Application Composition Driven By Ul Composition

Christian Brel, Philippe Renevier-Gonin, Audrey &léz, Anne-Marie Déry-Pinna,
Catherine Faron-Zucker and Michel Riveill,

I3S Laboratory (UMR 6070 - Université Nice - SopAiatipolis et CNRS)
930 routes des colles — BP 145
{brel, renevier, occello, pinna, faron, riveill}@jytech.unice.fr

Abstract. Ahead of the multiplication of specialized applioas, needs for
application composition increase. Each applicatiam be described by a pair of
a visible part —the User Interface (Ul) —and a bitdghart —the tasks and the
Functional Core (FC). Few works address the problemajplication
composition by handling both visible and hiddentpat the same time. Our
proposition described in this paper is to startmfréhe visible parts of
applications, their Uls, to build a new applicatiaile using information
coming from Uls as well as from tasks. We base upersemantic description
of Uls to help the developer merge parts of foraggplications. We argue that
this approach driven by the composition of Uls kethe user during the
composition process and ensures the preservation asable Ul for the
resulting application.

Keywords: User Interface Composition, Application Composition,

1 Introduction

There are more and more software tools: on the melgmartphones, on laptops,
etc. Having so many widgets is interesting; howgteereach a friendly use, there is a
need to compose them. For example, a Smartphongroside its user with a diet list
and an application that gives restaurants closketoand their menus. She would
probably enjoy a second application filtering ormpdasing dishes from her diet list.

To construct new applications by reusing other iappbn sub-parts is a key
challenge of Software Engineering. This is a memaspeed up development cycles.
An interactive systems is composed at least of rectfonal part, usually called
Fonctional Core (FC),and a User Interface (Ul). &ver, in the HCI research field,
there is a strong recommendation of using a TaskeVI6TM) during requirements
analysis. The TM describes the needs and the puoegdo achieve these needs. The
TM is not often explicitly implemented, but it caxpress the relationship between
FC and Ul entities. We choose to use Ul as prinatifacts of the composition
process because Ul are the parts of applicatiomspuated by both developers and
ergonomic designers. We aim at enabling them teer@xisting Ul for creating new
applications while preserving user requirementsndfvidual original systems and
keeping some of the links between the FC part hadJ part in the resulting system.

In this paper, we propose to combine informatiothat three levels: FC, Ul and
TM. For this, we base the composition process an ghlection, extraction and
placement of the existing application's Ul as eletawy composition actions to
impact underlying task trees and FC part.The redeaiof this paper is organized in 5
sections, respectively, the description of othectiposition works, the presentation
of our model used in our composition, the overviEwur composition process, the
description of our implementation of the global gess and finally the conclusion.

2 Related Work

This section presents related work on Ul compasigmuped by their entry point
in the composition process according to the aptidinacutting: the Functional Core
(FC), the Task Model (TM) and the User Interfacé)(Bach entry point addresses a
specific problem of composition: presentation aagiolit consideration at the Ul
level, behavior of the application at the FC leugder needs at the TM level. We
classify works related to Ul compositions accordiagheir approach: an "X" in the
Table 1 means that corresponding work explicitkeinto account this part.

Table 1. Classification of composition approaches.

FC Ul Tasks

Developing adaptable user interfaces [9]

Amusing [8], ComposiXML [3]

C3W [11]

Task Models Merging [4]

Servface [7] X
Compose [2] X
Scenarios [12]

SOAUI [9], ALIAS [6], Transparent Interface[13] X X

XX | X

XXX X

We group related works in four categories:

« Works only considering Ul composition, either fafiing specific toolkit
for adaptive Ul [9], either based on abstract didin of Ul [8,3] or either
adopting end-user programming [11],

» Works only considering TM composition (compositimitwo task trees [4]),

« Works deriving Tasks in FC composition and later Uh composition,
because of generation Ul from service annotati¢rofthanks to specific
adaptable couple FC-UI [2] or deriving Tasks in[L2]

» And Works considering both FC and Ul compositioheTnain goal in [13]
is to maintain a stable Ul for using a compositidrvolatile service. The
SOAUI approach [9] derives web service compositionto Ul
composition, by searching the best-fitting Ul inrgpository for each
service and then Ul composition. The aim of [6]tésdeduce the Ul
composition from the FC composition.

We notice a lack in underlying composition proces>her the design of original
applications' Ul with man-crafted properties susteegonomic or usability is lost, or
both FC and Ul parts are no longer connected tegéththe resulting application, or
there is no Ul reuse. In the context of fast degmlent processes, reusing Ul without
keeping ergonomic and usability criteria is uselés®sing links between the Ul and
the FC parts engenders human interventions to cbrthe two parts which is error
prone and fastidious for large applications.

