
Heap-dependent Expressions in Separation Logic

Jan Smans, Bart Jacobs?, and Frank Piessens

Katholieke Universiteit Leuven, Belgium
{jan.smans,bart.jacobs,frank.piessens}@cs.kuleuven.be

Abstract. Separation logic is a popular specification language for im-
perative programs where the heap can only be mentioned through points-
to assertions. However, separation logic’s take on assertions does not
match well with the classical view of assertions as boolean, side effect-
free, potentially heap-dependent expressions from the host programming
language familiar to many developers.
In this paper, we propose a variant of separation logic where side effect-
free expressions from the host programming language, such as pointer
dereferences and invocations of pure methods, can be used in assertions.
We modify the symbolic execution-based verification algorithm used in
Smallfoot to support mechanized checking of our variant of separation
logic. We have implemented this algorithm in a tool and used the tool
to verify some interesting programming patterns.

1 Introduction

The design of many specification languages centers around the idea that specifi-
cations should resemble the host programming language, in order to make it easy
for developers to adopt and learn the specification language and to provide a
straightforward semantics for run-time checking. Examples of such specification
languages include the Java Modeling Language [1] and Spec# [2], where field
dereferences and certain method calls can be used freely within contracts.

Over the past couple of years, separation logic [3] has proven to be a promis-
ing, powerful alternative to traditional specification formalisms. However, con-
trary to for instance JML and Spec#, separation logic assertions are quite dif-
ferent from the host programming language, in particular because the heap can
only be mentioned through points-to assertions and expressions cannot mention
field dereferences.

In this paper, we try to achieve the best of both worlds, by combining the
power of separation logic with the programmer-friendly notation offered by tra-
ditional specification languages. In particular, we propose a variant of separation
logic where side effect-free, potentially heap-dependent expressions from the host
programming language can freely be mentioned inside specifications. In addition,
we port the symbolic execution-based verification algorithm used in Smallfoot [4]
to our variant of separation logic such that program correctness can be checked
mechanically.
? Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

Supporting heap-dependent expressions in separation logic is challenging for
a number of reasons. First of all, as pure methods can be used in specifications,
the question arises of how to frame their return values. Secondly, assertions can
be ill-defined, for example because the assertion dereferences a pointer while it
does not have permission to do so. In this paper, we solve the former challenge
by encoding the fact that a pure method’s return value depends only on values
stored in the heap covered by the precondition. We solve the latter challenge by
performing additional checks when assuming and producing assertions.

In summary, the contributions of this paper are as follows:

– We propose a variant of separation logic where heap-dependent expressions
from the host programming language, in particular pointer dereferences and
invocations of pure methods, can be used in specifications.

– We modify Smallfoot’s symbolic execution-based verification algorithm to
support mechanized checking of our variant of separation logic.

– We implemented our algorithm in a tool and report on experience in verifying
some interesting programming patterns.

The remainder of this paper is structured as follows. Section 2 introduces our
variant of separation logic and applies it in an example. In Section 3, we propose
a verification algorithm for the specification language introduced in Section 2.
Finally, we discuss experience with a verifier prototype, compare with related
work and conclude in Sections 4, 5 and 6.

2 Separation Logic with Side effect-free Expressions

We describe our variant of separation logic in the context of the imperative
language of Figure 1. In this figure, overlining indicates repetition; annotations
are highlighted by a gray background.

program ::= decl s
decl ::= func | purefunc | predicate

func ::= func f(x) requires A; ensures A; { s return e; }
purefunc ::= pure func p(x) requires A; { return e; }
predicate ::= predicate q(x) = A;

s ::= x := cons(e); | x := e; | [e] := e; | x := f(e); | free e; |
assert e = e; | if(e = e) { s } else { s } | open q(e); | close q(e);

e ::= x | c | [e] | p(e) | open q(e) in e | e op e | old(e)

A ::= q(e) | acc(e) | A ∗A | e = e | untouched(A)

Fig. 1. A C-like language with side effect-free, heap-dependent expressions and sepa-
ration logic annotations.

