
Model Checking of Hybrid Systems
using Shallow Synchronization⋆

Lei Bu1, Alessandro Cimatti2, Xuandong Li1, Sergio Mover2, and Stefano Tonetta2

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 Fondazione Bruno Kessler - IRST

Abstract. Hybrid automata are a widely accepted modeling framework for sys-
tems with discrete and continuous variables. The traditional semantics of a net-
work of automata is based on interleaving, and requires the construction of a
monolithic hybrid automaton based on the composition of theautomata. This
destroys the structure of the network and results in a loss ofefficiency, espe-
cially using bounded model checking techniques. An alternative compositional
semantics, called “shallow synchronization”, exploits the locality of transitions
and relaxes time synchronization. The semantics is obtained by composing traces
of the local automata, and superimposing compatibility constraints resulting from
synchronization.
In this paper, we investigate the different symbolic encodings of the reachabil-
ity problem of a network of hybrid automata. We propose a novel encoding
based on the shallow synchronization semantics, which allows different strategies
for searching local paths that can be synchronized. We implemented a bounded
reachability search based on the use of an incremental Satisfiability-Modulo-
Theory solver. The experimental results confirm that the newencoding often per-
forms better than the one based on interleaving.

1 Introduction

Hybrid automata ([13]) are increasingly recognized as a clean modeling framework
for systems with discrete and continuous variables. Many systems are structured into
components, and can often be naturally modeled as networks of communicating hybrid
automata: local activities of each component amount to transitions local to each hy-
brid automaton; communications and other events that are shared between/visible for
various components are modeled as synchronizing transitions of the automata in the net-
work; time elapse is modeled as shared timed transitions. The traditional asynchronous
semantics is based on interleaving, and requires the construction of a monolithic hy-
brid automaton based on the composition of the automata in the network. Intuitively,
this means that a path in the automaton is the result of the composition of interleaving
paths. However, the monolithic automaton resulting from the composition can be seen

⋆ The authors at Nanjing University are supported by the National Natural Science Foundation of
China (No.90818022 and No.60721002) and the National 863 High-Tech Programme of China
(No.2009AA01Z148). A. Cimatti is supported by the EuropeanCommission (FP7-2007-IST-
1-217069 COCONUT and ACP7-GA-2008-212088 MISSA) S. Tonetta is supported by the
Provincia Autonoma di Trento (project ANACONDA).

as the result of a “strict synchronization”, and the analysis has to deal with an overly
large number of paths, since the structure and the locality of the network are not taken
into account.

An alternative semantics [5] for networks of automata exploits the fact that au-
tomata can be “shallowly synchronized”. The intuition is that each automaton can pro-
ceed based on its individual “local time scale”, unless theyperform a synchronizing
transition, in which case they must realign their absolute time. This results in a more
concise semantics, where traces of the network are obtainedby composing traces of lo-
cal automata, each with local time elapse, by superimposingstructure based on shared
communication.

In this paper, we provide a fully symbolic account for bounded reachability under
“shallow synchronization”, and we explore various search strategies. We implement the
approach in the sub-case of linear hybrid automata and we usea Satisfiability-Modulo-
Theory (SMT) [15] solver to check the satisfiability of the formulas encoding the reach-
ability problem. The main advantage is that the transition relation of each automata is
unrolled only for the steps necessary to reach locally the target (regardless the length
of the interleaving with the other automata). Typically, local paths are much shorter
because they do not need to stutter allowing other processesto perform local or non-
shared events. The disadvantage is that we may use additional variables and constraints.
We experimentally investigate this trade-off and the results show that the new encoding
often performs better than the one based on interleaving. Inparticular, the improvement
increases at the growth of the difference between the lengthof the local traces and the
length of the interleaving trace.

