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Abstract. The Denial of Service Testing Framework (dosTF) being developed 

as part of the joint India-Australia research project for ‘Protecting Critical 

Infrastructure from Denial of Service Attacks’ allows for the construction, 

monitoring and management of emulated Distributed Denial of Service attacks 

using modest hardware resources. The purpose of the testbed is to study the 

effectiveness of different DDoS mitigation strategies and to allow for the 

testing of defense appliances. Experiments are saved and edited in XML as 

abstract descriptions of an attack/defense strategy that is only mapped to real 

resources at run-time. It also provides a web-application portal interface that 

can start, stop and monitor an attack remotely. Rather than monitoring a service 

under attack indirectly, by observing traffic and general system parameters, 

monitoring of the target application is performed directly in real time via a 

customised SNMP agent. 
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1   Introduction 

This paper discusses the design of the Distributed Denial of Service testbed being 

developed as part of a joint India-Australia research project entitled ‘Protecting 

Critical Infrastructure from Denial of Service Attacks: Tools, Technology and 

Policy’.  

It is divided into four parts. Part 1 provides a brief background to the problem and 

the role it plays within the research project. Part 2 critically assesses existing testbeds 

for studying DDoS attacks. Part 3 describes the our current testbed, Part 4 describes 

some experiments already carried out using it, and in Part 5 we describe future 

directions for the testbed. 

Distributed Denial of Service (DDoS) is a serious and growing problem for 

corporate and government services doing business on the Internet. Some botnets now 

number in millions of compromised machines [1, 2]. As well as for other nefarious 

purposes, these botnets can be used to launch Distributed Denial of Service attacks, 

such as those recently carried out against Twitter, Facebook [3], and government 

websites in the US and South Korea [4]. Modern DDoS attacks can muster 49GBps of 

attack traffic, but more recently this type of flooding attack is giving way to more 



sophisticated, stealthy attacks designed to cripple a particular service [5]. The India-

Australia project aims to address various aspects of this problem, and is divided into 

five sub-projects: 

1. Probabilistic Packet Processing to Mitigate High-rate Flooding Attacks 

2. DoS Defence Appliance for Web Services 

3. Puzzles for DoS Mitigation in Protocols for Authenticated Key Exchange 

4. Denial of Service Vulnerabilities and Challenges in Emerging Technologies 

5. Harmonisation of Policy, Legal and Regulatory Environments for National 

Information Infrastructure Protection 

Of these, the first four subprojects all require the use of a  testbed facility. A DDoS 

testbed is an essential tool for preparing and testing the defensive strategies, 

appliances and protocols against such attacks as we are intending to research. 

2   Existing Testbeds 

Judging by existing implementations, a DDoS testbed needs to provide facilities to: 

1. Specify, save and replay an experiment 

2. Deploy, run and stop an experiment 

3. Monitor the simulated DDoS attack in progress and to save the results to disk 

for later replay or analysis. 

There have been three basic strategies used for building a DDoS testbed: 

1. Simulation. In this technique a network simulator such as ns-2 [6, 7] or OPNET 

[8] is used to specify and then instantiate a simulation on a single computer. The 

accuracy of such simulations and their suitability for DDoS experimentation has, 

however, recently been called into question [9, 10]. The attraction of simulation is 

that virtually any network topology can be created quickly and inexpensively; the 

prime disadvantage is that simulated networks when under attack may behave very 

differently from real or emulated networks [9]. 

2. Emulation. In this technique real machines are connected together to form the 

topology of the test network. Although the end-points of the network are mostly 

physical computers, the connections between networks are normally provided by soft-

routers. Although more realistic than simulation, emulation suffers from scalability: it 

is hard to extend a local Ethernet network of PCs to model the performance of entire 

ISP networks that use powerful hardware routers, ATM, and multi-gigabit links. 

3. The use of real networks cannot be discounted, but would seem to pose too 

many problems: (a) it is not possible to change the network to suit the experiment, (b) 

certain experiments, e.g. those involving Internet worms, could escape from the test 

and infect or damage the wider Internet, and (c) collateral degradation of network 

links may result from flooding attacks. Certain types of DDoS attacks, such as low-

level stealth attacks, however, could conceivably be tested on a real section of the 

Internet like PlanetLab, a world-wide network of virtual machines [11].   



2.1   The DETER Testbed 

The DETER testbed [12, 13] is closest to the kind of design we are seeking, for a 

small to moderate size facility that allows experiments to be safely contained, and 

uses reconfigurable hardware and software. However, there are a number of reasons 

why we chose to deviate from the DETER design: 

1. DETER uses the Emulab software. This has a GPL license, which only permits 

modifications under the same license. Since the terms of the India-Australia project 

specify that any software produced shall be licensed to the respective governments, 

not the general public, this is less useful to us. 