So we propose in our approach to mix informatiamfrall the levels to improve
the application composition. The collaboration kesw the three levels are expressed
in a unifying model, we call Enhanced Task TreeTE presented in the next section.

3. Enhanced Task Tree

In our approach, the process is guided by the cesitipp of former Ul and by
their reuse to build the new application. Our wdiskbased on a model that lets
consider information from Functional Core (FC) atidand from Task Model (TM).

3.1 Connecting Conception and I mplementation of the I nteractive System

We assume the decomposition in two parts of aniegifmn: the FC and the UI.
Links between both parts are difficult to analymethe code, so we use an external
description with references to some running objatts use the task model (TM) as a
pivot. The TM is established at design time fromuieements and user models. We
enhance it with information from the running obgdtor each initial application and
for each task, we add semantic annotations. Ifalh@wving, we call "Ul block" one
piece or a group of pieces of UFig. 1 shows an overview of the relationships
between the different entities: tasks, Ul Blockd &C part. As a result, to implement
our model, we need to retrieve from all the compoapplications both their tasks
description and the links between parts of their dgid parts of their FC. This
knowledge is represented in a so-called Enhancel Teee.

FCs g = -[FC
represematlon
) rep resentatlon
id
Uls -— --[}
represematlon

Ontology

Runnable entities

Fig. 1. Links between tasks, Ul tree and FC

3.2 Enhanced Task Tree Definition

We define three sets for each application:
« Let Ul the set of Ul blocks.
e Let T the set of tasks.
« Let FC the set of functionalities.

The sets FC, Ul and T of an application are definganalyzing this application
with the aim of extracting knowledge to create ahanced task tree (ETT). Such a
task tree includes the description of Ul (blockd dayout) and links with the
Functional Core (FC). This analysis is performedibyelopers.

Based on the ontology presented in the right patheFig. 1, we represent an
ETT by a knowledge graph linking the multiple copiien levels: it captures the
links between the tasks i and the Ul blocks idJI, and between the tasks ih
and the functionalities ifFC. A task may be linked to at least one FC or Ultiest
A Ul (and respectively a FC) is at least linkedbtm task.

With ETTs, we are able to extract the right parthef reused Ul in order to place
them in the new Ul without losing the links withetkC. ETTs enable composition at
different levels that we can express through fumgti In the remainder of section 3,
we present the composition functions we specifigdefich of the three levels.

3.3 Selection/Extraction of Tasksat Ul level

To represent the links between information, werdethree functions:
Let J a function associating to a Ul block the corresfiog tasks and its inversg
associating to each task its corresponding Ul [dock
Ul - THus{t,...t} LT - Ut {u,...u}

In order to go further than the simple Ul hieracchirelationship of container-
component, we can identify each Ul blockg{oonnected with a given Ul block "u",
i.e. {uk,Dk, 0,t;00(u) and u O Jl(tj)}. That connection is the

expression that all Ul blocks fpare required to perform the tasks associated with
the given Ul block "u". So it makes sense to extdraselection from the single Ul
block "u" up to the set of Ul blocks {4 according to the acknowledgment of the
developer.

3.4 Selection/Extraction of Tasksat Task level

Let 0 a function associating to each task all the taslkged to it:
p:TID Tt _>{tl,...,tn}|Di D{l...,n},r(t,ti) where r is a relation

representing the temporal operations between taséisthe hierarchy between tasks
from the CTT model [5].

Sometime, extracting only one task, like a dialog b select a file, may have no
sense, because the result of the task is not Ggeiflthe developer has selected a task
"t* through the Ul blocks selection by selecting thet of Ui blocks defined by

{uk,Dk,uk D 5_1(t)}, the developer has to extend that "t" up@¢). By this way,

the developer can select some (or all) tasks dyreetated to "t". So, the function
P00 retrieves the tasks attached to a given Ul blodie Tunctiony representing
the set of Ul elements selected by extension dfigial selection:

x:ulrm-urt

x{uiy,...ui,}) ={uis,... v} p>= n 00U, O OfL..n} 20 plo(ui,) ui, D67 ()

3.5 Selection/Extraction of Tasksat FC level

Let ya function associating to a task all its correspraméC elements:
y:TD - FC*;t M ~{fc,...,fc,} | i Of1,....n},clt, fc) where ¢ is a
relation representing the links between a functipnand the task it implements.

