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Abstract. Recently several authors have proposed some notions of dis-
tance between processes that try to quantify “how far away” is a process
to be related with some other with respect to a certain semantics. These
proposals are usually based on the simulation game, and therefore are
mainly defined for simulation semantics or other semantics more or less
close to these. These distances have a local character since only one of the
successors of each state is taken into account in their computation. Here,
we present an alternative proposal exploiting the fact that processes are
trees. We define the distance between two of them as the cost of the
transformations that we need to apply to get two processes related by
the corresponding semantics. Our new distances can be uniformly defined
for all the semantics in the ltbt-spectrum.

1 Introduction and Motivation

We are thirsty, but we hate those boring machines that only offer a few products.
But we are very happy with the machine at our institution that offers a wide
variety of beverages. So, each day we can go to the machine with our selected
chosen item and get our bottle. But if some day the machine is out of that, then
we have to choose another drink, and that day we are not so happy. . . Certainly,
if it is only a single kind of drink that is missing we will probably stay very happy,
but if something happens and the machine today offers only a single beverage,
then we will be probably not so happy. . .

We have a collection of items in some numbered “collector desk”. We look
for a product by reminding its assigned number. But today, for some reason,
somebody has interchanged two items and then if we look for one of them we
will find the other, and we will have to make our job using it, obviously not so
well as if we had found the desired item. But if one day the desk collapses and
somebody has to put the items in the places without knowing their places, and
he is wrong in all the cases, then for sure we will fail when looking for any of
the items.

There is a lottery in the club and everybody expects that all the balls cor-
responding to the sold tickets will be in the bag. But for some reason the set of
balls does not exactly corresponds with that of sold tickets. Certainly, the raffle
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is not fair, but how much unfair? An obvious reply will take into account the
number of tickets that were not presented in the bag.

All these are simple “real life” situations, that we can easily model by means
of a process with some kind of choice (either internal or external), where the
number of choices in the initial model is large. This corresponds to the ideal
situation, but if something is wrong, the choice is not the same and this would
produce a process that does not fully satisfy our expectations. Then, we want
to measure how far away we are from the desired behavior.

At the technical level, we want to define adequate distances between processes
which measure, in a reasonable way, the gap between any behavior and the
corresponding “expected” one. Of course, if we are talking about behaviors, then
the first thing to fix is the reference semantics. There are plenty of proposals for
process semantics, which have been presented in several versions of the linear-
time branching-time (ltbt) spectrum [14, 5].

In the last few years we can find in the literature several proposals for dis-
tances between processes associated to a certain range of process semantics, but
in all the cases far from being applicable to the whole spectrum [1]. Most of
them, if not all, base their definitions on the (bi)simulation game that character-
izes (bi)simulations between processes [11, 3, 2]. Although these are branching
semantics, their co-inductive characterizations provide a (partially) local way to
compare processes by considering, one by one, all the possible transitions from
the compared states. The rules of these games state that any a-transition should
be replicable by another a-transition of the other process; otherwise, we would
have found a proof of non-bisimilarity (or that of non existence of a simulation)
of the two compared processes.

Starting from them, the modified distance games allow the defender to reply
an a-move by means of another b-move, where we could have a 6= b. Then he
should pay to the attacker as the provided distance between these two actions,
d(b, a), states. Obviously, the attacker tries to maximize his profit by making his
appropriate moves, while the defender tries to minimize them with his moves.
Finally, the value of this game provides the (bi)simulation distance between the
two compared processes w.r.t. the provided distance between actions, d.

Certainly, we could agree about the naturalness of these approaches, which in
fact are proved to be correct, in the sense that the distance between two processes
is 0, if and only if, they are (bi)similar. But, if we apply these distances to the
formalizations of our three examples above, considering the discrete distance
between processes (given by d(a, a) = 0 and d(a, b) = 1 if a 6= b) and taking pn
as the corresponding “ideal” behavior, where n is the desired number of choices,
pn−1 the slightly “incorrect” approximation, and p1 the poor approximation with
a single choice, we obtain d(pn, pn−1) = 1, probably as expected, but a bit
surprisingly, we also have d(pn, p1) = 1. In our opinion, it would be much more
informative to get instead d(pn, p1) = n − 1, in such a way that if we consider
the general approximation pk of the ideal process pn, which offers exactly k of
the actions, then we have d(pn, pk) = n− k, and also d(pk, p1) = k − 1.



3

Why these known distances between processes fail to notice the quantity of
choices that are lost? This is simple: just because the “local” character of the
distance game. It certainly observes any of the lost actions, but this only happens
at different plays of the game, each of them producing a profit d(ai, a1) = 1 to
the attacker, so that the “final” profit (the value of the game, that generates
d(pn, pk)) is always 1, when k < n, whatever the number of lost choices, n − k
was.

