

Embedding a Design Studio Course in a
Conventional Computer Science Program

Saul Greenberg
Department of Computer Science, University of Calgary

Calgary, Alberta Canada T2N 1N4
WWW home page: http://www.cpsc.ucalgary.ca/~saul/

Abstract. Within undergraduate Computer Science, Human Computer
Interaction is often considered a blend of user-centered requirements analysis,
design, implementation and evaluation. While most are teachable within the
constraints of a conventional undergraduate lecture course, design is much
more difficult to pass on. We know that design-oriented programs (e.g., arts,
industrial design, and architecture) teach design practice as arising from the
culture of a design studio. The problem is: how can we pass on the best
practices of design studios within traditional programs that follow a standard
lecture/tutorial format? My solution was to create a design studio atmosphere
within a lecture/tutorial time-frame. Over the semester, students are introduced
to four quite different state-of-the-art interaction domains, each chosen to
minimize students’ pre-conceived notions of what comprises a ‘standard’
design within these domains. They are given substantial freedom to design
projects within these domains. They are required to sketch out their ideas and
publicly show these sketches to other classmates for critique. Idea exchange is
encouraged, where classmates can use parts of each other’s ideas in their own
work (conventional courses call this ‘cheating’). Many lectures are replaced by
studio work where students develop their designs during class time. Thus
students and instructors see each other’s work as it is being develop, they share
tricks and techniques, and they engage in on-going commentaries. Students
demonstrate final projects publicly within a design critique setting. Finally,
every student has to create learning and professional portfolios illustrating
their work using a mix of paper and electronic mediums.

24 Saul Greenberg

1 Introduction

Human Computer Interaction (HCI) undergraduate education is expanding far
beyond what it used to be. Teaching HCI was once constrained to a single class
module or (if lucky) a single junior or senior-level course within computer science or
psychology curriculum. Now, HCI programs are emerging that are centered on
training students to become HCI professionals. Such programs are often inter-
disciplinary, where they train students through a balanced pedagogy including
design, engineering, evaluation, requirements engineering, and business practices.

While these programs point the way, the reality is that they are few and far
between. Most are offered as post-graduate professional programs at prestigious
institutes (e.g., CMU’s Human-Computer Interaction Institute; Stanford’s D-School
Institute of Design). A few institutions have similar offerings available at the
undergraduate level, usually as specialized interaction design programs outside of
Computer Science departments (e.g., University of Queensland’s Information
Environments program [1]; Simon Fraser University’s School of Interactive Arts and
Technology). Most programs, whether undergraduate or graduate, are tailored to
students who want to be HCI professionals or information architects. They do not
help the vast masses of computer science students who plan to be software engineers
but who could still benefit from strong HCI training.

Thus for most computer scientists, HCI is taught as a mix of user-centered
requirements analysis, design, implementation and evaluation within the constraints
of a conventional undergraduate lecture course. While many of these topics are
amenable to the lecture setting [2], the subject of design is much more difficult to
handle in a lecture setting. Quoting Reimer and Douglas [3]:

Traditionally, HCI design has been taught as an abstract process of iterative user-
centered design with a recommended set of design aids such as task analysis,
GOMS, guidelines, heuristic evaluation and usability testing. During a typical
HCI course there might be an occasional practice exercise for the student to
evaluate and even improve, for example, an interface with poor usability. Adding
a team-based final project to design, implement and evaluate a working interface
provides more experience in actual HCI design, but still falls short of teaching
the student good design of a real-world artifact while engaging in a real-world
design process. In these courses we leave it to faith that students will be able to
make the transition from theory to practice. [3, p.192].

Indeed, the whole process of generating and developing interesting design ideas
within an HCI course structure is often at odds with usability and evaluation criteria.
For example, creative design in HCI is often taught ‘by example’: students are
introduced to many interesting and novel interaction techniques generated by others
(e.g., I teach a long module on information visualization methods to encourage
students to design interfaces using these methods [2]). Yet in my experiences,
students who apply some of these novel methods to their initial project ideas tend to
put them aside in favor of a traditional interface. This is because the many usability
principles they are taught suggest that people will fare better with interfaces that are
familiar to them, e.g., through positive transfer and learnability. As well, students

Embedding a Design Studio Course in a Conventional Computer Science Program 25

consider unusual interfaces as ‘riskier’ than conventional interfaces in terms of how
they would fair in a usability evaluation – and many instructors use usability
evaluation as a criterion of design competence. For example, I have seen quite a few
students suggest initial designs based upon information visualization techniques, and
then discard these designs because they were concerned they would not do as well
as, say, a traditional database table interface. And they are probably correct, for
relatively small factors in novel designs – factors that could perhaps be corrected
over time – could have a profound effect on people’s performance. Thus students
tend to follow safe conventional designs rather than push the design envelope.

The question is: how can we engage computer science students in the practice of
design by creating an environment that is conducive to it? The answer may seem
obvious. We know that design-oriented programs (e.g., arts, industrial design, and
architecture) teach design practice as arising from the culture of a design studio [4],
and this practice can apply to HCI as well [5,6,7]. In related work, Reimer and
Douglas [3] nicely summarize the design studio pedagogical model as: learning by
doing through an experiential pedagogy and by using teachers as resources;
integration of theoretical knowledge; creating realistic artifacts through a
professional design process where these artifacts are the primary basis of assessment;
and primary teaching through a design critique – aka design crit. They also elaborate
several important properties of the studio environment that helps realize this
pedagogy. These include specialized studio rooms that are inhabited by the student
peer group for substantial periods of time. In turn, the studio becomes a place where
students do their on-going designs, where students constantly see each other’s work,
where they communicate to each other, and where they share practices. This leads to
a communal design input, design reflection, and on-going design critique.