The paper is structured as follows. In Section 2 we present some background on
hybrid automata and their composition through interleaving. In Section 3 we present
the shallow synchronization semantics revising the concepts described in [5] and defin-
ing explicit mappings from the semantics with strict synchronization to the shallowly
synchronized one, and vice versa. In Section 4 we show several ways to symbolically
encode the bounded model checking problem for shallow synchronization semantics.
In Section 5 we discuss related work. In Section 6 we experimentally evaluate our ap-
proach. In Section 7 we draw some conclusions.

2 Background

Notation Given a setV of real-valued variables, we denote withLB(V) the set of
Boolean combinations of linear equalities and inequalities overV . We denote withV ′

the set of “next” variables and witḣV the set of first derivative of the variables inV
over time. We writeV ′ = V as an abbreviation for

∧

v∈V v
′ = v.

If f is a collection of real functions{fv}v∈V , we denote withfV the composed
functionfV (t) = Πv∈V f

v(t).
Given a formulaφ in LB(V) andV a set of copies of the variables inV , we denote

with φ(V) the formula obtained by substituting eachv ∈ V with its copyv ∈ V . Given
a formulaφ in LB(V̇), two copiesV 1 andV 2 of V , andψ a linear term, we denote

with φ(V 2−V 1

ψ
) the formula obtained by substituting eachv̇ ∈ V̇ with v2−v1

ψ
and then

multiplying byψ (thusφ(V 2−V 1

ψ
) is a Boolean combination of linear constraints).

2.1 Hybrid automata

Due to lack of space, but without loss of generality, we restrict the presentation to the
framework of Linear Hybrid Automata (LHA). The results presented in the rest of this
paper however apply to the general case of Hybrid Automata asdefined in [13]3.

Definition 1 ([13]). A LHA is a tuple〈Q,E,X, F, I, Z, J, U, L〉 where

– Q is the set of locations,
– E ⊆ Q×Q is the set of edges,
– X is the set of continuous variables,
– for eachq ∈ Q, F (q) ∈ LB(Ẋ) is the flow condition (denoted also asFq),
– for eachq ∈ Q, I(q) ∈ LB(X) is the initial condition (denoted also asIq),
– for eachq ∈ Q, Z(q) ∈ LB(X) is the invariant condition (denoted also asZq),
– for eache ∈ E, J(e) ∈ LB(X ∪X ′) is the jump condition (denoted also asJe),
– U is the set of labels,
– for eache ∈ E, L(e) ∈ U is the label of the edge (denoted also asLe).

Definition 2. A runof a LHAH is a sequence〈q0, s0〉
a1→ 〈q1, s1〉 . . . 〈qn−1, sn−1〉

an→
〈qn, sn〉 such that:

– for all i, 0 ≤ i ≤ n, qi ∈ Q andsi is an assignment to the variables ofX ;
– for all i, 1 ≤ i ≤ n, ai ∈ U ∪ R

≥0; hereafterti =
∑

1≤j≤i,aj∈R≥0 aj andt0 = 0;
we calltn the final time of the run; we call the pair〈ai, ti〉 anevent;

– for all i, 1 ≤ i ≤ n, if ai ∈ R
≥0, thenqi−1 = qi and there exists a collection of real

functions{fxi }x∈X such thatfxi is differentiable over[ti−1, ti] andfXi (ti−1) =
si−1 andfXi (ti) = si;

– for all i, 1 ≤ i ≤ n, if ai ∈ U then〈qi−1, qi〉 ∈ E andai = L(〈qi−1, qi〉);
– for all i, 1 ≤ i ≤ n, if ai ∈ R

≥0, then for allt ∈ [ti−1, ti], thenḟXi (t) |= Fqi
;

– s0 |= Iq0 and for all i, 0 ≤ i ≤ n, si |= Zqi
;

– for all i, 1 ≤ i ≤ n, if ai ∈ R
≥0, then for allt ∈ [ti−1, ti], fXi (t) |= Zqi

;
– for all i, 1 ≤ i ≤ n, if ai ∈ U thensi−1, si |= J〈qi−1,qi〉.