A program consists of a number of declarations and a main routine s. A
declaration is either a mutator function, a pure function or a predicate defini-
tion. Each mutator function has a corresponding contract, consisting of a pre-
and postcondition, and a method body, consisting of a number of statements
followed by a return statement. Each pure function has a corresponding pre-
condition and a method body, returning a side effect-free expression (that can
potentially call the pure function itself). A predicate definition assigns a name
to an assertion. A statement is either a memory allocation, a variable update,
a heap update, a mutator function call, a free statement, an assert statement,
an if-then-else statement, or an open or close statement. Note that the last two
statements are ghost statements: they have no runtime effect and are only needed
to indicate to the program verifier when folding and unfolding of predicates is re-
quired (discussed in Section 3). An expression is a variable, a constant, a pointer
dereference, a pure method call, an open expression, an operator expression or
an old expression. Note that all expressions are side effect-free; however some
of them depend on the heap. An assertion is either a predicate assertion, an
access assertion, a separating conjunction, an equality between expressions or
an untouched assertion. An access assertion acc(e) denotes the permission to
dereference e. In classical separation logic, acc(e) would be denoted by e 7→ .
An untouched assertion untouched(A) is a two-state assertion that holds if the
values in the heap covered by A are the same in both the pre- and post-state.
In the remainder of this paper, we use true as syntactic sugar for the assertion
0 = 0, and false as syntactic sugar for 1 = 0. In the remainder of this paper,
we consider only well-formed programs (Definition 1). In our implementation,
well-formedness is checked using a simple syntactic analysis.

Definition 1. A program is well-formed if all of the following hold:

– Predicate, mutator function and pure function names are unique within the
program. Parameter names are unique within a declaration.

– The free variables of a function’s body and contract are the function pa-
rameters. Postconditions can additionally mention the variable result. The
free variables of a predicate’s body are the predicate’s parameters. The main
routine has no free variables.

– The program only mentions functions and predicates declared in the program
text. The number of actual arguments in a function call or predicate assertion
is equal to the number of formal parameters in the corresponding declaration.

– Old expressions and untouched assertions only appear in postconditions.

Let us take a look at the example program of Figure 2. This program declares a
predicate, a pure function and a number of mutator functions for dealing with
cells, together with a main routine that uses the aforementioned functions to
create and interact with cells. The pure function get returns the value of the cell
referred to by c. Its precondition demands that c is a valid cell data structure.
Note that pure functions do not have postconditions, as they cannot modify
the program state. create cell creates a new cell data structure with value 0.
create cell ’s postcondition not only states that the result is a valid cell, but also

expresses that resulting cell holds 0 via the pure function get . inc increments
the value of a cell by one. Note that an old expression is used to relate the pre-
and post-state. copy copies the value of cell d to cell c. The untouched assertion
in its postcondition expresses that the heap covered by cell(d) is not modified
by copy . Client code can use the latter information to frame pure methods that
depend on cell(d). For example, clients can prove that get(d)’s return value is
the same before and after calling copy .

predicate cell(c) = acc(c);

pure func get(c)

requires cell(c);

{ return open cell(c) in [c]; }

func create cell()

requires true; ensures cell(result) ∗ get(result) = 0;

{ c := cons(0); close cell(c); return c; }

func inc(c)

requires cell(c);

ensures cell(c) ∗ get(c) = old(get(c)) + 1;

{ open cell(c); [c] := [c] + 1; close cell(c); return 0; }

func copy(c, d)

requires cell(c) ∗ cell(d);

ensures cell(c) ∗ cell(d) ∗ get(c) = get(d) ∗ untouched(cell(d));

{ open cell(c); [c] := get(d); close cell(c); return 0; }

func dispose(c)

requires cell(c); ensures true;

{ open cell(c); free(c); }

c1 := create cell(); inc(c1);
c2 := create cell(); inc(c2);
assert get(c1) = 1;
dispose(c1); dispose(c2);

Fig. 2. An annotated program written in the language of Figure 1. Annotations are
highlighted by a gray background.

The main routine creates two cells, c1 and c2, updates their values, checks
that the value of c1 is 1, and disposes both cells. Note that in order to prove that

the assertion never fails, one must show that creating and modifying c2 does not
affect the return value of get(c1).

The function bodies in Figure 2 contain open and close ghost statements.
These statements instruct the program verifier to respectively unfold and fold
predicates during symbolic execution. For example, the close statement in the
body of create cell removes the body of the predicate cell from the symbolic heap
and replaces it with the predicate itself, thereby establishing the postcondition.
A more detailed description of symbolic execution and open and close statements
will be given in Section 3.