Given that the design studio is key to nurturing design pedagogy, the real
problem facing computer science educators is: how can we pass on the best practices
of design studios within traditional programs that follow a standard lecture/tutorial
format and classroom constraints?

This paper describes my solution to this problem: how to create a design studio
atmosphere for computer science students within a traditional lecture/tutorial
timeframe and limited workroom availability. Of course, others have also tackled
this problem either in courses or by proposing design methodologies [e.g., 1, 3, 8, 5;
see also other publications in this book], but each in their own way. Indeed, a recent
ACM CHI Workshop had as its theme the question of how one supports a design
studio culture in HCI [6]. I don’t argue that the course described below is ‘better’.
Rather, it complements and overlaps other approaches, where it adds to the richness
of possibilities that course designers can choose from.

The purpose of my studio course is to have students experience the ‘best
practices’ of design. In parallel, they learn several emerging areas within Human
Computer Interaction, and become well versed with tools that let them develop
prototypes within those areas. The gist of the course is summarized below.
x The course repackages the standard Computer Science lecture/tutorial time slots

into a single ‘studio’ time slot.
x It creates a temporary studio by having all classes in a computer-equipped

classroom, with at least one computer per student.

26 Saul Greenberg

x Over the semester, students are introduced to four quite different state-of-the-art
interaction domains. Each domain is chosen to minimize students’ pre-conceived
notions of what comprises a ‘standard’ design within these domains.

x They are given substantial freedom to propose design projects within these
domains.

x They are required to sketch out a multitude of ideas, and publicly show chosen
sketches to other classmates for critique.

x Idea exchange is encouraged, where classmates can use parts of each other’s
ideas in their own work (conventional courses call this ‘cheating’).

x Many lectures are replaced by studio work, where students develop their designs
during class time. Thus students and instructors see each other’s work as it is
being develop, they share tricks and techniques, and they engage in on-going
commentaries.

x Students quickly learn and use specialized software toolkits that let them rapidly
prototype and implement their design ideas within each domain.

x Students demonstrate final projects publicly within a design crit setting.
x Every student has to create a portfolio illustrating their work using a variety of

formats (e.g., paper, poster, video, web).
Details are described below. I begin by describing the basic course structure. I then
elaborate on the primary pedagogical artifacts used in this course: the design
projects, the sketchbook, and the portfolio. I close by summarizing student outcomes
that I have seen after teaching this course for several years.

2 Course Structure

Making a design studio concept work within the constraints of a conventional
computer science program structure is challenging but quite doable. I begin with a
discussion of how I created and scheduled the studio and class size, and then move
onto the life cycle of student projects that formed the student design activity. The
context is that this is the student’s second course in HCI; the first has already
provided the basic background to HCI [2].

2.1 Scheduling

The first issue is scheduling: how can we get sufficient continuous contact time,
where all students are working together? At our university, a normal course is
typically taught by the instructor through either three 50 minute or two 75 minute
lectures per week. These lectures are augmented by two 50 minute tutorial sessions –
often scheduled at odd times of the day so as not to conflict with other lectures – and
usually run by the teaching assistant. Following conventional practice would restrict
the ‘studio’ time to just the tutorial sessions, which is clearly insufficient. What I did
was schedule a 75 minute and 50 tutorial back to back (with a short 15 minute break
in-between), thus forming two 2½ hour slots per week as the studio time. While
administrators thought it odd that I would request the two together, the primary

Embedding a Design Studio Course in a Conventional Computer Science Program 27

challenge was to find a 2½ hour block of time that did not conflict with other courses
that students would likely want to take.

Of course, 5 hours of studio time per week is still far short of the much longer
studio times scheduled in design disciplines (e.g., the introductory design studio
course in our industrial design department is 4 hours / day where 4 days a week is
not unusual). Still, 5 hours is much better than the standard computer science tutorial
time offerings.

2.2 The Studio

The second issue is how to create a physical design studio. This is more challenging,
for there were no dedicated facilities at my disposal that I could take over for
exclusive student use. Instead, I booked one of our instructional computer
workrooms (normally open to all computer science students to do their assignments,
where a teaching assistant may give an occasional presentation) for use as our
pseudo-studio. This again required just a bit of scheduling. Consequently, all contact
hours were spent in a computer workroom. Thus during the 2½ hour classes, each
student had their own computer, and no outside students were allowed in the room.
Students also tended to linger after class (or come to it before class) to continue their
work.

This room was already instrumented with a screen and projector connected to a
single computer. I set up additional wiring (just a second long monitor cable) so that
I could quickly plug the projector into any student’s workstation as well. This meant
that, at any time, any student could project his or her work to the class.

2.3 Numbers

The third issue is student numbers. Normally, class attendance is open-ended, and it
would be easy to admit too many students to make a studio-based approach
unworkable. I set a cap of 15 students. This sufficed to form a critical mass, but was
sufficiently small to encourage cross-student interaction and to make sure that all
students could demonstrate their work within the 2½ hour studio blocks. A class
population of 15 was also considered large enough not to ‘raise eyebrows’ at the
administration level.

2.4 Design Projects

The heart of the course is a series of 4 design projects, each within a different
interaction domain (see section 3). While students were encouraged to consult with
one another, each student had to design, implement and demonstrate their own
individual project. Each would be graded independently on their project design.

An issue is how to get students to think about these projects as design exercises.
To set the scene, students were given fairly open ended project exercises within new
and unfamiliar interaction domains. They were encouraged to be highly imaginative
in what they created – artistic, speculative, and entertainment projects were valued as

28 Saul Greenberg

much as a project oriented toward work productivity. For example, the project
description below is for designing within the domain of single display groupware.