Even if we definitely advocate for a distance which will get d(pn, pk) = n−k,
and in fact we will provide such a distance, we could still look for “justifications”
of the distance produced by the game approaches: if we only study the compu-
tations of the processes “one by one” (certainly step by step, in order to get the
characterizations of the branched semantics, instead of just the trace semantics)
then we will never realize that several choices were lost at the same time (we
only notice that “each one of them” was lost, but this is not enough).

What is the problem? (and then, how can we solve it?). Simulations define
branched behaviors that are roughly trees which consider all computations of
each process together [15]. These trees can be seen as “global” values (or full
behaviors) of the process. Equality (resp. containment) of trees is defined (in
a coalgebraic way) by bisimulation (resp. simulation), and then (in a partially
local way) by the bisimulation (resp. simulation) game. We could say that this
is the “magic” of (bi)simulation, but when we introduce distances between ac-
tions and we try to lift them up to the branched behaviors by means of the
distance game, then we find that the obtained values are not able to capture
the branched structure, because the value of the game is obtained by the mini-
max algorithm, which chooses the critical path generated by the application of
the optimal strategies of both players, but is not able to “add” the differences
observed at different branches. Indeed, we are using max instead of add when
computing the value of the distance games, and then we cannot capture the
“global” distances as required by the situations in our introductory examples.

As a matter of fact, the reason why the plain (bi)simulation game is able to
capture a branched semantics is because we are interested in checking equality.
This can be done by a boolean function which only considers boolean values,
e.g. 0 for equal and 1 for unequal. Then, any move that the defender cannot
match produces some 1, so the application of max would produce the value 1.
But in this discrete domain, max can also be used to compute addition, which in
fact coincides with disjunction. Instead, as soon as we have a more informative
domain for the values of distances, then max and add become two different
operations. It is clear that the first is only able to transmit a partial information
about the branched behaviors, while addition collects all the “local” differences
to compute a much more reasonable concept of global distance.

Once we have our mechanism to compute our global bisimulation distance, we
will see that a quite simple customization, gives us a nice notion of distance for
each of the semantics in the ltbt-spectrum. Roughly we just need to combine the
preorder defining each of the other semantics in the ltbt-spectrum—see Fig.1—
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(or equivalently, the inequalities that are included in their axiomatizations), with
the rules which produce the values of our bisimulation distance, .
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Fig. 1. The ltbt-spectrum

2 Preliminaries

All the semantics from the ltbt-spectrum [14, 5, 6] that we consider can be
defined over arbitrary (possibly infinite) processes whose operational semantics
is defined by means of a labelled transition system (lts) P = (Proc,Act,→). We
will use the classical notation p

a→ p′ to represent the transitions of processes.
Moreover, it is also useful to have a syntactic notation for representing finite
processes. We will use BCCSP [14, 5].

Definition 1. Given a set of actions Act, the set BCCSP(Act) of processes is
that defined by the BNF-grammar: p ::= 0 | ap | p + q. The very well known
operational semantics of BCCSP [14, 5] is defined by:

(1)
ap

a→ p
(2)

p
a→ p′

p+ q
a→ p′

(3)
q

a→ q′

p+ q
a→ q′

In order to simplify the presentation, we start by considering a classic (sym-
metric) distance between actions d : Act × Act → N with d(a, b) = d(b, a)
∀a, b ∈ Act. Let us recall that any distance has besides to satisfy the following
two properties: d(a, b) = 0⇔ a = b, d(a, c)+d(c, b) ≤ d(a, b) ∀a, b, c ∈ Act. Later,
in Sect.6, we will discuss when an asymmetric quasi-distance could be used in-
stead, and which is the intuitive meaning of the distances between processes that
can be obtained using them.
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We can represent any process as a tree (finite or infinite). Then a first ap-
proach to the definition of a distance measuring how far away is a process p of
being equivalent to some other q, would study the differences between the trees
which represent both processes, seeing what we have to change in order to turn
them into two equivalent processes. Let us start by considering ordered trees,
where we have a set of ordered sons for each node of the tree. We can present
these trees as terms

∑n
i=1 aipi, where n = 0 produces the empty tree 0.

Definition 2. We say that an ordered tree p is at most at distance d from an-
other tree q, w.r.t. the symmetric distance between actions d, and then we write
dd(p, q) ≤ d, if and only if:

• d ≥ 0 and p = q = 0, or
• p =

∑n
i=1 aipi, q =

∑n
i=1 biqi, and d =

∑n
i=1 di +

∑n
i=1 d(ai, bi) with

dd(pi, qi) ≤ di ∀i = 1 . . . n.

It is clear that this definition only produces (finite) distances between trees
which have exactly the same structure. For instance, for the processes p = a+ b
and q = c + d we obtain dd(p, q) ≤ d(a, c) + d(b, d). However, if we want to
compare r = a and s = b+ c, we will get no finite value d for which dd(r, s) ≤ d,
and then we could say that dd(r, s) =∞.