2. The Emulab and DETER testbeds [6, 12] use a relatively large number of 

physical machines. We needed to build something with more modest resources. 

3. The Emulab software design would be too complex to mimic, since it probably 

would cost more than the hardware it would run on [12]. For example, the ability to 

share and partition the testbed is not needed. 

4. Our experiments comparing soft routers with hardware routers have shown that 

soft routers, even properly tuned, perform poorly in comparison to hardware routers 

with small-packet traffic, apparently because the host computer cannot process  

interrupts from the ethernet card fast enough to avoid dropped packets [14]. Under a 

DDoS flood attack a soft-router might thus introduce a serious anomaly.  

The DETER testbed uses VLANs and soft-routers (but also some hardware 

routers) to provide flexibility. Experiments recorded as ns-scripts (in Tcl) can be 

quickly recreated by programming the VLANs and routers to generate the desired 

network topology. The advantages of ease of use, sharability, and remote access  

however, must be balanced against the disadvantages of higher cost in constructing, 

administering and maintaining the testbed. 

3   The dosTF Testbed 

The dosTF testbed has evolved organically in response to our own research needs. It 

may thus provide a useful model and alternative approach for other research groups 

wanting to construct their own small scale testbed for DDoS experimentation.  

An example of our current experimental setup is shown in Fig. 1. The same or 

additional components could be rearranged as desired for a particular experiment. A 

total of 8 average PCs, installed with a mixture of Linux and Windows, are each fitted 

with two ethernet cards. These two interfaces ensure that all physical machines are 

dual-homed. The monitor network is on a single subnet, and is used to install 

software, launch and stop attacks and to monitor services during attacks. The attack 

network, consisting of two subnets joined by a physical router, is used to carry out 

attacks on particular services, to generate background traffic, or to host defense 

applications or devices. The physical PCs are intended to act as targets, although they 

may also participate as agents. One of these also acts as a point of remote access, and 

another as a base for launching attacks. Three VMWare servers provide around 200 

virtual hosts that may be used in simulated DDoS attacks. The driver of this design 

has been cost: it seems wasteful to maintain hundreds of physical machines, when 



most of them will only send low levels of data to the attack target. We intend 

eventually to evolve this design by acquiring more physical routers to study 

aggregation of traffic at focal points in the network topology. For now, it suffices to 

study the direct effects of flood and stealth attacks on applications from a range of IP-

addresses. 

 

Fig. 1. Example dosTF Topology. 

The main difference between this design and the DETER model is shown in Fig. 2-

3. Whereas in DETER a software layer is effectively introduced by the programmable 

VLANs and soft-routers, in our design the structure of the network topology has to be 

reconfigured manually.  Our XML description of the experiment (or scenario) has no 

intervening software layer, and hence must refer directly to the physical testbed. This 

has the disadvantage that every change in the setup of the testbed will invalidate 

previously saved experiments.  

Our solution to this deficiency is shown in Fig. 3: The scenario only stores an 

abstract description of the experiment: the number of attacking hosts, their operating 

systems, their preferred type (virtual or physical), the characteristics of the target and 

the software to be installed on them. When an experimenter launches an attack, the 

control application maps the abstract description of the experiment to physical 

machines using standard network discovery techniques. This approach yields the 

same degree of flexibility as in the DETER testbed, although the topology has to be 

wired manually.  



 
Fig. 2. DETER Testbed Model. 

 

 
Fig. 3. dosTF Abstract Scenario. 



3.1   Monitoring 

The monitoring of a machine under a DDoS attack involves an obvious and serious 

problem: how can an application respond promptly with information about its status, 

when it is already under attack? Even in severe attacks, however, the multi-tasking 

design of modern operating systems should allow enough responsiveness in the 

overall system to enable the gathering of basic statistics at regular intervals. The 

saturation of the attack network can then be easily dealt with by installing a second 

Ethernet card to use as the monitoring interface. This is also a feature of the DETER 

Testbed [12]. The advantage of using live feedback during an attack is that it  

becomes possible to see the performance of service applications as they buckle under 

the strain imposed by a DDoS attack, or recover as defensive measures are engaged. 