You have been hired to create a demonstration of a single display groupware
(SDG) system that allows 2 to 4 people to interact over a single display using
multiple mice and (optionally) multiple keyboards. Your demonstration should
illustrate at least one object that gracefully reacts to multiple people using it
simultaneously, which in turn is embedded in an application that exploits it. You
have complete freedom of your design, as long as you can show that the SDG
object and its containing application are useful for its intended audience, and that
its design is somewhat impressive.

2.5 Software as New Media

As will be detailed in section 3, each design project required students to work with
different specialized media, which in turn allowed them to rapidly develop
prototypes in different design domains. This new media came in the form of state of
the art software toolkits. I pre-installed all specialized software and toolkits on the
computer lab computers, so that students did not have to waste time configuring the
system. I also recognized that while many students would continue to work in this
studio space outside of class time, many would also work at home. Thus I made sure
that all software was available for download, and instructed them on how to transport
their own software between home and work. As well, they could optionally install
this software on their own laptops and use that as their primary machine.

As a cautionary tale, installing non-conventional software on department
computers was no easy matter. At our site, computers are ‘locked down’ for security
purposes, where they restrict how software can be installed and how they are used.
Yet much of the new software pushed the security limits of our department
computers. Our technical support people had to go out of their way to make the
software work, and I had to do extensive testing to make sure the software worked as
it should. In contrast, students found it trivial to install the software on their home
machines, as these rarely have the same level of security management.

2.6 Project Design Cycle

Students then went through the following cycle for each of the 4 project domains.
1. Week 1, 1st class: background and example of the design interaction area.

Through a lecture, students were introduced to the interaction area. The lecture
typically provided conceptual foundations to the area, and then walked through
many, many examples of designs produced within this area. Designs were
illustrated by photos, videos, and running demonstrations. The student’s
homework was to come up with their own ideas of a design within this area,
where they had to produce a variety of sketches (see section 4 - Sketchbook).

2. Week 1, 2nd class: sketch presentation and toolkit introduction. At the beginning
of class, I passed around a digital camera. Each student was asked to select and
take a photo of their ‘best’ idea in the sketchbook. I then projected these sketches,

Embedding a Design Studio Course in a Conventional Computer Science Program 29

and each student was given about five minutes to explain their sketch. Every
student had at least two other students critique their idea - we seeded this by
asking observing students to say the best and worst thing about the design, and
suggestions for improving it. To encourage idea sharing, I told students to copy
design features that they liked into their own sketchpad (with attribution), which
they could then use in their own designs. The second part of the class was an
introduction to the toolkit. This was a hands-on tutorial where we walked
students through a simple ‘hello world’ style example. Students were lock-
stepped; all had to master a step before we went on. Thus at the end of the class,
students had seen each other’s ideas, and had a basic understanding of the toolkit
capabilities. The students’ homework was to modify their design based on what
they had seen others do, and to leverage both the opportunities and limitations of
the toolkit.

3. Week 2, 3rd class: hands-on in-depth toolkit laboratory, and design elaborations.
The tutorial on the toolkit continued, where more sophisticated examples were
demonstrated. Again, all students worked through these examples in lock-step.
Afterwards, students were asked to describe their design changes. This sometimes
happened in a public setting, or by breaking students up into small discussion
groups, or one-on-one with the instructor and/or teaching assistant, or a mix of all
approaches. If time allowed, students started programming their design. The
students’ homework was to work on their design and implementation.

4. Week 2, 4th class to Week 3, 6th class: design elaboration and implementation.
Students worked on their designs in class. While many were also programming
their systems outside the class, they had to have a working copy that they could
bring into class to continue their work. During this time, students were
encouraged to show their on-going work to the instructor and teaching assistant
(who were constantly walking around) and to other students, and more
importantly to engage in discussion and critique. They were also encouraged to
share technical ‘tricks’ with one another, i.e., on how they mastered the new
media through the toolkit. This usually happened when one person was showing
their work to others, who would then ask how they managed to implement a
particular feature. When that feature looked generally valuable, we would plug
the projector into that student’s computer, who would then show the class how to
do it. The students’ homework was to continue the design, and to begin
developing their web-based and paper-based portfolio description of their design
(section 5 Portfolio).

5. Week 4, 7th class: demonstrations. Students would demonstrate their final system
to the entire class within a design crit structure. Each student would typically start
with the portfolio entry on the web site, then move onto a live demonstration. At
the same time, the paper-based portfolio entry would be passed around. After the
demonstration, all students were expected to participate in the ‘crit’ of the work,
emphasizing its positive aspects and potential flaws, and how to improve the
design.

Interspersed between classes were other events to encourage design skills. These
included rapid-fire design exercises where students (sometimes in groups) would
have to create a design that solved a specific problem. It also included discussions,

30 Saul Greenberg

applications and examples of best practices, e.g., in the use of a sketchbook, in
portfolio construction, in lateral thinking, in rapid prototyping methods.

3 Selecting Design Domains

Over the semester, students have to sketch (section 4), design and implement,
demonstrate and record via a portfolio (section 5) four projects, each in quite
different areas of interaction design, following a particular design process (section
3). I choose project areas around the following criteria, which I believe makes them
well-suited for beginning computer science designers.

3.1 Novel Interaction Paradigms, rather than User-centered Problems.

Projects are centered on particular interaction paradigms, rather than user-oriented
problems. This may seem at odds with an HCI course. However, recall that this is a
second HCI course; in the first course, students had already experienced the
pedagogy of developing a system based upon a user-centered requirements analysis
[2]. By having projects fashioned around a novel interaction paradigm, I believe that
students would be more willing to pursue risky designs as a way of exploring that
interaction space. At the same time, students would be introduced to an emerging
area of HCI.