Moreover, when comparing two infinite trees we will only obtain a finite
distance if the number of disagreements between them is finite. Certainly, this
will be the expected result if we simply add the cost of all these mismatches.
But it is important to notice that the simple approach here proposed will never
been able to compute distances between infinite trees with infinitely many mis-
matches. Therefore, in the following we will restrict ourselves to the case of finite
processes, leaving the case of infinite processes for our conclusions.

It is also true that in this simple scenario when we compare two trees with
the same structure, we could directly obtain the distance between them. But
we preferred to introduce this indirect presentation using bounds, because this
will be later needed when considering more complicated scenarios. Certainly, the
order between the summands is important in ordered trees. As a consequence,
if we consider p′ = b+ a and d(a, b) = 1, we obtain dd(p, p

′) ≤ 2, and definitely
not dd(p, p

′) ≤ 0.
But trees representing processes are unordered: each node has attached a set

of subtrees, and this even implies that no identical sons are allowed. In fact,
this corresponds to considering processes “up-to” bisimulation. Then, in order to
define a reasonable and well behaved notion of (bound of the) distance between
processes, we apply a push-out of the definition above and that of bisimulation.
So we get a rewriting procedure where we try to change any of the two compared
processes into the other: Either changing one of the actions in a tree by other,
but then we need to pay for it, as stated by the function d; or we simply apply
for free to any subtree of them any of the bisimulation axioms:
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(B1) x+ y ' y + x (B2) x+ x ' x

(B3) (x+ y) + z ' x+ (y + z) (B4) z + 0 ' z

Obviously, this procedure is non-deterministic and different possible applica-
tions lead us to several (different) “distances”, and this is why we need to talk
about “bounds” of the distance between p and q.

Definition 3. We say that an unordered tree p is at most at distance d from
another tree q, w.r.t. the symmetric distance between actions d, and then we
write dd(p, q) ≤ d, if and only if:

• (C1) p = ap′, q = bp′, and d ≥ d(a, b), or
• (C2) p = p′ + r, q = q′ + r, and d ≥ dd(p

′, q′), or
• (C3) p = ap′, q = aq′, and d ≥ dd(p

′, q′), or
• (C4) d ≥ 0 and q can be obtained from p by application of (B1)-(B4), or
• (C5) There exist r, d′ and d′′ s.t. d′ ≥ dd(p, r), d

′′ ≥ dd(r, q) and d ≥ d′+d′′.

(C1) corresponds to a single application of Def.1 producing a single change
at the root of p. (C2) and (C3) allow the contextual application of (C1) at any
place, thus generating the possibility to change any action a in p by any other
action b, paying d(a, b) for it. (C4) introduces the possibility of transforming any
process p into another bisimilar q, for free. Finally, (C5) tells us that by adding
the costs of the steps of any transformation that produces q from p, we obtain
an upper bound of the distance between p and q.

We could obtain “the” distance between two trees by considering the minimal
value d for which we have dd(p, q) ≤ d. But unfortunately this corresponds to
a global study of the set of derivations that produces the bounds. We prefer
to avoid the explicit consideration of those “exact” distances, since it seems not
possible to introduce the computation of these minimal values in our approach
in a manageable way.

Moreover, it is easy to see that these distances would correspond to the
shortest path in the graph whose nodes are processes, and the valued arcs corre-
spond to the cost of the basic allowed transformations between them induced by
rules (C1)− (C4); (C5) states somehow the Bellman’s optimality principle. As
a consequence we do not need “all the strength” of rule (C5) which allows us to
compose a path by concatenating two arbitrary paths, but it certainly includes
the (needed) case in which the first path is a single step. However, by including
this general rule we obtain a more symmetric definition, where those single steps
do not need any separate treatment.

Now, by applying (B1) we obtain dd(a + b, b + a) ≤ 0. Moreover, we can
compare trees that have not the same structure. For instance, we can transform
for free r = a into r′ = a + a, and then we obtain dd(r

′, s) ≤ d(a, b) + d(a, c),
from where we conclude dd(r, s) ≤ d(a, b)+d(a, c). Although it could be the case
that we could obtain other “lower bounds” of this distance, as we will discuss
later in Sect.3 (page 11).
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Next, we present another equivalent definition of our bisimulation distance
between processes. We consider processes up-to bisimulation, and following the
coinductive approach, we will consider a collection of “distance relations” {Gm |
m ∈ N}, that are those generated by the SOS-rules below:

(1) p Gn p (2)
p Gnq

ap Gn+d(b,a) bq
(3)

p Gn p′

p+ q Gn p′ + q
(4)

p Gn q q Gn′r
p Gn+n′ r

Proposition 1. For all n ∈ N, we have p Gn q if and only if dd(p, q) ≤ n.

Proof. It is clear the correspondence between the rules defining both collections
of relations. We will only remark that (C4) corresponds to working up-to bisim-
ilarity, while rule (2) covers both (C1) and (C3) at the same time.

ut

Remark 1. It would be possible to mix these rules in several ways, even reducing
its total number. But we prefer this presentation, where basic transformations
are shown in isolation. This definitely simplifies the rule-induction proofs in the
following.