3 Verification

In this section, we describe the symbolic execution-based verification algorithm
for our variant of separation logic. After defining how we represent program
states symbolically (section 3.1), we define symbolic evaluation and execution of
expressions and statements (section 3.2). Based on these definitions, we define
what it means for a program to be valid (section 3.3).

3.1 Symbolic State

A symbolic state is a four-tuple (h, g, γ, π) consisting of a symbolic heap h, a
symbolic pre-state heap g, a symbolic store γ and a path condition π. A symbolic
heap is a multiset of heap chunks, where each heap chunk q[s](t) consists of a
predicate name q, a first-order term s and a list of first-order terms t. We refer
to the term s as the snapshot of the heap chunk. A symbolic store is a partial
function from variables to first-order terms. Finally, a path condition is a set of
first-order formulas, describing the conditions that hold on the current execution
path.

In the remainder of this section, we describe the symbolic execution algo-
rithm itself. The core of this algorithm consists of 4 functions: eval, produce,
consume and exec. These functions respectively represent symbolic evaluation of
expressions, assuming and checking assertions and symbolic execution of state-
ments. All aforementioned functions are written in continuation passing style.
That is, each function takes a continuation parameter (typically called Q) that
represents the work to be done on the current path. Their signatures are as
follows:

eval : H ×H × Γ ×Π × e× (T ×Π → B)→ B
produce : H ×H × Γ ×Π × T ×A× (H ×Π → B)→ B
consume : H ×H × Γ ×Π ×A× (H ×Π × T → B)→ B
exec : H ×H × Γ ×Π × s× (H × Γ ×Π → B)→ B

In the above signatures, H stands for the set of symbolic heaps, Γ for the set of
symbolic stores, Π for the set of path conditions, T for the set of first-order terms
and B for the set of booleans. Note that each of the aforementioned functions
returns a boolean, indicating whether symbolic execution was successful.

3.2 Symbolic Execution

Preliminaries The symbolic state represents symbolic values as first-order
terms and information about those values as first-order formulas. In the algo-
rithm, we use a first-order logic with equality. The signature of the logic contains
a number of built-in functions, including unit , pair , fst and snd , which are used
to create snapshots. A snapshot uniquely determines the values in the heap
covered by a predicate. unit is the empty snapshot, while pair(a, b) combines
snapshots a and b. The functions are axiomatized as follows:

∀a, b • fst(pair(a, b)) = a ∀a, b • snd(pair(a, b)) = b

We do not explicitly mention these axioms in our algorithm. Instead, we write
π ` φ (denoting that formula φ is provable from π) as a shorthand for π ∪ T ` φ,
where T is the theory containing the two axioms described above. Our imple-
mentation relies on the Z3 SMT solver [5] to discharge such proof tasks.

A key question our approach has to answer is how to encode pure functions
during verification in a way that allows us to frame their return values. Like other
verification approaches [6–11], we encode a pure function as a first-order function
in the verification logic and encode a call of a pure function as an application of
the corresponding first-order function. The key to solving the issue of framing is
the fact that a pure function’s return value can only depend on memory locations
covered by its precondition. This dependence on part of the heap is encoded as
an additional function parameter. As we will show in Figure 3, this parameter
is the snapshot of the function’s precondition. For example, the signature of the
function symbol for the pure function get of Figure 2 is get : T × T → T . The
first parameter represents the values in the heap covered by the precondition,
while the second parameter corresponds to the pure function’s parameter c.

Note that the functions produce and consume do not contain cases for acc(e).
Instead, the algorithm considers acc to be just another predicate with one pa-
rameter.

If at a certain point during symbolic execution the path condition is inconsis-
tent, then that point is not reachable during a concrete execution of the program.
In our implementation, we check consistency of the path condition whenever a
new formula is added to it. If adding a new formula makes the path condition
inconsistent, we simply stop symbolic execution and return true (indicating that
symbolic execution succeeded). To avoid cluttering the rules, we do not explicitly
show consistency checks in the definitions of eval, consume, produce and exec.