3.2 Personally Unfamiliar Interaction Area.

I choose interaction paradigms that are emerging but not yet in every-day common
usage. Thus students likely have little prior exposure to commercial systems in the
project area. My expectation is that students are much more likely to come up with
their own novel design, as they cannot fall back on standard solutions that they see in
routine use.

3.3 Engaging and Futuristic.

To motivate students, each interaction paradigm has to be in an engaging area, i.e.,
as an emerging paradigm in HCI and/or as a research area. Motivation is very
important: when undergraduate students believe they are working at the frontiers of
computer science, they can do amazing things.

3.4 Availability of Rapid Development Tools within that Area.

I strongly believe that students are heavily influenced by their development tools.
The offerings of software toolkits are akin to media in the arts: glazes in pottery,
paints in painting, wood and tools in woodcrafts. Students learn to think in terms of
the affordances of the media, where the media suggests solutions to particular

Embedding a Design Studio Course in a Conventional Computer Science Program 31

problems. I further argue about the importance of toolkits in fostering creativity in
greater detail in [9].

Thus I select interaction areas with the proviso that rapid prototyping and
development tools are readily available. These tools must be in the form where they
are easily and quickly learnt. While computer science students are gifted
programmers, I did not want them to spend their time and effort working on low-
level implementation details, figuring out complex APIs, or untangling cryptic
documentation. Instead, I wanted to give students tools as media, whereby simple
design ideas are actually simple to do, and hard design ideas are possible [9]. As a
consequence of working with this media, students could spend their time thinking
about the design rather than programming, and could also rapidly iterate over their
designs as they reflected on it, and as others critiqued its early versions.

3.5 Tools Work within a Familiar and Rich Programming Environment.

Related to the above, I wanted to select tools that worked (as much as possible)
within students’ existing programming environments and development paradigms.
Again, this is because I wanted students to concentrate on their designs rather than
spend time learning a new programming language or IDE. Similarly, I wanted them
to develop systems within a commercial quality programming environment so they
would have standard high-quality development tools available, such as debuggers
and structured programming editors.

3.6 Example Domains

To illustrate how this works in practice, I chose the following four interaction
domains last year. Within this domain set, student prototyping and implementation
was supported by rapid prototyping tools created in our own laboratory1.

Single display groupware is a domain where multiple people can work together
over a single display using multiple mice and keyboards. We gave students the SDG
Toolkit [10,11], which makes it extremely easy to capture input from multiple mice
and keyboards, to create multi-user aware widgets, and to draw multiple cursors on
the display.

Physical user interfaces is a domain where people interact with computer-
controlled devices: tangible media, ambient displays, sensor-driven ubiquitous
computing environments, and so on. We gave students Phidgets hardware (available
at http://www.phidgets.com/) and our version of the Phidgets Toolkit [12,13]. The
Phidgets toolkit makes it very easy to capture data from the input devices, and to
control output devices. Phidget hardware at their disposal included servo motors,
RFID tag readers, environmental sensors (heat, light, motion…), controls (switches,
buttons, sliders), LEDs, and so on.

Distortion-oriented information visualization is a domain where people
interactively explore visualizations presented in a distorted space (e.g., fisheye

1 All tools are available at http://grouplab.cpsc.ucalgary.ca/cookbook/, including

documentation and tutorials, and all work within C# and Microsoft Visual Studio.

32 Saul Greenberg

views). We gave students the Elastic Presentation Space (EPS) toolkit, a framework
for designing such distorted visualizations [14]. It is a mathematical toolkit: one sets
properties of a mathematical space (such as lenses, their shapes, their extents and so
on), gives it a point in that space, and gets back where that point is located in the new
distorted space. Thus students can experiment with quite different ways of mapping
and visualizing information within a distorted space.

Groupware affording small group casual interaction over rich media is a domain
where small groups of collaborators engage with one another in a public virtual
space. We gave students the Community Bar as a groupware platform [15], and the
Media Item Toolkit to actually develop a groupware media item within that platform
[16]. Students create interactive multi-media items whose contents are broadcast to
others. The toolkit is based on the idea of plug-ins: developers build the multimedia
groupware component using a well-defined interface, and that component is then
inserted into a pre-existing groupware architecture and system. Thus students can
experiment with quite different interfaces of interest to the group, where their items
lives in ecology of the Community Bar standard offerings as well as items created by
other students.

Of course, these projects are just a vehicle where the goal is to train students on
best practices in design. We already described in section 2 how students developed
their designs as part of the design studio practice. In the next two sections, we turn to
two other valuable artifacts supporting design activity: the sketchbook and the
portfolio.

4 The Sketchbook

The sketchbook is perhaps the most prevalent best practice artifact found across all
design disciplines. Many designers keep a sketchbook with them at all times. They
use it to record and elaborate their ideas, to gather other people’s ideas or artifacts of
interest that may inspire future ideas, to ‘doodle’ half-formed thoughts, and to share
ideas with others by showing [7]. The sketchbook is particularly valuable as it
encourages its owners to develop a multitude of ideas and choose between them,
rather than to fixate on a single idea. Buxton [7] calls the process of distilling
between many ideas as ‘getting the right design’, whereas the process of developing
a particular idea (e.g., through iterative refinement or usability engineering) is
‘getting the design right’. The former emphasizes design that chooses between idea
alternatives, while the later is the creative engineering that refines a particular idea.