3 Simulation Distance

Starting from the bisimulation distance presented above, next we introduce the
simulation distance. We start by recalling the definition of simulation.

Definition 4. A simulation is a relation S between processes such that whenever
we have pSq, for every a ∈ Act, if p a→ p′ then, there exists some q′, such that
q

a→ q′ and p′Sq′. We say that process p is simulated by process q, or that q
simulates p, written p vS q, if there exists a simulation S such that pSq.

We want to define by means of rules the relations that indicate how far away
is a process p of being simulated by another q. Of course, when q simulates p,
the simulation distance between them (in this direction) will be 0. When this is
not the case, we will need to change the tree that represents q, to get a process
that simulates p, paying for each modification.

Definition 5. Given two processes p and q, we say that the simulation distance
from q to p is at most m ∈ N, w.r.t. the symmetric distance between actions d,
and then we write dS

d
(p, q) ≤ m, if we can derive p GS

m q applying the following
rules:

(1)
p vS q
p GS

n q
(2)

pGS
n q

ap GS
n+d(b,a)

bq
(3)

pGS
n p′

p+ q GS
n p′ + q

(4)
pGS

n q q GS
n′ r

p GS
n+n′ r

In other words, we can say that the simulation distance is obtained by com-
puting the bisimulation distance up to the similarity relation. This can also be
expressed in a transformational way: we look for the “minimal changes” that we
need to make in q to get a process q′ which simulates p.
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Remark 2. Note that in this case we do not need to explicitly say that we work
up-to bisimilarity, since when q ∼ q′, we also have q′ vS q, and then by applying
(1) we can transmute q into q′ for free, whenever this is needed.

Next we present a very simple example to illustrate how our definition works.

Example 1. We consider the lexicographic distance between actions induced by
the lexicographic order, so we have d(a, b) = 1, d(a, c) = 2, and so on. Let us
consider the processes p = a(b+ c) and q = ab+ ad. Then, it is easy to see that
p 6vS q and q 6vS p. Let us start seeing how far away we are of having q vS p.
It is clear that q vS p′, where p′ is obtained from p by turning c into d, so that
we define p′ = a(b + d). Therefore, we have dS

d
(p, q) ≤ d(c, d) = 1. Next we see

in detail how we can derive q GS
1 p applying the rules in Def.5:

q vS p′
q GS

0 p′ (1)

d G
S
d(c,d)

c

b + d G
S
1 b + c

(3)

p′ GS
1+d(a,a)

p
(2)

q G
S
1 p

(4)

If we consider the opposite distance, which measures at which extent we have
(not) p vS q, the shortest way to obtain some q′ with p vS q′ is to duplicate (for
free) the subtree below a, and then we change one of the b actions into c, paying
for it d(b, c). So we obtain q′ = a(b+c)+ad, which produces dd(q, p) ≤ d(b, c) = 1.
This can be inferred applying our rules as follows:

p vS q
′

p GS
0 q′

(1)

c G
S
1 b

b + c GS
1 b + b

(3)

b + c GS
1 b

(B2)

a(b + c) GS
1+d(a,a)

ab
(2)

q′ GS
1+d(a,a)

q
(3)

p G
S
1 q

(4)

Next we compare the definitions of simulation distance based on the simula-
tion game with ours.

Definition 6. (Simulation game) Given two LTSs, L1 and L2, we call configu-
rations the pairs (p, q), with p ∈ L1 and q ∈ L2. The simulation game is played
by two players: the attacker A and the defender D. The initial configuration of
the game deciding if p0 vs q0, is just the pair (p0, q0). A round of the game,
when the current configuration is (p, q), proceeds as follows:

1. A chooses a transition in L1: p
a→ p′.

2. D must execute the same action at the other side of the board (L2): q
a→ q′.

3. The game proceeds in the same way from the new configuration (p′, q′).

The winner of the game is defined by the following rules: (1) Any infinite game
is a win for D. (2) D also wins if A cannot make any new move. (3) A wins
when he makes a move, that D cannot reply with a transition from L2.

Theorem 1. p vS q (resp. p 6vS q) if and only if D (resp. A) has a winning
strategy for the simulation game starting at (p,q).
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The simulation game can be turned into a (classical) simulation distance
game by allowing to reply any a-move by some b-move with b 6= a, but then
the defender should pay d(b, a) to the attacker for the mismatch. The value of
the game provides the “classical” simulation distance between p and q [1]. We
can obtain a coinductive characterization, which also provides a more general
definition covering also infinite processes, as follows:

Definition 7. A family of relations between processes (Sn)n∈N is a classical
simulation distance family (csdf), w.r.t. the symmetric distance between actions
d, when for each (p, q) ∈ Sn we have the diagram:

p Sn q

=⇒
p′ Sn−d(b,a) q′

∀ a ∃b

We say that p and q are at most at classical simulation distance n, and then we
write dS

d
(p, q) ≤ n, iff there is some csdf (Sn)n∈N such that pSnq.