Symbolic evaluation of expressions eval(h, g, γ, π, e,Q) (defined in Figure 3)
evaluates the expression e in symbolic state (h, g, γ, π) and passes both the re-
sulting term and a potentially updated path condition to the continuation Q.
More specifically, symbolic evaluation of a variable x corresponds to looking
up x in the symbolic store and passing the resulting term to the continuation.
A constant evaluates to itself. Dereferencing a pointer is allowed only if the
thread has permission to do so. To check whether the thread has permission,

the algorithm looks in the symbolic heap for a matching chunk. If a matching
chunk is found, that chunk’s snapshot is passed to the continuation; otherwise,
eval(h, g, γ, π, [e], Q) fails.

eval(h, g, γ, π, x,Q) ≡ Q(γ(x), π)

eval(h, g, γ, π, c,Q) ≡ Q(c, π)

eval(h, g, γ, π, [e], Q) ≡
eval(h, g, γ, π, e, (λt, π′•

let matches = { acc[ts](t1) ∈ h | π ` t1 = t } in
∃acc[ts](t1) ∈ matches •Q(ts, π

′)))

eval(h, g, γ, π, p(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, {(x1, t1), . . . , (xn, tn)}, πn, precondition(p), (λh′, π′, s •
if p’s body visible then

produce(h′, g, {(x1, t1), . . . , (xn, tn)}, π′, s, precondition(p), (λh′′, π′′•
eval(h′′, g, {(x1, t1), . . . , (xn, tn)}, π′′, body(p), (λt, π′′′•
Q(p(s, t1, . . . , tn), π′′′ ∪ {p(s, t1, . . . , tn) = t})))))

else
Q(p(s, t1, . . . , tn), π′)))))))

eval(h, g, γ, π,open q(e1, . . . , en) in e,Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . (λtn, πn•

consume(h, g, γ, πn, q(e1, . . . , en), (λh′, π′, s•
produce(h′, g, {(x1, t1), . . . , (xn, tn)}, π′, s, definition(q), (λh′′, π′′•

eval(h′, g, γ, π′′, e, Q))))))))

eval(h, g, γ, π, e1 op e2, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•
Q(t1 op t2, π2)))))

eval(h, g, γ, π,old(e), Q) ≡ eval(g, g, γ, π, e,Q)

Fig. 3. Symbolic evaluation of expressions.

Calling a pure function p(e1, . . . , en) is allowed only if its precondition holds.
Our algorithm checks whether the precondition holds by consuming it. Note
that consuming the precondition not only returns an updated heap and path
condition, but also a snapshot s. This snapshot is used as the first parameter
in the application of the corresponding first-order function. Note that the algo-
rithm branches on the fact whether p’s body is visible. That is, if the body is
visible, an assumption stating that evaluation of p(e1, . . . , en) equals evaluation
of its body is added to the path condition passed to the continuation. An open-
ing expression open q(e1, . . . , en) in e evaluates the expression e in a context

where the predicate q(e1, . . . , en) is replaced by its body. To symbolically eval-
uate an binary operation e1op e2, the algorithm applies the operation to the
corresponding symbolic values, t1 and t2. Evaluation of an old expression old(e)
corresponds to evaluating e in the pre-state heap g.

Symbolic production of assertions produce(h, g, γ, π, s, A,Q) assumes the
assertion A in the symbolic state (h, g, γ, π) based on snapshot s and passes a
potentially updated heap and path condition to its continuation Q. The param-
eter s is used to determine the snapshots of heap chunks created during produc-
tion. The function produce is defined in terms of the helper function produce′ as
follows:

produce(h, g, γ, π, s, A,Q) ≡ produce′(∅, g, γ, π, s, A, (λh′, π′ •Q(h] h′, π′)))

produce′ starts with an empty heap to ensure that assertions are self-framing.
That is, the assertion A should only dereference a pointer if A itself demands
access to that pointer.

Figure 4 shows the definition of produce′. To produce a predicate assertion
q(e1, . . . , en), we add a predicate chunk for q to the symbolic store with snapshot
s. To produce a separating conjunction A1 ∗ A2, we must first produce A1 and
afterwards produce A2 in the resulting symbolic state. Note that the snapshot s
is split up into two pieces using the functions fst and snd . Producing an equality
e1 = e2 comes down to adding the assumption that the values of both expressions
are equal to the path condition. Finally, to produce untouched(A), we consume
A in both the current symbolic heap h and the pre-state heap g, and assume
that the resulting snapshots are equal.

produce′(h, g, γ, π, s, q(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•
Q(h] {q[s](t1, . . . , tn)}, πn)))))

produce′(h, g, γ, π, s, A1 ∗A2, Q) ≡
produce′(h, g, γ, π, fst(s), A1, (λh

′, π′•
produce′(h′, g, γ, π′, snd(s), A2, Q)))

produce′(h, g, γ, π, s, e1 = e2, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•
Q(h, π2 ∪ {t1 = t2})))))

produce′(h, g, γ, π, s,untouched(A), Q) ≡
consume(h, g, γ, π,A, (λ , , s1 • consume(g, g, γ, π,A, (λ , , s2•
Q(h, π ∪ {s1 = s2})))))

Fig. 4. Production of assertions.