A run σ1 is a refinement of another runσ2 iff σ1 is obtained byσ2 by splitting some
timed transition〈qi, si−1〉

ai→ 〈qi, si〉, ai ∈ R
≥0 into two or more timed transitions

〈qi, si−1〉
ai1→ 〈qi, si1〉 . . . 〈qi, sih−1

〉
aih→ 〈qi, si〉 such thataij ∈ R

≥0, 1 ≤ j ≤ h, and,
∑

1≤j≤h aij = ai. A timed transition〈qi, si−1〉
ai→ 〈qi, si〉 with ai = 0 ∈ R

≥0 is called
a stuttering transition.

2.2 Network of hybrid automata

The definition of network of hybrid automata is based on the definition in [13], which
means components communicate with each other by shared labels.

3 As far as the solutions of the flow conditions can be represented in the logic handled by the
SMT solver

Definition 3. Given two LHAsH1 = 〈Q1, E1, X1, F1, I1, Z1, J1, U1, L1〉 andH2 =
〈Q2, E2, X2, F2, I2, Z2, J2, U2, L2〉 with Q1 ∩ Q2 = X1 ∩ X2 = ∅, thecomposition
H1 ×H2 is the LHA〈QP , EP , XP , FP , IP , ZP , JP , UP , LP 〉 where

– QP = Q1 ×Q2,
– EP = {〈q1 × q2, q

′
1 × q′2〉 | either 〈q1, q′1〉 ∈ E1, q2 = q′2, L1(〈q1, q′1〉) 6∈ U2,

or 〈q2, q
′
2〉 ∈ E2, q1 = q′1, L2(〈q2, q

′
2〉) 6∈ U1, or 〈q1, q

′
1〉 ∈ E1, 〈q2, q

′
2〉 ∈

E2, L1(〈q1, q′1〉) = L2(〈q2, q′2〉)},
– XP = X1 ∪X2,
– FP (q1 × q2) = F1(q1) ∧ F2(q2),
– IP (q1 × q2) = I1(q1) ∧ I2(q2),
– ZP (q1 × q2) = Z1(q1) ∧ Z2(q2),
– UP = U1 ∪ U2,

– JP (〈q1 × q2, q
′
1 × q′2〉) =

J(〈q1, q′1〉) ∧X
′
2 = X2 if q2 = q′2, L1(〈q1, q′1〉) 6∈ U2

J(〈q2, q′2〉) ∧X
′
1 = X1 if q1 = q′1, L2(〈q2, q′2〉) 6∈ U1

J(〈q1, q′1〉) ∧ J(〈q2, q′2〉) if L1(〈q1, q′1〉) = L2(〈q2, q′2〉),

– LP (〈q1 × q2, q
′
1 × q′2〉) =

L(〈q1, q′1〉) if q2 = q′2, L1(〈q1, q′1〉) 6∈ U2

L(〈q2, q′2〉) if q1 = q′1, L2(〈q2, q′2〉) 6∈ U1

L(〈q1, q
′
1〉) if L1(〈q1, q

′
1〉) = L2(〈q2, q

′
2〉).

Definition 4. A networkH of LHAs is a tuple of LHAs.

The semantics of a network of automata is given by the composition of the automata.

Definition 5. A synchronized runof a networkH = 〈H1, . . . , Hn〉 is a run of the
compositionH1 × . . .×Hn.

In the following we refer to a run of a single automaton in a network as “local”, to
distinguish it from a run of the composition automaton.

Reachability problem Given a network of automataH = 〈H1, H2, . . . , Hn〉, and
a target setT = 〈q1, q2, . . . , qn〉, the reachability problem forH andT is to verify
whetherq1 × q2 × · · · × qn can be reached in the compositionH. Thus, we consider
only finite runs, although the approach can be extended to infinite runs which can be
represented by lasso-shape paths.