Computer science students do not normally keep sketchbooks, and as a
consequence they typically develop the first idea that comes to them. That is, they
worry about ‘getting the design right’ without considering if the basic idea is the best
one worthy of pursuit. This is equivalent to the local hill climbing problem in
Artificial Intelligence, where local maxima are reached without considering how
they would relate to a global maximum. Sketches become a way to investigate other
nearby hills (ideas) to see if they can offer better solutions.

To encourage students to develop many ideas, I made the course text an empty
sketchbook. I insist they buy a nice one (hard cover, coiled) so they can take pride in

Embedding a Design Studio Course in a Conventional Computer Science Program 33

it; otherwise (in my experience), they will end up using scraps of paper. Students are
expected to fill their sketchbook with their project ideas over the course of the term,
and to show these ideas to others on demand. I can ask to see it at any time, where
their number of sketches must reflect where they are in particular projects. This stops
students from ‘cheating’ the process by sketch cramming, where they sit down at
some late date (e.g., after the project is being done) and just ‘brain dump’ a bunch of
sketches as a single batch.

With the assistance of Coleen Campbell, a teacher and doer of arts and design,
and influenced by Bill Buxton’s book ‘Sketching the User Experiences’ [7], I
developed a brief instruction manual for the sketchbook; an extract is included in
Table 1. In terms of grading, the key deliverables are that students must generate at
least ten different sketches demonstrating quite different ideas for a particular
project, and then choose one idea and develop ten variations and/or refinements of
that idea. Unlike most grading schemes, they are evaluated on quantity, not quality!

Table 1. The Sketchbook ‘Instruction Manual’

Why a
sketchbook

Real progress in developing yourself as an interaction designer will depend on
you frequently and habitually sketching out your ideas and their variations,
recording other people’s ideas you may see, reflecting and choosing between
these ideas, and then further developing those ideas that seem promising. The
sketchbook records all these. Carrying the sketchbook with you at all times
will help you incorporate sketching and reflection into your daily routines.

What is a
sketch?

The following list paraphrases Bill Buxton’s properties of sketches [7].
– Quick to make.
– Timely so they can be provided when needed
– Inexpensive, where cost must not inhibit the ability to explore a concept.
– Disposable so you can afford to throw it away - the investment is in the

concept, not the execution.
– Plentiful, where its meaning is within the context of a collection or series
– Clear vocabulary where the rendering style signals that it is a sketch
– Distinct gestures, where their fluidity gives them a sense of openness and

freedom vs. engineering precision and tightness.
– Minimal details, including only what is required to render the concept.

34 Saul Greenberg

Uses Sketchbooks are useful in many ways. It is a place where you should:
– Jot down and annotate your own initial ideas - and there is no such thing as

a bad idea!
– Explore and refine ideas both in the large and in the small
– Develop variations, alternatives and details
– Refer back to your ideas and reflect on how your thought processes have

changed over time
– Record other good ideas you see elsewhere e.g., in other systems, in your

readings, and in your classmates' work.
– Collect existing material (e.g., pictures from magazines, screen snapshots)

and tape them into the sketchbook.
– Develop your skills, your accuracy and your confidence in sketching out

your ideas through regular use
– Sketches do not have to be pretty, beautiful, or even immediately

understandable by others. However, you should be able to explain your
sketches and ideas when anyone asks about them.

Best
Practices

– Always carry your sketchbook with you everywhere (a 2nd small
sketchbook is helpful). Jot down ideas as you think about them.

– Always have a pencil handy in the coil binder.
– Use it frequently, e.g., at least several times a day.
– Fill pages with a series of related drawings about a design idea, or with a

single well-composed design idea.
– Consider alternatives. A series of sketches related to the same interface

problem might explore different aspects of the interface. These could
include different interface representations, different interaction details,
different screens, different levels of details, different contexts of use, and
so on. Each page can become a series of studies that will help you develop
and reflect on the many ideas you will have.

– Annotate drawings appropriately, including information such as
descriptions for ideas that you cannot draw out well; textual addendums;
sources of your ideas (e.g., books, magazines, classmates), creation date,
and any other relevant information.

– Do not erase ideas because they are messy or because you no longer like
them. Your sketchbook is a record of all your developing ideas, good and
bad, not just of your final work.

– The sketchbook is for design only - do not use it for other classes just
because you do not have any paper.

Sketchbook
grading

– I and the teaching assistant will be looking for the following evidence of
use.

– Idea quantity, where you develop many ideas: for each project, we expect a
minimum of 10 sketches illustrating 10 quite different ideas and a
minimum of 10 refinements / variations for a chosen idea;

– Regular use, where you habitually use the sketchbook to jot down,
annotate, and develop ideas over time – at any instance, we expect your
sketches to reflect where you are in your project;

– Thoughtfulness, where you can explain the development of your ideas
within particular sketches;

– Attribution, where you credit other people's ideas that you are using.

Embedding a Design Studio Course in a Conventional Computer Science Program 35

5 The Portfolio

The portfolio is another ‘best practice’ found within design disciplines. A portfolio
serves as a living resume, where designers use them to collect and illustrate their
(usually completed) projects. Designers show portfolios to others both to highlight
individual achievements, and – as a collection – to suggest the scope, breadth, depth
and quality of the professional's design proficiency. Thus a good portfolio will
summarize the professional's abilities, strengths and styles. Portfolios can vary
greatly: they can be stand-alone artifacts for others to review, or can serve as a
conversational prop where designers tell stories about the artifact to peers,
employers, and clients.

Sadly, computer science students rarely create portfolios. Instead, they typically
describe their ability to others through a skills-oriented resume format: the
programming languages they know, the courses they have taken, and related
employment history. This is somewhat surprising, for most computer science
students – like designers – spend immense effort developing projects as part of their
course work. In spite of these creative experiences, computer science students
portray themselves to their potential employers as skill-oriented technicians rather
than as people well-practiced in the art of invention.