Like p, y enables extension of selection, but at a functiteeel, i.e. at the data
processing level. The retrieval of the functionaditattached to a given Ul block
relies on the functiong’o d and yo po0.

4. Composition Process

The goal of the process is to produce a new apmitaresulting from the
composition of Ul of former applications. The new isl composed of several parts
reused from former Ul and possibly of some new obdating parts like graphical
glue used to fill remaining voids.

Through a special Ul, the user (i.e. a developzajl$ each application containing
functionalities (and corresponding Ul blocks) to ihserted in the new application.
The loading step corresponds to the constructiothefmultiple level descriptions
introduced above. From each application’s Ul, hiecte Ul blocks to be reused.
Thus, he can compose his new application. He abtaironly one application the
different functionalities he wants to keep from teased applications.

The construction of the new Ul is done in thre@sigerated during the building of
the complete new Ul:

1. First, the developer makessalectionof pieces of Ul to be reused in the new
Ul. Here we check whether the selected Ul blockaigd or not. To be valid,
a Ul block must enable the end user to completelsfopm one or more
functionalities. He may either select an entireeenrto add in the new Ul, or
select a Ul block to be reused in the new Ul, decteseveral Ul blocks. In
that case, the relative positions of the selectedks in the initial Ul are
kept and they are placed in a new undividable Otk

2. If the selected Ul block is not valid, we propodee textraction of
complementary pieces of Ul to “validate” the sdmet During this
extraction step, questions are asked to the desetophelp the validation of
the Ul block. This step constitutes the extensibthe selection.

3. Once the selected Ul block is valid, the third stepsists in th@lacement
of it in the new Ul through various possible layguThe selected Ul is an
entire screen, he has the possibility to placecssdescreen in the new screen
flow. If it is a Ul block, he can place it in thersen according predefined
layouts that are proposed to the developer to defia placement in a screen
or in a group of Ul blocks.

5. Implementation: Ul for Composing Ul

We developed a proof of concept to perform a fiedidation of the different steps
of the process we propose. It is made of (i) a dJigtaphically compose several
applications and (ii) several well-built applicat® By “well-built application” we
mean that it is developed with a clear separatietvéen the Ul and the Functional
part. Moreover, both parts of the application apebiic’: for the Ul part, we can
explore all Ul Components starting from the maimdaw (and its content pane); for
the FC part, we get all the called methods, i.e. Functional part is accessible
through a facadé. By “well-built application” we also mean thatig provided with
an external description, its Enhanced Task TreeT{EThe whole development is
made in Java.

5.1 Enhanced Task Tree

ETTs are represented in RDRhe W3C standard for the Semantic Web; the
ontology is represented in RDF$he W3C standard for light-weight ontologies. To
implement our composition mechanism, we use thee$f1l] semantic web engine
to process and query the RDF representations dliffexent parts of the application.
We implement the function®, 0 and y by SPARQL queries over the RDF(S)
representation of the ETT.

Our model of tasks is based on CTT [5] and our @dtet is based on MARIA [7]
(we added some Ul elements like graphical glugterdescription of Ul component
tree). In our RDF models, there are referencesat@ Dbjects both for Ul and FC.
Thus, we define a unique ID for each Ul componbased on the main class of the
application and the place of the Ul component ia ttomponent tree. For the
Functional part, we define a unique ID based ohf#sadé class and method name.

5.2 Selection and Extraction

We developed a Ul for manipulating the differenpligations the user (i.e. a
developer) wants to compose. This tool lets theebiger compose his new

L http://mww.w3.org/RDF/
2 http://iwww.w3.org/TR/rdfschema/
3 http:/mww.w3.org/TR/rdf-spargl-query/

application, place the different elements and savead a composition already done.
The developer performs the selection step by iotemg with the former Ul and by

controlling those interactions with our tool for niyulating. Indeed, our tool enables
to activate or deactivate the interaction in thanfer Uls (by adding / removing initial

graphical event listeners) and the selection p¢bg adding / removing our own
graphical event listeners)

The extraction step is interleaved with the setectitep: each time a (group of) Ul
component(s) is selected, its extraction is deteechias a set of questions asked to the
developer. Because we have an access of the teskcorresponding to actions
performed through the interface, we are able tonwhe developer of the need of
extracting other components linked to the selecteehponent. The developer can
deactivate the questioning.

5.3 Placement

For this step, we propose to place components leetveach others, through
relative positions like “above of”, “on the right’p“on the left of”, etc...

