Managing Digital Life in the Mobile Age. Wiley, Chichester, UK (2007)

16. Mandel, T.: The GUI-OOUI War, Windows vs. OS/2: the designer’s guide to
human-computer interfaces. Van Nostrand Reinhold, New York, NY, USA (1994)

17. Memmel, T., Reiterer, H.: Model-based and prototyping-driven user interface spec-
ification to support collaboration and creativity. J.UCS 14(19), 3217–3235 (2009)

18. Pawson, R., Matthews, R.: Naked objects: a technique for designing more expres-
sive systems. SIGPLAN Not. 36(12), 61–67 (2001)

19. Perlin, K., Fox, D.: Pad: an alternative approach to the computer interface. In:
Proc. SIGGRAPH ’93. pp. 57–64. ACM, New York, NY, USA (1993)

20. Prante, T., Streitz, N., Tandler, P.: Roomware: Computers disappear and interac-
tion evolves. Computer 37(12), 47–54 (2004)

21. Roberts, D., Berry, D., Isensee, S., Mullaly, J.: Designing for the User with OVID.
Macmillan Technical Publishing (1998)

22. Shaer, O., Jacob, R.J.: A specification paradigm for the design and implementation
of tangible user interfaces. ACM Trans. Comput.-Hum. Interact. 16(4), 1–39 (2009)

23. Wigdor, D., Jiang, H., Forlines, C., et al.: Wespace: the design development and
deployment of a walk-up and share multi-surface visual collaboration system. In:
Proc. CHI ’09. pp. 1237–1246. ACM, New York, NY, USA (2009)