To encourage students to capture their work in a way that can be presented to
others, students are required to construct a portfolio as the course progresses. Two
types of portfolios are required, as described below.

The project learning portfolio captures the essence of each student’s project
through a variety of media. As each project is completed, each student creates a
detailed portfolio documenting and archiving what they have done. It takes two
forms, both done for every project. First, the student creates a web site with a project
portfolio entry: this web site includes a brief executive summary, then a visual
summary of what they did (captured as annotated screen snapshots, simple
animations and/or storyboards, slide show), downloadable executables so that others
can try their system, and an archive of their source code. Second, the student uses
more traditional media to create an alternate visual summary. The chosen media
varies per project, and covers a range including paper-based posters, booklets,
commercial packaging (e.g., a box), and a short self-contained video. The goals of
these two portfolio styles is to encourage students to create a stand-alone electronic
presence of their work (through the web site), and to give them practice creating
portfolio entries with alternate media that can be quickly shown to others. As a side
effect, the project portfolios are an easy way for the course instructor to access and
review each project after the demonstrations, where details can be explored.

The professional portfolio is created at the end of the term. Its intent is to be used
as a living resume, where students can bring it to their job interviews and show
potential employees and/or clients about the kinds of work they did as well as the
scope of their many achievements. The emphasis is that these portfolios must serve
as a conversational prop: students should be able to conveniently carry it to a job
interview, where its contents are easy to show, browse and discuss as opportunities
appear. Thus paper-based portfolios are encouraged, although I also suggest they
include electronic medium (e.g., a CD) that they can quickly load into a computer if

36 Saul Greenberg

time and facilities allow for further elaboration and demonstration. These portfolios
can come in quite different form factors, although the two main styles are booklets or
modest-sized posters held in a portfolio case. I should note that the professional
portfolio is rarely a rebundling of the project portfolio entries: students create or
remix entries to exploit the form factor and visual effect of their professional
portfolio.

In practice, students take great pride in their project and professional portfolios.
Many are quite creative in building the portfolio web site, to the point that the web
site itself demonstrates the student’s skills. Similarly, many pay considerable
attention to their professional portfolios. They construct it out of high quality
materials, and extend it to include projects outside the course. A variety of students
described how they used the portfolios during actual job interviews, and how they
believed it made the difference in setting them apart from other applicants.

As with the sketchbook, I developed a brief instruction manual for the portfolio;
an extract is included in Table 2.

Table 2. The Portfolio ‘Instruction Manual’

What is a
Portfolio?

– A portfolio is a representative or selective collection of one's work.
– Design professionals (e.g., architects, industrial designers, artists) often

create professional portfolios, and use these to illustrate their work to
potential employers or clients. A portfolio is a living resume. They are an
expected part of how professionals in many disciplines portray their
achievements. A good professional portfolio will contain visual samplings
that collectively suggest the scope, breadth, depth and quality of the
professional's design proficiency. It summarizes the professional's abilities,
strengths and styles.

– Some educational programs also have students create learning portfolios,
where students document their work, sometimes over years. These
portfolios are used by instructors to evaluate students, and by students to
help them reflect on what they have learnt over that time.

– Unlike sketchbooks, portfolios are neat, orderly and professional in
appearance. You critically select and craft what goes into it. Because this is
a design-oriented portfolio, its contents should be highly visual. Each
visual summary should tell its own story with only modest labeling and
textual descriptions. It should also serve as a conversation piece letting you
talk about your work.

Your
Portfolio

– You will create your own learning and professional portfolio
– Your learning portfolio will show your projects. You will document your

developing abilities as an interaction designer by creating visual
summaries of how you solved your exercises and assignments. As the
course progresses, you will see what you have accomplished to date.

– Near the end of the course, you will use this learning portfolio to seed your
professional portfolio. Feel free to add samplings of any other relevant
work you have done outside of this course to your professional portfolio.

– After the course, you can maintain and modify this portfolio into
something that will help you present yourself to future employers.

Embedding a Design Studio Course in a Conventional Computer Science Program 37

Learning
Objectives

Your portfolio will help you learn the following:
– Develop skills creating visual summaries of individual designs by using

screen snapshots, story boards, videos, and other techniques.
– Demonstrate in these summaries how you have used particular interaction

techniques.
– Learn how to effectively archive your code and supporting documents so

you can easily install and demonstrate your system on any handy machine.
– Develop your skills in creating both a professional-looking learning and

professional portfolio
– Use the portfolio as a personal reference summarizing your course

accomplishments.
Be
Organized

A professional portfolio can be packaged in many ways:
– Keeping all summaries organized but separate will allow you to selectively

rearrange your portfolio to fit your need (e.g., for a job interview).
– The simplest form sees it as separate summaries collected in some kind of

container e.g., an artist's portfolio case.
– You can also paste summaries into a large high-quality (but very good

looking, maybe even hand-made) booklet. Ideally, pages are removable so
you can add and rearrange items as needed.

Styles For each project, you will create two versions of a learning portfolio entry.
The first is an electronic web summary (including code archive), while the
second is crafted out of a media form selected from the list below.
– Paper. Each visual summary (screen snapshots, storyboards, etc) are

pasted onto a high-quality mat or backing (e.g. poster cardboard). Poster
sizes of at least 16"x20" will give you enough space to create an effective
visual summary. Alternatively, you may want to create it as a flip-book of
screen-shots showing how the interaction flows over time.

– Packaging. The visual summary is created as packaging, e.g., a paper box
that would contain your software and other materials.

– Video. Create a video is a very effective way of showing your work. The
best videos are short ones focused on showing your design in action.