Symbolic consumption of assertions Consumption is the reverse of produc-
tion. consume(h, g, γ, π,A,Q) checks if A holds in the symbolic state (h, g, γ, π)
and passes a potentially updated heap, path condition and the snapshot of the
consumed heap chunks to the continuation Q. Note that “checking” of spatial
assertions causes heap chunks to be removed from the symbolic heap. consume
is defined in terms of the helper function consume′ as follows:

consume(h, g, γ, π,A,Q) ≡ consume′(h, h, g, γ, π,A,Q)

The first symbolic heap passed to consume′ is used for evaluating expressions,
while the second represents the remainder of the original heap which is not
consumed yet by the assertion.

Figure 5 shows the definition of consume′. Consumption of a predicate asser-
tion q(e1, . . . , en) succeeds only if a heap chunk matching q[](t1, . . . , tn) exists.
This heap chunk is removed from the symbolic heap and its snapshot is passed
to the continuation. To consume A1 ∗ A2, one must first consume A1 and af-
terwards consume A2. A pair containing the snapshots of A1 and A2 is passed
to the continuation. Consumption of e1 = e2 succeeds only if both expressions
are provably (from the path condition) equal and the continuation Q succeeds.
Finally, consumption of untouched(A) succeeds only if the snapshots obtained
by consuming A in both the pre- and post-state are provably equal.

consume′(h, h′, g, γ, π, q(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

let matches = {q[s](t′1, . . . , t′1) ∈ h′ | πn ` t1 = t′1 ∧ . . . ∧ tn = t′n} in
∃q[s](t′1, . . . , t′1) ∈ matches •Q(h′ − {q[s](t′1, . . . , t′1)}, πn, s)))))

consume′(h, h′, g, γ, π,A1 ∗A2, Q) ≡
consume′(h, h′, g, γ, π,A1, (λh

′′, π′, s1•
consume′(h, h′′, g, γ, π′, A2, (λh

′′′, π′′, s2 •Q(h′′′, π′′, pair(s1, s2))))))

consume′(h, h′, g, γ, π, e1 = e2, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

(π2 ` t1 = t2) ∧Q(h′, π2)))))

consume′(h, h′, g, γ, π, s,untouched(A), Q) ≡
consume′(h, h, h, γ, π,A, (λ , , s1 • consume′(g, g, g, γ, π,A, (λ , , s2•

(π ` s1 = s2) ∧Q(h′, π)))))

Fig. 5. Consumption of assertions.

Symbolic execution of statements exec(h, g, γ, π, s,Q) (Figure 6) symboli-
cally executes statement s in symbolic state (h, g, γ, π) and passes a potentially
updated heap, store and path condition to the continuation Q. More specifi-
cally, a memory allocation x := cons(e1, . . . , en); is modeled by creating a fresh

term representing the address of the newly allocated memory. The heap is ex-
tended with n new memory locations starting at address l containing the terms
t1 to tn. The variable x is modified to l. A variable update x := e; modifies
the value of the variable x in the symbolic store γ to the symbolic value of
e. A heap update [e1] = e2; is allowed only if the symbolic heap contains a
chunk that matches acc[](t1). If such a match exists, that heap chunk’s snap-
shot is changed to t2; otherwise, symbolic execution fails. Symbolic execution
of a mutator call x := f(e1, . . . , en); consists of consuming f ’s precondition
and producing f ’s postcondition afterwards. Note that a fresh term is used as
the snapshot for producing the postcondition. A free statement free e; is al-
lowed only if the heap contains a chunk matching acc[](t). If it does, then that
chunk is removed from the heap; otherwise, symbolic execution fails. Note that
the chunks produced by cons(e1, . . . , en) need to be freed separately. As assert
statement assert e1 = e2; fails if the values of e1 and e2 are not provably equal;
otherwise, the assert statement is equivalent to skip. An if-then-else statement
if(e1 = e2) { s1 } else { s2 } splits symbolic execution into two branches. An
open statement open q(e1, . . . , en); removes a chunk matching q[](t1, . . . , tn)
from the symbolic state and produces q’s body with the snapshot of the re-
moved chunk; if no such chunk exists, symbolic execution fails. Finally, a close
statement close q(e1, . . . , en); consumes q’s body and replaces the consumed
chunks with a predicate chunk for q. The snapshot obtained by consuming q’s
body is used as the snapshot of this new heap chunk.