Example 2. Using the distance relation d at Example 1, if we apply our Def.5,
we get dS

d
(a+ d, b+ e) ≤ 2, but we cannot obtain dS

d
(a+ d, b+ e) ≤ 1. Instead,

we can get a csdf taking S1 = {(a + d, b + e)} and S0 = {(0,0)}, because
a + d

a→ 0 can be replied by b + e
b→ 0 with cost 1. If we consider the discrete

distance d defined by d(a, b) = 1 ⇔ a 6= b, then we obtain dd(
∑n

i=1 ai, a0) ≤ n,
but dd(

∑n
i=1 ai, a0) 6≤ n− 1, while using the classical simulation game approach

we can take S1 = {(
∑n

i=1 ai, a0) | n ∈ N} and S0 = {0,0}, because any move∑
ai

ai→ 0 can be replied by a0
a0→ 0 with cost 1.

Even if we consider that our “global simulation distance”, defined at Def.5,
is the most adequate way to turn the simulation relation into a quantitative
distance between processes, next we will show the flexibility of our approach
showing that a simple variation of the system of rules defining it produces a
characterization of the “classical” operational simulation distance, defined at
Def.7. We only need to change rule (3), taking instead the new rule (3′), thus
obtaining the revised system:

(1)
p vS q
p HS

n q
(2)

pHS
n q

ap HS
n+d(b,a)

bq
(3′)

pHS
n p′ q HS

n′ q′

p+ q HS
max{n,n′} p

′ + q′
(4)

pHS
n q q HS

n′r

p HS
n+n′ r

We will see that the use of max in this rule produces that only the cost of the
simulation of the computation that is “harder to simulate” is taken into account
when generating the relations HS

n . As a consequence, the family (HS
n )n∈N is a

csdf that accurately generates the classical simulation distance:

Theorem 2. 1. (HS
n )n∈N is a csdf.

2. If (Sn)n∈N is a csdf then Sn ⊆ HS
n .
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Proof. • 1| We prove that (HS
n )n∈N satisfies the definition of csdf, by rule

induction on the definition of HS
n :

(1) : p HS
n q

(
df⇐ p vS q)

p′ HS
n q′ (

(1)⇐ p′ vS q′)

∀a ∃ b=a

(2) : ap HS
n+d(b,a)

bq (3′) : p+ q HS
n p′ + q′

p HS
n+d(b,a)−d(b,a) q p′′ HS

n−d(b,a) p′′′

⇓ ⇑pHS
np′ ∧ qHS

n′q
′ withn≥n′

p HS
n q p HS

n p′

p′′ HS
n−d(b,a) p′′′

a b ba

a b (by i.h.)

(4) : p HS
n+n′ r p HS

n q q HS
n′ r

(⇐ i.h.(4))

p′HS
n+n′−(d(c,b)+d(b,a))

r′ p′HS
n−d(b,a)q

′ q′HS
n′−d(c,b)r

′

⇓d(c,a)≤d(c,b)+d(b,c)

p′ HS
n+n′−d(c,a) r′

a c a b b c

• 2| We use complete induction on the depth of p:
0 Sn q ⇒ 0 vs q ⇒ 0 HS

n q

Let p = ap′a + r and q = bq′b + q′′ such that

p = ap′a + r Sn q = bq′b + q′′

=⇒
pa Sn−d(b,a) q′b

∀ a ∃ b

Then we have:

p′a Sn−d(b,a) q
′
b ⇒ p′a HS

n−d(b,a) q
′
b ⇒ ap′a HS

n bq′b .

This happens for all the summands of p, which means that up-to idempotence
of +, we can assume that p =

∑
aip
′
ai

and q =
∑

biq
′
bi
+ r, where for all i ∈ I

we have aip
′
ai

HS
n biq

′
bi
; and finally we conclude p HS

n q, by applying repeatedly
the rule (3), and (1) to get 0HS

n r.
ut

It is interesting to note that we have not used the transitivity rule (4) at all
in the previous proof, which means that we can obtain the following corollary:
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Corollary 1. If we define HS′

n as HS
n , but removing the transitivity rule (4),

we have that HS′

n is equivalent to HS
n .

Proof. From the fact that HS
n is a csdf we immediately obtain that HS′

n is too.
But since in the proof of Th.2 we do not use the transitivity rule (4), we have
also proved there that for any csdf (Sn)n∈N we have Sn ⊆ HS′

n . Then we have
HS

n ⊆ HS′

n and from their definitions we immediately obtain HS′

n ⊆ HS
n , from

where we can conclude that HS
n is equivalent to HS′

n .
ut

Note however, that when we consider the sum between branches in rule (3)
instead of the maximum, as done in Def.5, we need indeed the transitivity rule,
because in this case it cannot be “derived” from the rest of the rules. The following
example shows the necessity of this rule.