3 Shallow Synchronization Semantics

While in strict synchronization the behavior of a network isbasically obtained by in-
terleaving, in shallow synchronization a run of the networkis the result of “composi-
tion” of runs local to each automaton in the network. The intuition is demonstrated in
Figure 1. In the upper part, we see three traces of three automata in a network. Each
automatonHi has a local labelτ ; the ij labels are shared between processesHi and
Hj ; δ denotes local time elapse. We notice that the synchronization over theij labels
happens exactly at the same time, e.g., 12 takes place at absolute time 5, although the
number of transitions required byH1 andH2 is different. In the lower part of the figure,

A
A
A
0

A

A
B

0

A

A
B

2.5

B
B
A

2.5

B
B
A
5

A

C
C

5

F

F
F

10
E

F
F

10
E

F
E

10
C

F
E

10

F
E
C
8

E

C
E

8

C
E
B
8

C
E
B
7

C
D
A
7

D
C

A
5

F

12

C F23

23

13

13

A
2.5 A 2.5

12
CBB C3

E F 2

325
A B B C D D E E F

7
A A B

1
B

2
C E

12
12

13

13

23
23

δ δ δ δ

δ δ δ

δ δ δ

δ

δ

δ

δ

δ

τ τ

τττ

τ τ

δ

δ

δδ

δ

δ

δ

δ

δ

τ

τ

τ

τ

τ

τ

τδ

Fig. 1. Three local traces (above), and the corresponding interleaving (below).

we report the corresponding trace based on interleaving (where each box contains the
state of each of the three processes). Stuttering (e.g. of process 1 and 3 in the first step)
is modeled by the fact that a process does not have any label onits side.

We also define a mapping of a set of shallowly synchronized runs of the automata
into a run in the composition of the automata. Intuitively, the mapping induces an equiv-
alence relation among the runs of the composition automatonwhich are obtained by
composing the same set of local runs with different interleaving. The shallow synchro-
nization is defined according to the trace of a run i.e., the list of events occurring in the
run. AnS-trace, withS ⊆ U , is a trace restricted to the labels inS.

Definition 6. Given a set of labelsS ⊆ U and a runσ = 〈q0, s0〉
a1→ 〈q1, s1〉 . . .

an→
〈qn, sn〉, theS-traceτS(σ) is the sequence of events〈a1, t1〉, 〈a2, t2〉, . . . , 〈ak, tk〉where
ti is the time at which the eventai occurs inσ.

Definition 7. Given two LHAsH1 andH2 with sets of labelsU1 andU2 resp., letσ1

be a run ofH1 and σ2 a run ofH2. Let S be the intersection ofU1 andU2 (S =
U1 ∩ U2). The pair〈σ1, σ2〉 is consistentiff theS-trace ofσ1 is equal to theS-trace of
σ2 (τS(σ1) = τS(σ2)) and the final time ofσ1 is equal to the final time ofσ2.

The last constraint on the final time is necessary because otherwise the two runs may
terminate with a series of local steps with different timings.

Definition 8. A shallowly synchronized runof a network of LHAs is a tupleθ =
〈σ1, . . . , σn〉 such thatσj is the run ofHj and, for all j, h, 1 ≤ j < h ≤ n, σj
andσh are consistent.

If θ is a shallowly synchronized run, we denote withθj thej-th component ofθ.

Remark 1.In general, two different events can occur at the same time inthe same
run, because discrete transitions are not forced to be interleaved with timed transitions.
Moreover, simultaneous events may be interleaved with different orders.

However, in many cases, we can assume that whenever two events occur simulta-
neously, they have a fixed order. Then, the pair〈σ1, σ2〉 is consistent simply iff for all

a ∈ U1 ∩U2 andt ∈ R, 〈a, t〉 occurs inσ1 iff 〈a, t〉 occurs inσ2. I.e., having the events
at the same time guarantees that the traces are the same. The definitions and theorems
in [5] have this assumption, while in this section we consider the most general case.