3.3 Valid Program

We say that a mutator function is valid (Definition 2) if after producing the
precondition for arbitrary values of the parameters and executing the mutator’s
body in the resulting state, consumption of the postcondition succeeds and the
symbolic heap is empty. A pure function is valid (Definition 3) if evaluation of its
body does not fail in the symbolic state resulting from producing the precondi-
tion for arbitrary values of the parameters. A predicate is valid (Definition 4) if
production of its body does not fail for arbitrary parameters. Finally, the main
routine is valid (Definition 5) if its symbolic execution succeeds in an empty
heap, pre-state heap, store and path condition and the resulting heap is empty.

A program is valid if all functions and the main routine are valid. The pro-
gram of Figure 2 is valid.

Definition 2. A mutator function

func f(x1, . . . , xn) requires A1; ensures A2; { s; return e; }
is valid if the following holds:

let (t1, . . . , tn) = (fresh, . . . , fresh) in
produce(∅, ∅, {(x1, t1), . . . , (xn, tn)}, ∅, fresh, A1, (λh, π•

exec(h, h, {(x1, t1), . . . , (xn, tn)}, π, s, (λh′, γ, π′•
eval(h′, h, γ, π′, e, (λt, π′′•

consume(h′, h, {(x1, t1), . . . , (xn, tn), (result, t)}, π′′, A2,
(λh′′, , • h′′ = ∅))))))))

exec(h, g, γ, π, x := cons(e1, . . . , en); , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

let l = fresh in
Q(h] {acc[t1](l), . . . acc[tn](l + n− 1)}, γ[x 7→ l], πn)))))

exec(h, g, γ, π, x := e; , Q) ≡
eval(h, g, γ, π, e, (λt, π1 •Q(h, γ[x 7→ t], π1)))

exec(h, g, γ, π, [e1] := e2; , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

let matches = {acc[s](t′1) | π2 ` t1 = t′1} in
∃acc[s](t′1) ∈ matches •Q(h− {acc[s](t′1)}] {acc[t2](t1)}, γ, π2)))))

exec(h, g, γ, π, x := f(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, {(x1, t1), . . . , (xn, tn)}, πn, precondition(f), (λh′, π′, •
let (s, r) = (fresh, fresh) in
produce(h′, h, {(x1, t1), . . . , (xn, tn), (result, r)}, π′, s, postcondition(f), (λh′′, π′′•

Q(h′′, γ[x 7→ r], π′′)))))))))

exec(h, g, γ, π, free e; , Q) ≡
eval(h, g, γ, π, e, (λt, π′•

let matches = {acc[s](t′) | π′ ` t = t′} in
∃acc[s](t′) ∈ matches •Q(h− {acc[s](t′)}, γ, π′)))

exec(h, g, γ, π,assert e1 = e2; , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

(π2 ` t1 = t2) ∧Q(h, γ, π2)))))

exec(h, g, γ, π, if(e1 = e2) { s1 } else { s2 }, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

exec(h, g, γ, π2 ∪ {t1 = t2}, s1, Q) ∧ exec(h, g, γ, π2 ∪ {t1 6= t2}, s2, Q)

exec(h, g, γ, π,open q(e1, . . . , en); , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, γ, πn, q(e1, . . . , en), (λh′, π′, s•
produce(h′, g, {(x1, t1), . . . , (xn, tn)}, π, s, definition(q), (λh′′, π′′•
Q(h′′, γ, π′′)))))))))

exec(h, g, γ, π, close q(e1, . . . , en); , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, {(x1, t1), . . . , (xn, tn)}, πn, definition(q), (λh′, π′, s•
Q(h′] {q[s](t1, . . . tn)}, γ, π′)))))))

exec(h, g, γ, π, s0 s,Q) ≡
exec(h, g, γ, π, s0, (λh

′, γ′, π′ • exec(h′, g, γ′, π′, s,Q)))

Fig. 6. Symbolic execution of statements.