Example 3. Consider the processes p = a and q = b+ c, if we want to simulate q
by p, we need to change action a into both b and c. However, it is possible that
it would be better to transform first a into some a′, and then this a′ into b and c.
Without the transitivity rule we cannot generate this elaborated transformation,
and then we would not get the “desired” global simulation distance. Instead, when
we consider the classical simulation distance, by the triangular inequality, it is
not useful to transform first a into some a′ and then a′ into b, because that will
be always worse than transforming directly a into b.

This example also illustrates the possible interest of such an elaborated pro-
cedure in order to efficiently simulate several branches of the simulated process
by a common branch of the simulating one. The cost of the transformation of a
into a′ is shared by the two branches, and then we only pay once for it. Note that
the use (for free) of idempotence allows this double use of a common branch.

4 Bisimulation Distance

Using the bisimulation game, we can define a “classical” bisimulation distance as
done in [7]. It measures how far away are two processes of being bisimilar.

Theorem 3 ([10, 12]). p ∼ q (resp. p 6∼ q) if and only if D (resp. A) has a
winning strategy for the bisimulation game starting at (p, q).

Definition 8. A family (Rn)n∈N is a classical bisimulation distance family (cbdf),
w.r.t. the symmetric distance relation between actions d, when it satisfies

p Rn q p Rn q

=⇒ ∧ ⇐=
p′ Rn−d(b,a) q′ p′ Rn−d(a,b) q′

∀ a ∃b ∀ b∃a

We say that p and q are at most at classical bisimulation distance n, and then
we write dB

d
(p, q) ≤ n, iff there is some cbdf (Rn)n∈N such that pRnq.
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From the symmetric definition of bisimulation we immediately obtain that
our classical bisimulation distance is also symmetric.

Proposition 2. For any two processes p, q and any n ∈ N, we have dB
d
(p, q) ≤ n

if and only if dB
d
(q, p) ≤ n.

Following the same ideas that we used in Sect.3, we can obtain a rule system
that produces the biggest relations HB

n that state that the related processes are
at most at distance n to be bisimilar.

Definition 9. We consider the family of relations (HB
n )n∈N which are generated

by applying the following rules, modulo bisimulation:

(1)
p HB

n p
(2)

pHB
n q

ap HB
n+d(b,a)

bq
(3′)

pHB
n p′ q HB

n′ q′

p+ q HB
max{n,n′} p

′ + q′
(4)

pHB
n q q HB

n′ r

p HB
n+n′ r

It is nice to observe the close similarity between the rules defining this clas-
sical bisimulation distance and our previous bisimulation distance in Sect.2: in
fact, if we change the max operator in (3′) by addition, then it is easy to check
that the obtained definition is equivalent to our original one.

Remark 3. It is clear that we can remove the “up-to” bisimulation at the defi-
nition above if we explicitly introduce the bisimilarity relation in the definition,
by replacing rule (1) by the following rule:

(1′)
p ∼ q

p HB
n q

However, we prefer our first presentation in order to stress the fact that the
system of rules that defines the classical simulation distance is obtained from
the one above simply adding the similarity relation to produce pairs that are
“0-far” away.

We can prove the relationship between the family HB
n defined above and the

“classical” bisimulation distance relations defined at Def.8, exactly as we made
for the simulation case.

Theorem 4. 1. (HB
n )n∈N is a cbdf.

2. If (Rn)n∈N is a cbdf then Rn ⊆ HB
n .

Once again, we do not use rule (4) at the proof above, which allows to derive
the following corollary, that is analogous to Cor.1 in Sect.3.

Corollary 2. If we define HB′

n as HB
n in Def.9, but removing the transitivity

rule (4), then we obtain the same family of relations, that is HB′

n = HB
n , ∀n ∈ N.
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5 Distances for all the semantics in the ltbt-spectrum

Inspired by the connection between the bisimulation and the simulation dis-
tances, next we define a general notion of distance between processes. It can
be instantiated by any of the different semantics in the ltbt-spectrum. These
distances will measure how far away is any process q of being greater than p
with respect to each of the semantic preorders defining the semantics in Fig.1.
Roughly speaking, to obtain these distances, we compute the cost of changing
some actions in both p and q in order to obtain two new processes p′ and q′

which are related under the considered semantics.
We could try to base our general definitions on the “classical” simulation

distance. It is defined in a similar way as the “classical” bisimulation distance.
The only difference between those two definitions was the use of vS at rule (1).
This immediately suggests us to define the semantic distances, corresponding to
any semantics defined by an order vL, by means of the following system of rules:

(1)
p vL q
p HLn q

(2)
p HLn q

ap HL
n+d(b,a)

bq
(3)

p HLn p′ q HLn′ q′

p+ q HLmax{n,n′} p
′ + q′

(4)
p HLn q q HLn′ r

p HLn+n′ r

However, when checking some simple examples we see that this “local” ap-
proach (based on max) does not produce a “reasonable” distance for some of
the most popular semantics in the ltbt-spectrum. Next, we consider the case of
ready simulation (RS).