– Interactive multimedia. You can create a project summary using a
multimedia presentation tool e.g., Powerpoint or Flash.

– Running software. You will archive the system in your electronic portfolio
so that you can demonstrate it as needed. Be aware that this does not
suffice by itself: over time, it will become unlikely that your system will
run due to changes in operating systems and expectations of installed
software. Thus you should see this as a way to supplement your other
portfolio activities.

38 Saul Greenberg

Best
Practices

Hint. Stress visuals over text. A common error is to include overly long text
descriptions.
– Be creative in your portfolio – it also illustrates your design abilities.

Search the web (e.g., try the terms Interface Web Design Portfolio) for
examples of how other people have created on-line portfolios.

– Carefully decide what parts of your projects you want to use in your
portfolio summary.

– Treat portfolio creation as a design exercise. Prototype a few different
approaches for each project. Your first idea may not be your best one.

– Label each summary with a descriptive title and its date of completion.
You may include short explanatory annotations and paragraphs, but don't
go overboard: this should be a visual summary rather than a textual one.

– If you are using screen snapshots, make sure they are interesting ones i.e.,
the screen is populated with meaningful data, and the screens are in an
interesting visual state.

– Use storyboards to show how an interesting interaction sequence
progresses over time.

– Print screens in color.
– Include screen fragments to embellish your story. For example, a blow-up

of a screen portion can show hard-to-see details (and can include
annotations); a mini-storyboard of an interaction component can illustrate
how a particular interaction technique works.

– Emphasize any uses of novel interaction techniques.
– Make sure you can 'disassemble' your portfolio summaries or that you have

archived electronic copies of images so that you can regenerate them on
paper. In the future, you may want to recreate a portion of your portfolio,
perhaps in a more expensive book or some other medium, only to find that
you cannot unglue your images from the pages.

Portfolio
Grading

Every project requires a learning portfolio entry. You will also create a
professional portfolio at the end of the course. Portfolios and contents should
impress me with both your vision and how well you have mastered the
technical aspects of interaction design. Other grading aspects include:
– Completeness.
– Quality (how well the portfolio captures your work and the techniques we

have asked you to include in it).
– Professional appearance (including overall organization).
– Effectiveness of your code archive.

6 Experiences and Reflection

The border conditions of this course are far from ideal: there are scheduling
constraints, no permanent studio space, inadequate student background, insufficient
crit time (thus requiring forced discussions), requirements to learn different
implementation tools, and so on. Yet the first year I taught this class, I was
astounded by the quality and the diversity of the students’ projects: they all
consistently surpassed my expectations. Successive years proved that this was no
accident. Because of this quality, I have featured student’s work (with permission, of
course) in a variety of publications and web sites, as described below.

Embedding a Design Studio Course in a Conventional Computer Science Program 39

Greenberg and Tse [17] is a video that catalogues eight student projects in the
area of Single Display Groupware. Examples of what they did include: collaborative
activities such as photo selection, viewing and organization; children games for
cooperative fashion, multi-person music playing, action games where people work
together toward a goal vs. competing with one another, multi-person drawing and
sketching tools, and so on. Source code and executables of several of these projects
are available at http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/
SDGToolkit.

In other papers [18,9], I feature projects students did on physical user interfaces,
concentrating on those that emphasized collaboration. The range of systems
developed include a variety of status indicators of people’s activities, devices that
serve as multimedia communication channels, notification displays of asynchronous
message arrival and of meetings, tools supporting information exchange, sensor-
based systems safeguarding privacy, collaborative games, and interactive art. A
comprehensive web site features a video gallery of almost all Phidget projects
developed in this class over the years: http://grouplab.cpsc.ucalgary.ca/
phidgets/gallery/.

McEwan et. al. [16] briefly described various student groupware projects created
using the Community Bar media item toolkit. Example projects include a group-
editable list of web pages, an awareness tool that displays motion activity at distant
sites, a novel visualization of a video media space history over time, a group editable
and browsable photo gallery, a group scheduler, a gossip item for teenage girls, a
family shopping list, a document status awareness item that tracks documents being
worked on by the group, and a group interface to a mobile robot that allows people
to view a physical environment and contact people within it.

The main question is, of course, did students gain the rudimentary best practices
typically found in a design discipline? The quality of the results above suggests that
they did, at least within the constraints of the course. Perhaps a more relevant
question is: did students carry theses best practices with them to their jobs, and did
they apply them to design problems? This is a more difficult question to answer, as I
have not systematically tracked students after they graduated. However, I do know
that several students have gone on to careers as interface developers / experience
designers. Some still carry a sketchbook with them years after the course. Most said
that they believe bringing their portfolio to the job interview helped clinch that
position.

The question of whether students continued these best practices is perhaps the
difference between a design studio run within the constraints of a computer science
department vs. the way it happens in a professional design program. Professional
design programs have multiple design studios that run almost every semester.
Students are so habituated in the design process that best practices become
engrained. In contrast, there is only so much that one can do in a single computer
science course containing an abbreviated design studio. Perhaps the most we can
expect is that it gives students a flavor of what design is all about.

The ideal solution, of course, is to transform a good portion of Computer Science
into a design discipline using the tricks of the trade found in design programs. This is
not that far-fetched. While some courses are predominantly about knowledge
transfer, a vast number of courses in Computer Science are project based amenable

40 Saul Greenberg

to structured design. Perhaps the greater problem is that Computer Science faculty
members need to retrain themselves as designers before this can happen.