We express conditions with RDF properties and wedform these conditions in a
Java layout. At the same time, the Corese engidaads relative layouts thanks to a
base of 14 inference rules we wrote. For examptanfabsolute positions of two
different Ul components, our rules enable Coresedéoluce whether the first
component is on the left, on the right, above dowethe second component. This
deduction is necessary to provide a relevant feddiba the developer during the
placement step.

6. Conclusion

In this paper, we proposed an original processcasghe manipulation of Ul that
improves the composition result in terms of Ul desieuse while preserving the links
between FC and Ul parts.

Our process is made of three steps: selectiona&idn and placement of former
Ul blocks. Each of these steps uses the enhancsdd ttaes associated to the
applications to compose and to build a new task lteeping some links between the
parts of applications. The originalities of the posed process are: (i) in its starting
point (the Ul) but with a cover of also Task Modeld Functional Core; (ii) in our
commitment to reuse former Ul (including their dgsiproperties). Moreover, its
strengths are: (iii) in the possibility to buildethresulting enhanced task tree in
function of the user actions on the former Ul aindliQ the extraction of the right part
of the Ul and its placement in the new Ul withaagihg the links with the FC.

Our approach must to be improved before perforrtéisg with developers. Indeed,
we are working on merging Ul blocks, at differeewéls (FC, TM or Ul), according
to the compatibility of manipulated entities and iyporting adapters given by the
developer.

7.

Acknowledgments

Our work is funded by the DGE M-Pub 08 2 93 070gjgut.

References

10.

11.

12.

13.

Corby O., Dieng-Kuntz R., and Faron-Zucker C.. Quayyine semantic web with the
corese search engine. In 16th European Conferenéetifinial Intelligence (ECAI2004),
10S Press, Valencia, Spain, 2004.

Gabillon Y., Calvary G., and Fiorino H.. Composingeiactive systems by planning. In
UbiMob’08, pages 37—40, Saint Malo, France, 28 nz0 2008.

Lepreux S., Hariri A., Rouillard J., Tabary D., TarB.-C., and Kolski C.. Towards
multimodal user interfaces composition based ommnuisiand mbd principles. Lecture
Notes in Computer Science, 4552(134):134-143, 2007 .

Lewandowski A., Lepreux S., and Bourguin G. Tasksdels merging for high-level
component composition. Human-Computer Interactiart R HCIl 2007, Lecture Notes
in Computer Science (LNCS), 4550:1129-1138, July 2007

Mori G., Paternd F., and Santoro C. Ctte: Supportdeveloping and analyzing task
models for interactive system design. IEEE Trarnieaston Software Engineering, pages
797-813, Aug. 2002.

Occello, A., Joffroy, C., Pinna-Déry, A.-M., Renavi®. and Riveill, M. Experiments in
Model Driven Composition of User Interfaces. In 10fhP International Conference on
Distributed Applications and Interoperable SystefPIS'10), volume LNCS 6115,
pages 98-111, Amsterdam, Netherlands, 2010. SprMeeag.

Paterno F., Santoro C., and Spano L. D.. Maria: Avarsal, declarative, multiple
abstraction level language for service-orientediegfions in ubiquitous environments. In
Computer-Human Interaction (TOCHI), volume 16, No®20

Pinna-Déry A.-M. and Fierstone J. Component model mrogramming: a first step to
manage Human Computer Interaction Adaptation. IniMdtCI’03, volume LNCS 2795,
pages 456-460, Udine, Italy, Sept. 2003. L. Chitt&ch), Springer Verlag.

Tsai W.-T., Huang Q., Elston J., and Chen Y. Serdadented user interface modeling
and composition. In ICEBE '08, pages 21-28, WaslkimgDC, USA, 2008. IEEE
Computer Society.

Grundy J.C. and Hosking J.G. Developing AdaptablerWsterfaces for Component-
based Systems. In Interacting with Computers, Volithe?, pages 175-194., March
2002, Elsevier Science Publishers.

Fujima, J., Lunzer, A., Hornbaek, K. and Tanaka, Yp,GTonnect, Clone: Combining
Application Elements to Build Custom Interfaces lftiormation Access, In Proceedings
of UIST 2004, pages 175-184, Santa Fe, NM, 2004.

Elkoutbi, M.., Khriss, I., and Keller, R.K. GeneraiUser Interface Prototypes from
Scenarios, In RE'99, Fourth IEEE International Sysijpm on Requirements Engineering,
pages 150-158, Limerick, Ireland, June 1999.

Ginzburg, J., Rossi, G., Urbieta, M. and Distantd Eansparent interface composition in
Web Applications, In proceedings of Web Enginegriviolume 4607, pages 152-166,
Heidelberg, 2007, LNCS, Springer