Example 4. Let us consider the processes p = b + c and q = d + f . As distance
relation d between actions, we consider again the lexicographic distance. We can
check that the definition above produces

b H
RS
2 d c H

RS
3 f

b + c HRS
max{2,3} d + f

(3)

p H
RS
3 q

(df)

We infer p HRS
3 q, that is the result of the necessary change in the branch which

needs the most expensive change. However, this is, by no means, consistent with
the definition of ready simulation: In order to have p vRS q, we need that the
two processes have the same initial offer. Therefore, we would need to transform
the offer {d, f} into {b, c}. We would need changes whose aggregated cost would
be (at least) 4—see Example 5—, and not just 3.
Note that this problem does not appear in the simulation case, because the
definition of simulation does not contain any “global” factor. But, most of the
rest of the semantics, take somehow into account some “global” information
that could only be obtained by combining the information taken from several
separated computations. This is the case of ready sets at readiness semantics, or
even the case of failures defining the failure semantics.

Certainly, we also had p HB
3 q for the (classical) bisimulation distance, and

then we should also expect p HL3 q for any semantics coarser than bisimulation.
But as we discussed at the end of our introduction, plain bisimilarity is able to
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check the equality of the offers of two processes even if working in a local way.
However, once we need to compare two unequal offers, this local procedure proves
to be quite limited. Therefore, we need to recover our first proposal at Sect.2 that
measures the distance between processes by adding the cost of all the changes
that we have to do at all the branches of the tree that represents a process. We
already saw that it provides two reasonable “global” notions of simulation and
bisimulation distances. Based on it, we obtain our general definition of “global”
semantic distance between processes:

Definition 10. Given a semantics L, defined by a preorder vL, we say that a
process q is at global distance at most m ∈ N of being better than some other
p, w.r.t. the semantics L and the distance between actions d, and then we write
gdL

d
(p, q) ≤ n, if we can infer p GLn q, by applying the following rules:

(1)
p vL q
p GLn q

(2)
pGLn q

ap GL
n+d(b,a)

bq
(3)

pGLn p′

p+ q GLn p′ + q
(4)

pGLn q q GLn′ r

p GLn+n′ r

Example 5. It is easy to check that for the processes in Example 4 and the ready
simulation semantics RS, we obtain now the desired distance gdRS

d
(p, q) ≤ 4,

since we can infer applying the rules for L = RS that:

bG
RS
1 c

b + cG
RS
1 c + c

(3)

c + c vRS c

c + cG
RS
0 c

(1)

cG
RS
1 d

d vRS d + d

dG
RS
0 d + d

(1)

cG
RS
1+0 d + d

(4)

c + cGRS
0+1 d + d

(4)

b + cGRS
1+1 d + d

(4)
dG

RS
2 f

d + dG
RS
2 d + f

(3)

b + cG
RS
2+2 d + f

(4)

p G
RS
4 q

(df)

Remark 4. As a matter of fact, we have only used rule (1) in the partial case of
“idempotence”. This means that the computed (bound of the) distance will also
be valid for the bisimulation semantics and in fact for any other semantics in
the spectrum. Of course, if we consider a coarser semantics, it could be the case
that we could obtain a smaller distance by applying (1) in some other way. For
instance, for the simulation semantics (S) we will easily obtain gdS

d(p,q)
≤ 2.

Generally, we immediately obtain the following result that asserts that our
family of distances reflects exactly the hierarchy in the ltbt-spectrum.

Proposition 3. Whenever we have two semantics L1 and L2 and the first is
finer than the latter (vL1

⊆ vL2
), then we have gdL1

d
(p, q) ≤ n ⇒ gdL2

d
(p, q) ≤

n, for all processes p, q and any value n ∈ N.

6 Generalizations, Applications and some Conclusions

In the developments above we have preferred to consider symmetric distances
between actions because in particular we wanted to apply all the notions and
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technical definitions to the case of bisimulation, that is an equivalence relation
and therefore symmetric. However, the rest of the semantics are typically defined
by means of a preorder, instead of by an equivalence relation. This is why the
consideration of asymmetric quasi-distances opens a new and quite interesting
space for developments and applications of our theory.

Let us consider the case of the simulation semantics: when we have p vS q,
this reflects that q has all the capabilities of p and possibly some others. The
simulation distances presented above reflect how many changes we need to make
in q in order to get a process that really simulates p. But it could be the case that
q instead of directly offering the same actions offered by p, offers some others
that we consider that “do perfectly the work”. This situation is formally covered
simply by replacing the symmetric distance between actions by an asymmetric
quasi-distance, defined as follows:

Definition 11. An asymmetric quasi-distance in a set of actions Act is a func-
tion d : Act× Act → N which satisfies d(a, a) = 0 ∀a ∈ Act, and the triangular
inequality d(a, b) + d(b, c) ≥ d(a, c) ∀a, b, c ∈ Act. We will say that d(a, b) ex-
presses “how far away” is action a of covering the expectation to have a b.