I am still trying to improve this course structure. First, I am now formalizing the
pedagogy of certain design practices. For example, the most recent version of this
course includes a series of sketching modules and exercises: students are taught
about various sketching methods (e.g., storyboarding, slide shows, video sketches,
etc) [7]. For each sketching method, the student learns the technique by replicating
an existing interface, and then applies the technique by designing a new interface
with that method. Other areas I plan to formalize in future years include professional
methods for designing portfolios, and methods for lateral thinking. Second, because
of the short amount of time ‘in studio’, I want to enhance our in-class ‘crits’. I am
now applying a series of strategies to encourage critical communication between
students about their design. This includes splitting them into teams of 2-4, where
they do rapid-fire presentation and critique of each other’s designs; early feedback
from students said that they often altered their design considerably after these
sessions. As another strategy, I assign each person a partner, where the role of the
partner is to critique the other person’s design as it progresses from class to class.
Other possibilities include on-line discussions. Third, I plan to invite design experts
into the class for guest lectures, where they can enlighten students about the actual
practice of design. Finally, I want to restructure our two HCI courses to incorporate
design within both of them. Currently, the first course teaches basic HCI usability
engineering process, while this second one concentrates on creativity and design.
While it works, it does treat them separately. A better method would be to merge the
courses, where design and creativity (using this design studio approach) would be
incorporated as a fundamental part of the HCI usability engineering process.

Acknowledgments

I am not a formally trained designer. My early attempts to create a design-studio
course relied heavily on advice by others. In particular, I thank my colleague
Sheelagh Carpendale at the University of Calgary (a computer scientist and a trained
artist who also taught one of the modules in this course), and Colleen Campbell, then
a design instructor at Mount Royal College, Calgary. If I’ve said anything that would
make a true designer uncomfortable, I assume all blame in misinterpreting what my
colleagues said.

References

1. M. Docherty, P. Sutton, M. Brereton and S. Kaplan, An innovative design and studio-
based CS degree, in: SIGCSE Bulletin, 33(1), (ACM Press, March, 2001), pp. 233-237.

2. S. Greenberg, Teaching Human Computer Interaction to Programmers, in: ACM
Interactions 3(4), (ACM Press, July-August, 1996), pp. 62-76.

3. Y. Reimer and S. Douglas, Teaching HCI Design with the Studio Approach, in: Computer
Science Education, 12(3), (Taylor & Francis, 2003), pp. 191-205.

Embedding a Design Studio Course in a Conventional Computer Science Program 41

4. B. Lawson, What Designers Know, (Architectural Press, Elsevier, 2004).
5. T. Winograd, What Can We Teach About Human-Computer Interaction, in: Proc ACM

CHI 1990 Conference on Human Factors in Computing Systems, (ACM Press, 1990), 443
– 449.

6. E. Blevis, Y. Lim, E. Stolterman, T. Wolf and K. Sato, Supporting design studio culture in
HCI. Workshop Overview, in: Proc ACM CHI 2007 Conference on Human Factors in
Computing Systems v.2, (ACM Press, 2007), pp. 2821-2824.

7. B. Buxton, Sketching User Experiences: Getting the Design Right and the Right Design.
(Morgan-Kaufmann, 2007).

8. S. Klemmer, B. Hartmann and L. Takayama, How Bodies Matter: Five Themes for
Interaction Design, in: Proc ACM DIS’06 Designing Interactive Systems, (ACM Press,
2006).

9. S. Greenberg, Toolkits and Interface Creativity, in: Journal Multimedia Tools and
Applications (JMTA), 32(2), (Springer, February, 2007), pp. 139-159.

10. E. Tse and S. Greenberg, Rapidly Prototyping Single Display Groupware through the
SDGToolkit, in: Proc Fifth Australasian User Interface Conference, Volume 28 in the
CRPIT Conferences in Research and Practice in Information Technology Series,
(Australian Computer Society Inc., Dunedin, NZ January, 2004), pp. 101-110.

11. E. Tse and S. Greenberg, SDG Toolkit, in: Video Proc ACM CSCW 2004 Conference on
Computer Supported Cooperative Work. (ACM Press, November 6-10, 2004), video and
abstract, duration 3:55.

12. S. Greenberg and C. Fitchett, Phidgets: Easy Development of Physical Interfaces through
Physical Widgets, in: Proc ACM UIST Symposium on User Interface Software and
Technology, (ACM Press, 2001), pp. 209-218. Includes video figure.

13. N. Marquardt and S. Greenberg, Distributed Physical Interfaces with Shared Phidgets, in:
Proc. TEI’07 1st International Conference on Tangible and Embedded Interaction. (Baton
Rouge, Louisiana, USA, 2007)

14. M.S.T. Carpendale and C. Montagnese, A Framework for Unifying Presentation Space,
in: Proc ACM UIST Symposium on User Interface Software and Technology. (ACM Press,
2001), pp. 61-70.

15. G. McEwan and S. Greenberg, Supporting Social Worlds with the Community Bar, in:
Proc ACM Group 2005 Conference, (ACM Press, 2005).

16. G. McEwan, S. Greenberg, M. Rounding and M. Boyle, Groupware Plug-ins: A Case
Study of Extending Collaboration Functionality through Media Items, in: Proc
CollabTech 2006 2nd International Conference on Collaboration Technologies, (IPSJ
SIG Groupware and Network Services, Tsukuba, Japan, July 13-14, 2006), pp. 42-47.

17. S. Greenberg, and E. Tse. SDGToolkit in Action, in: Video Proc ACM CSCW'06
Conference on Computer Supported Cooperative Work, (ACM Press, November, 2006)
Video and two-page summary, duration 7:14.

18. S. Greenberg, Collaborative Physical User Interfaces, in: Communication and
Collaboration Support Systems, edited by K. Okada, T. Hoshi and T. Inoue, (IOS Press,
Amsterdam, The Netherlands, 2005), pp. 24-42.