The method we chose for live monitoring was to install an SNMP (Simple 

Network Management Protocol) service on each potential target. We could then query 

the target for a wealth of built-in MIB (Management Information Base) variables such 

as, for example, tcpOutRsts (requests to resend a TCP segment). Such information 

has sometimes been used to detect the presence of a DDoS attack [15]. However, 

these system-wide values are less useful when monitoring the effect of an attack 

against a single service. According to Mircovic et al. [16] Denial of Service can be 

effectively measured by monitoring only a select few application-specific parameters: 

chiefly memory and CPU usage, as well as responsiveness and goodput (the amount 

of data actually being received and sent out by the application).  

Another drawback with the standard SNMP installation is that per-second 

monitoring of network-related MIB-values tends to tie up the CPU. In our case we 

observed 30% CPU utilisation with the default Linux SNMP agent running, when 

querying IF-MIB variables. 

Our solution was to write a small custom MIB that would discreetly measure the 

following parameters on a per-second basis for any named service: 

1. Percentage of system memory being used 

2. Percentage of CPU being used 

3. Number of active threads or forked children of a process 

4. Response time in milliseconds to a generic query 

5. Goodput - the actual data throughput of the service 

6. Does the response to a given challenge match the expected value? 

This is all we currently measure, but the custom MIB can be extended at any time. 

It is written as a separate agent that can be brought up or down without disruption to 

the main SNMP agent. Parameters 1, 2 and 3 can be measured by system commands 

that take only a few milliseconds to run.  

Response time is measured in nanoseconds, up to a maximum of 15 secs, of a 

named service to a given challenge string, which usually consists of binary digits. The 

values for HTTP, TELNET, FTP, SSH and DNS query generic properties of their 

respective services, e.g. the HTTP challenge merely requests the server’s options, and 

the DNS challenge requests the service’s status. But it is also possible to override the 

default challenge, to define new services, to change ports and protocols etc.  

Goodput can be computed without modification of the service, at least in the case 

of Linux, by using the Systemtap tool, or by modifying the kernel. This may be 

preferable to ‘instrumenting’ the service, i.e. by modifying it [16].  



The advantage of using SNMP is that existing software libraries for querying and 

setting values, as well as command-line tools can be used. We also envisage that 

using these specific MIB values, rather than the general ones, may provide a more 

accurate way for an alarm system to detect Denial of Service. 

3.2   The Scenario 

An experimenter needs to specify what form an attack will take, and to save that 

information so it can be edited and replayed later. DETER uses Tcl largely for 

historical reasons [9], but this is a programming language with a fixed syntax, and is 

not ideally suited to the recording of an abstract experiment. XML [17], on the other 

hand, is a widely used markup language suitable for a variety of programming tasks. 

Many tools for reading and writing XML files already exist, and changing the 

scenario schema or structure in response to design changes is easy. Our schema 

contains the following basic elements: 

Agents:  may be one of attacker, traffic generator, defender or service. These are   

programs that can be launched from the command line. Each agent is 

specified by a set of runtime parameters, the system requirements, the 

number of hosts it should be copied to, and the type of hosts required 

(e.g. real or virtual, and desired operating system). The control 

application (described below) will then choose an appropriate binary to 

copy to the specified host. 

Targets:  There may be more than one, and each is specified simply by an 

operating system type and optionally by an IP-address. This latter 

facility is needed because otherwise the default choice of target may not 

be what is desired. 

Views:  These describe the layout of portlet windows in the testbed software, to 

be described below. This section is entirely optional, but otherwise there 

would no way to save the screen layout of the tools used for monitoring 

a particular experiment. 

3.3   Command and Control 

The experimental scenario described above needs to be activated by some means. 

Agents will first have to be copied to their assigned targets. This is achieved in dosTF 

via SFTP. This can be configured so that the payload will only be copied to the 

targeted host if the current file is more recent.  

The attack command is then issued by the control workstation via ssh, using a 

standard username and password. Since the interface is simply the commandline, this 

allows us to leverage most existing tools. For example, the traffic generator D-ITG 

[18] can be easily configured within the scenario to generate various types of traffic. 



In the third phase the experiment is monitored in real time by the control 

workstation via SNMP. The results are displayed on the workstation as a series of 

graphs and the values are logged to local files automatically.  

 

 
Fig. 4. Pluto Portal Interface. 

3.4   Web Interface 

DETER uses a desktop based GUI application to monitor and control experiments, 

and RPC for communications [13]. This introduces some complications, since user 

authentication has to be programmed in, and the application must be available on the 

computer connecting to the testbed. GUI development is inherently complex and 

expensive [19]. Changes to the functionality of the underlying program can cause 

expensive alterations to the GUI. This could easily lead to the GUI taking more time 

to develop than the underlying functionality. 