Definition 3. A pure function

pure func p(x1, . . . , xn) requires A; { return e; }

is valid if the following holds:

let (t1, . . . , tn) = (fresh, . . . , fresh) in
produce(∅, ∅, {(x1, t1), . . . , (xn, tn)}, ∅, fresh, A, (λh, π•

eval(h, h, {(x1, t1), . . . , (xn, tn)}, π, e, (λ , • true))))

Definition 4. A predicate

predicate q(x1, . . . , xn) = A;

is valid if the following holds:

produce(∅, ∅, {(x1, fresh), . . . , (xn, fresh)}, ∅, fresh, A, (λh, π • true))

Definition 5. A main routine s is valid if the following holds:

exec(∅, ∅, ∅, ∅, s, (λh, , • h = ∅))

Pure Method Termination It is essential for the soundness of our approach
that pure methods terminate. Verification therefore includes a phase that checks
sufficient conditions for pure method termination. Specifically, it is checked for
each pure method call in a pure method body that either (1) the callee is defined
earlier in the program text, or (2) the call is in the body of an open expression, or
(3) there is some symbolic heap chunk that is not consumed by the precondition
of the call. This ensures that at each call, either the size of the symbolic heap
decreases, or the derivation depth decreases (i.e. the number of close operations
required to construct the heap from one that contains only field chunks), or the
position in the program text decreases. Since the size and the derivation depth
are always finite and a pure method cannot increase the size or the derivation
depth of the symbolic heap, this ensures termination. Contrary to pure functions,
mutator functions are not required to terminate.

4 Implementation and Experience

We have implemented the algorithm described in Section 3 in a tool. The source
code (F#), binaries and a number of examples are available from the author’s
website http://www.cs.kuleuven.be/~jans/speccheck. Instead of the C-like
language used in the paper, the tool supports a larger assertion language (e.g.
conditional assertions) for a small subset of C#. To check whether a first-order
formula is derivable from the path condition, we use the Z3 SMT solver [5]. Our
verifier prototype has been used to verify a number of small programming pat-
terns, including aggregate objects and iterator. These programs together with
their verification times are shown in Table 1. To help developers diagnose ver-
ification errors, our verifier includes a symbolic debugger (shown in Figure 7).
When verification fails, the developer can inspect the components of the sym-
bolic states encountered during symbolic execution on the path to the failure.

example cell abstract cell cell50 interval iterator

time taken (seconds) 0.005 0.008 0.18 0.03 0.01

Table 1. Programs verified using the verifier prototype together with the verification
time (seconds). The experiments were executed on a standard desktop machine with a
2.66 Ghz processor and 4 GB of RAM running Windows Vista. cell50 is the similar to
the main routine of Figure 2, except that 50 intermediate cells are created and updated
instead of 1.

Fig. 7. A screenshot of the verifier prototype. Developers can use the symbolic debug-
ger in the IDE to diagnose verification errors and inspect the symbolic state at each
program point. The box on the right of the screen contains a list of symbolic states
encountered during symbolic execution. The boxes at the bottom of the screen show
the symbolic state (from left to right: the symbolic heap, the path condition and the
symbolic store) at a particular program point.

5 Related Work

Separation logic [3] extends Hoare logic with three new assertions: emp, sepa-
rating conjunction and points-to. Our assertion acc(e) is similar to separation
logic’s points-to assertion e 7→ , which denotes that the current thread has
permission to access the memory at address e (without constraining the value
at that address). The key difference between classical separation logic and our
variant is that we allow expressions that are used inside assertions to depend
on the heap. Examples of heap-dependent expressions include pointer derefer-
ences and function invocations. Note that we do not claim that our variant has
additional expressive power. Instead, the difference leads to a different style of
writing specifications. More specifically, where we use pure methods to express
the state of an object, classical separation logic relies on predicate parameters.
For example, the contract of inc of Figure 2 would be written in separation logic
as: requires cell(c,X); ensures cell(c,X + 1);. Here, X is a logical variable.