Remark 5. Now we can have d(b, a) = 0 even if b 6= a, and this would reflect the
fact that b totally “simulates” a. Then we could replace without “cost” any occur-
rence of an action a in the simulated process p using the action b. Of course, now
we can have d(a, b) 6= d(b, a), because the cost of replacing a by b could be very
different from that of replacing b by a. Finally, any asymmetric quasi-distance in-
duces a symmetric quasi-distance, simply taking d(a, b) = max{d(a, b), d(b, a)}.
This becomes a distance if we impose that a 6= b⇒ d(a, b) 6= 0.

Example 6. If we consider a simple vending machine that returns no change, and
a product costs 1e, then from the machine point of view a payment of 2e for
it, could be perfectly assumed. Instead, if the situation is the other way around
and we pay 1e for a product whose cost is 2e, then the company loses 1e. This
would be reflected by the asymmetric quasi-distance defined by d(1e,2e) = 0
and d(2e,1e) = 1. Using it we obtain that the process where we pay 2e instead
of 1e is at distance 0 of simulating the specification, while when we pay 1e when
a 2e cost is specified, we would be at distance 1 of satisfying the specification.

Using the fact that all the semantics in the (extended) ltbt-spectrum are
connected to some constrained simulation, we could justify the consideration of
the corresponding “biased” distances. Instead, it seems not possible to define a
reasonable bisimulation distance really based on an asymmetric quasi-distance.
Of course, we could always do the task using the induced distance d, but in this
way we are “loosing” the asymmetric information in the original distance d.

We have defined our distances with natural values just to simplify the pre-
sentation, but there is no problem at all on using any other totally ordered set,
such as R+. Moreover, if we use fixed values for the weight of any discordance
along a computation (or at any place of the trees when considering “global” dis-
tances) then the distance between two (infinite) processes would become infinite
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as soon as the number of discordances between them is also infinite. This would
be certainly a problem, for instance, when comparing cyclic programs where any
discordance will appear again at any iteration of the compared processes. Of
course, the solution to this problem would consist (as proposed, e.g. in [4, 13])
on defining weighted distances. For them the weight of any disagreement at the
n-th step of a computation (or at the n-th level of the unfolded processes) will
decrease fast enough (for instance, the classical weights used at the literature
are those defined by the exponential sequence 1

2n ).
It is true, however, that we have not discussed how to obtain in a precise

way the (bounds for the) distances between two infinite processes, when they
“disagree” at infinitely many places. This could be done by using either finite
approximations or recursion-induction rules, for the case of finite state processes.
But certainly the details need a careful work.

A simpler extension solves the problem of unexpected termination. If we
consider for instance our Def.3, we could extend it by adding a fixed payment f ,
for unexpected termination, taking d(p,0) ≤ f and d(0, p) ≤ f , ∀p 6= 0. Instead,
we could pay for each of the lost actions a quantity qa, taking d(a0,0) ≤ qa
and d(0, a0) ≤ qa ∀a ∈ Act. Of course, this second possibility would produce
infinite distances if the terminated process was infinite, but weights can be also
introduced here if we want to follow this approach.

We consider that starting from the basic (but quite flexible) definitions intro-
duced in this paper we are plenty of more elaborated possibilities, which could
be developed by adapting the ideas in our general theory to them. Next, we
give a list of interesting directions that we expect to explore in the near future.
First, we are working in a definition of approximated testing, where we indicate
“at which extent” a process passes a test. Using this notion we can quantify the
testing procedure by formalizing the quite frequent situation in practice where
the specification states the ideal behavior of the desired implementations, but
some small disagreements are tolerated by the quality standards. A dual ap-
plication of our distances would also provide for free a nice quantification of
the notion of robustness: given some specification p we would say that a given
implementation q is n-robust w.r.t. some semantics L when any “n-wrong” be-
havior of q, that is, any q′ such that dLx (q′, q) ≤ n, satisfies dLx (p, q′) = 0. We can
combine our approximated correctness and the quantified robustness proposed
above, to define a notion of approximated robustness, where we also allow some
small disagreement between p and the n-wrong behaviors of q.

Another generalization would use “contextually defined” distances between
actions, that take into account the fact that several occurrences of the same
action in a specification could play totally different roles. In such a case, we
could specify at each state of the specification which is the distance between
actions that we should use locally at each place. The distances between pure
trees, where the application of the idempotence law is not allowed, will also
capture redundancy, and then when investigating fault tolerance the previously
discussed ideas on approximated robustness could be used to define approximated
fault tolerance.
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Finally, we could also allow negative values at the distances between actions,
that would state that whenever we have d(a, b) = −n then using b to simulate
a we would be “improving” the quality of the system. This could amortize some
other steps where we have the opposite situation. A typical application would ap-
pear when comparing two transmission protocols, and is clearly related with the
previous work by Vogler and Lüttgen in [9], where “faster than” preorders where
studied, and those by Kiehn and Arun-Kumar [8] on amortized bisimulation.
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