Our solution to this problem was to use a modular web application interface for 

GUI development, such as a portal server. The GUI is accessed via an ordinary web 

browser either remotely or locally. The web interface is divided into a number of sub-

windows, or portlets, which can be installed and arranged, or duplicated by the user to 

suit the experiment. Authentication is already built-in, as also (on some servers) user 

filespace management for saving experimental results. Fig. 4 shows the current state 

of the interface, and includes three portlets, one which edits the XML scenario file, 

another on the right that launches attacks, and a monitor portlet that graphs the chosen 

SNMP MIB variables and also logs them to disk. 

4   Experimental Results 

The dosTF testbed is designed to run experiments for any of the subprojects listed in 

Section 1. For example, Subproject 4 investigates DoS vulnerabilities in emerging 



technologies such as web services. This section describes two experiments from this 

area of the overall project as examples of simulated DoS attacks carried out on the 

testbed. Each experiment starts as an XML scenario, which is then executed, causing 

the attack program to be copied to its respective hosts, then the attack was launched, 

and the results monitored using the custom SNMP MIB parameters. 

4.1   Experiment 1 

The first experiment exploits a vulnerability in the Ruby XML parser. The attack uses 

an invalid web service request payload containing a deeply-nested meaningless XML 

message (up to 100,000-levels deep), and then sends a flood of such requests to the 

Ruby server. The payload size is around 1.5 MB. A vulnerable XML parser will try to 

load each of the XML messages sent. The goal is to consume all of the memory 

available on the server, causing a potential denial of service to legitimate clients. 

The single attack and victim machines are physical hosts on the same subnet as 

shown in Fig. 1. The victim server’s resources include a dual-core 3 GHz CPU with 

3.7 GB of memory. The SNMP monitoring provided by the dosTF testbed was used 

to track memory usage and CPU usage throughout the attack and after. The attack 

itself lasted for about 10 minutes. Requests were sent in bursts of 500, followed by a 

sleep of 0.1 of a second. The result of the experiment is shown in Fig. 5. Although the 

CPU usage quickly reached a maximum, the memory usage took longer to become 

exhausted, eventually causing the Web Service to fail, before restarting. 

4.2   Experiment 2 

The second experiment exploits a vulnerability in many web services that respond to 

unauthenticated requests for their service description files, or WSDL documents. This 

experiment tested the effect of performing repeated requests for a WSDL document 

on a web service developed using the Java Metro library, and deployed on the 

Glassfish application server. By default, the WSDL document will be dynamically 

generated, requiring some processing by the server. Successive requests may thus 

have a significant impact on CPU and memory consumption, and on the response 

time for legitimate web service requests. 

The three attack machines were real hosts, and the victim was a virtual host, as 

shown in Fig. 1, but without the intervening router. The victim machine’s resources 

included a dual-core 4.8 GHz CPU and 3 GB of memory. Fig. 5 shows the application 

server response as tracked via the SNMP monitoring provided by the testbed. The 

attack lasted roughly 4 minutes, consisting of 250 bursts of 150 requests per machine. 

In contrast with the first experiment, memory consumption was virtually unchanged. 

After the attack CPU consumption soon fell back to normal levels. 



 
Fig. 5. CPU and Memory Usage for Experiments 1 and 2. 

5   Future Developments 

As well as being a general DoS testing facility, the dosTF testbed can also provide a 

flexible framework for carrying out experiments involving specific devices. 

Subproject 1, for example, aims to develop a ‘network flooding attack mitigation tool’ 

capable of protecting security devices, such as an application-aware firewall. As 

shown in Fig. 6, the device will monitor the state of the firewall and, once a high-rate 

flooding attack is detected, will initiate corrective action to mitigate the impact of the 

attack. 

Another application of the testbed will be the testing of vulnerabilities introduced 

by the use of the IPv6 protocol in an emulated SCADA network controlling a set of 

distributed resources, similar to those encountered in the monitoring and control of 

critical infrastructure, such as in the electricity and water utilities. The aim is to study 

the behaviour of such SCADA systems when known IPv6 vulnerabilities are 

exploited and to evaluate the effectiveness of potential mitigation techniques.  



 
 

Fig. 6.  DDoS Mitigation Module. 

6   Conclusion 

The dosTF testbed is designed to provide an abstract means for specifying an 

experiment that can be run unchanged or with insignificant changes on various 

physical network topologies. By dispensing with the need to construct a virtual 

topology within the physical layout of a dedicated testbed it enables experiments 

involving new network appliances. This design, being simpler than the DETER 

model, allows for the construction and management of a private DoS/DDoS test 

facility at minimal cost, with some sacrifice in ease of use. 

This research is supported by the Australia-India Strategic Research Fund. 
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