Berdine et al. [4] have proposed a symbolic execution-based verification al-
gorithm for programs annotated with separation logic specifications and have
implemented this algorithm for a small imperative language in Smallfoot. The
algorithm described in Section 3 is a variant of the aforementioned algorithm.
In particular, the idea of dividing the symbolic state in spatial and pure as-
sertions (the symbolic heap and the path condition respectively) and the rules
dealing with heap access, non-heap-dependent expressions and assertions are
largely similar to those in [4]. The novel aspect of our approach is the treat-
ment of pure methods and pointer dereferences inside assertions via snapshots.
Smallfoot only supports a limited number of predicates, but the developer does
not need to write open and close statements as the tool has hard-coded, built-in
rules for reasoning about those predicates.

jStar [12] and VeriFast [13] extend the basic ideas of Berdine et al. to full-
fledged programming languages like Java and C. While loop invariants must be
provided by the developer in our approach, jStar infers certain loop invariants
automatically, provided the developer inputs the necessary abstraction rules.
Using an SMT solver [5] for discharging pure queries and supporting symbolic
debugging via an IDE that shows the components of the symbolic state are ideas
taken from VeriFast.

As an alternative to the Smallfoot’s symbolic execution-based verification al-
gorithm, Leino and Müller [14] and Smans et al. [15] have proposed an approach
based on verification condition generation and automated theorem proving for a
variant of separation logic. However, experience has shown that approaches based
on verification condition generation and automated theorem proving in general,
and [14, 15] in particular, have 3 disadvantages: (1) they are slow, (2) they are
unpredictable, as small changes in the specification can have a significant impact
on verification time and (3) verification errors are hard to diagnose, as it is hard
to determine whether the specification is flawed or whether the theorem prover
is unable to prove a particular part of the verification condition. As the exper-
iments with our verifier prototype indicate, verification times are consistently
low. For example, even if we increase the number of intermediate statements in
the main routine of Figure 2, the verification time only increases marginally. The
main reason why verification is fast is that we reason about the heap outside of
the theorem prover, and hence do not need to send quantifier-heavy formulas (in
particular quantifiers about the heap) to the automated prover. These experi-
ments thus confirm earlier results with similar algorithms [4, 12, 13]. Moreover,
the developer can diagnose verification errors by inspecting the symbolic states
on the path to the failure. A disadvantage of the approach presented in this paper
with respect to [14, 15] is that non-separating conjunction is not supported.

Reasoning about method calls in specifications and framing their return val-
ues in particular was posed as a challenge for verification by Leavens, Leino and
Müller [16]. In the context of approaches based on verification condition genera-
tion and automated theorem proving, researchers have attacked well-formedness
of pure method specifications [6, 7], framing of return values [8–10] and allowing
certain side effects in pure methods [11, 9]. The approach proposed in this paper

is similar to existing techniques in the sense that we also encode pure methods as
functions and invocations of pure methods as function applications. Moreover,
the idea of using snapshots is similar to the snapshots used in [8, 9]. However, to
the best of our knowledge, this is the first paper that discusses the use of pure
methods and framing of their return values in the context of separation logic
(and in the context of its symbolic execution-based verification algorithm).

6 Conclusion

In this paper, we combined the expressive power of separation logic with the
programmer-friendly notation of specification languages such as JML where
heap-dependent expressions can be used in annotations. We proposed an al-
gorithm to support mechanized checking for this variant of separation logic and
implemented this algorithm in a tool.

References

1. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed
design. Behavioral Specifications of Businesses and Systems, 1999.

2. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS, 2004.

3. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, 2002.

4. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution
with separation logic. In APLAS, 2005.

5. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

6. Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking well-formedness of
pure-method specifications. In FM, 2008.

7. K. Rustan M. Leino and Ronald Middelkoop. Practical reasoning about invocations
and implementations of pure methods. In FASE, 2009.

8. Bart Jacobs and Frank Piessens. Inspector methods for state abstraction. Journal
of Object Technology, 6(5), 2007.

9. Ádám Darvas and K. Rustan M. Leino. Practical reasoning about invocations and
implementations of pure methods. In FASE, 2007.

10. Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. Automatic verifi-
cation of java programs with dynamic frames. In FASE, 2008.

11. Ádám Darvas and Peter Müller. Reasoning about method calls in interface speci-
fications. 2006, 5(5), Journal of Object Technology.

12. Dino Distefano and Matthew Parkinson. jStar: Towards practical verification for
Java. In OOPSLA, 2008.

13. Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical Report
CW-520, Department of Computer Science, Katholieke Universiteit Leuven, 2008.

14. K. Rustan M. Leino and Peter Müller. A basis for verifying multi-threaded pro-
grams. In ESOP, 2009.

15. Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining
dynamic frames and separation logic. In ECOOP, 2009.

16. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verifi-
cation challenges for sequential object-oriented programs. FAC, 2007.