Projection of a synchronized run of the composition automaton on one component is
the corresponding run local to that component automaton. Intuitively, the set of projec-
tions of a synchronized run form a shallowly synchronized run. The projection induces
an equivalence relation over strictly synchronized traces, namely the equivalence of
runs that are the same modulo a reordering of the interleavedlabels.

Definition 9. Given a networkH and an LHAH ∈ H, the projectionπH of a syn-
chronized runσ of H overH is obtained by projecting the states and the assignments
occurring inσ on theH component and substituting transitions labeled with events not
accepted byH with stuttering transitions4.

The following theorem states the relationship between the two semantics5.

Theorem 1. Given a synchronized runσ, the tuple of projections〈πH1
(σ), . . . , πHn

(σ)〉
on the different components is a shallowly synchronized run. Vice versa, given a shal-
lowly synchronized runθ, there exists a synchronized runσ such that〈πH1

(σ), . . . , πHn
(σ)〉

is a refinement ofθ.

As corollary, there exists a strictly synchronized run reachingqH1
× · · · × qHn

iff there
exists a shallowly synchronized runθ such that for alli, 1 ≤ i ≤ n, θHi

reachesqHi
.

4 Symbolic Encoding

In this section, first, we recall how linear hybrid automata and their reachability problem
can be encoded symbolically; second, we show how we can encode symbolically the
problem for a network with strict and shallow synchronization.

4.1 Symbolic encoding for single automaton

In the following, in order to encode the flow condition into a quantifier-free formula,
we assume the convexity of the invariant conditions. The symbolic encoding of a single
LHA consists of three formulas representing respectively the initial, the transition, and
the invariant condition. The encoding uses the following additional variables: a discrete
variableloc that represents the current location; a real-valued variable δ that represents
the time elapsed at the current step; a discrete variablel that represents the label taken
at the current step; and two distinguished valuesT andS, representing a timed transition
and stuttering, respectively.

4 The projection is well defined because if〈qi−1, si−1〉
ai→ 〈qi, si〉 occurs inσ andai is not a

label ofH , then theH components ofqi−1 andsi−1 are equal to theH components ofqi and
si respectively. Thus, the transition can be locally substituted with a stuttering transition.

5 An extended version with proofs can be find athttp://es.fbk.eu/people/
tonetta/papers/forte10/

The encoding consists of the following formulas:

INIT :=
∧

q∈Q

(loc = q → Iq(X))

INVAR :=
∧

q∈Q

(loc = q → Zq(X))

TRANS :=
∧

q∈Q

(loc = q → (STUTTER∨ TIMEDq ∨
∨

(q,p)∈E

UNTIMEDq,p))

STUTTER := l = S∧ δ = 0 ∧ loc′ = loc ∧X ′ = X

TIMEDq := l = T ∧ δ > 0 ∧ loc′ = loc ∧ Fq(
X ′ −X

δ
)

UNTIMEDq,p := l = Lq,p ∧ δ = 0 ∧ loc′ = p ∧ Jq,p(X,X
′)

Given a reachability problem and a boundk on the length of the runs, we can encode
the bounded reachability problem into a formula which is satisfiable iff there exists a
run reaching the target condition. We assume to have a formula TARGET encoding the
target condition. For example, if we want to check the reachability of the locationq, we
can set TARGET := loc = q.

As usual in BMC, we introducek+1 copies of every variable in the encoding of the
automata. Then, the reachability problem can be encoded into the following formula:

BMCk := INIT0 ∧ INVAR0 ∧
∧

0≤i<k

(

TRANSi ∧ INVARi+1
)

∧ TARGETk

whereφi means that the current and next variables ofφ have been substituted with their
i-th and(i+ 1)-th copy, respectively.

When we consider a network, we use BMCkH to refer to the encoding of the problem
for the automatonH .

4.2 Symbolic encoding based on interleaving

In principle, it would be possible to generate the automatoncorresponding to the com-
position of two or more LHAs, and use the above encoding. A more reasonable encod-
ing for a network is based on the encoding of each LHA in the network. The idea is to
simply conjunct the encodings forcing the shared event variables to be true exactly at
the same steps, and forcing the processes to “stutter” when they are not activated. We
assume that the variableδ is shared among the encodings of the different automata.

The reachability problem with a boundk can be encoded as

BMCINTkH :=
∧

1≤j≤n BMCkHj
∧ STRICTSYNCkH

where STRICTSYNC guarantees that for every pair of processesj andh, every shared
event and the timed event occur at the same step in the two processes, and while a

non-shared event occurs in one process, the other process must stutter6:

STRICTSYNCkH :=
∧

1≤j<h≤n

∧

0≤i<k

∧

a∈Uj∩Uh

(lij = a↔ lih = a)

∧
∧

a∈Uj\Uh

(lij = a→ lih = S)

∧
∧

a∈Uh\Uj

(lih = a→ lij = S)

∧ (lih = T ↔ lij = T)

The encoding is compositional in the sense that each automaton is individually en-
coded. However, the necessity of stuttering on non-shared events and of performing
shared events in the same steps may cause complex runs (as shown in Fig. 1).

We also consider a variant of the above encoding where we allow discrete transitions
in different automata to occur at the same step of the encoding. Basically, with this
variant, we do not force a process to stutter when other processes perform either a
local event or an event which is not shared by the process. In this cases, we omit the
constraints which force to stutter. This encoding corresponds to thestep semanticsused
in [12] for encoding the bounded model checking problem of asynchronous systems.

4.3 Symbolic encoding based on shallow synchronization

In this section, we propose an encoding based on shallow synchronization. We let each
automaton keep its own copy of the boundk and the elapsed timeδ; we do not force
processes to stutter and we let shared events occur at different (local) steps. This means
that each of the local encodings is able to construct a local trace.

The reachability problem with boundsk = 〈k1, k2, . . . , kn〉 can be encoded as

BMCSSkH :=
∧

1≤j≤n

BMC
kj

Hj
∧ SHALLOW SYNC

where SHALLOW SYNC encodes the constraints enforcing that all the paths must be
consistent according to Definition 7. In the following, we present different ways to
encode SHALLOW SYNC. (We assume to be in the case described in Remark 1, but all
the encodings that we are showing can be lifted to the generalcase.)

Encoding based on enumerationThe first way to encode SHALLOW SYNC is by enu-
merating all possible combinations of steps on which the synchronization occurs. For
example, processes P1 and P2 may synchronize over eventa, buta may occur in step 2
for P1, and in step 4 for P2. SHALLOW SYNC guarantees that, for all pairs of processes,
(i) if a shared event occurs in the first process, then the event must occur also in the

6 Note that it is not necessary to force at least one process notto stutter.

second process at the same time (possibly in different steps), and(ii) the final time of
the two processes is the same:

SHALLOW SYNC :=
∧

1≤j<h≤n

∧

a∈Uj∩Uh

∧

1≤ij≤kj

(l
ij
j = a↔

∨

1≤ih≤kh

lihh = a ∧ t
ij
j = tihh) ∧

∧

1≤ih≤kh

(lihh = a↔
∨

1≤ij≤kj

l
ij
j = a ∧ t

ij
j = tihh) ∧

∧

1<j≤n t
kj

j = tk11

Local reasoning We propose a variant of the previous encoding which can be split
into constraints local to each automaton, and one for each step. The encoding uses the
following additional variables:

– for each automatonHj , for each shared labell, a variablecountil,j to represent how
many timesl has occurred inHj before stepi;

– for each shared labell, a group of variablesocc timei,l to represent the time at
which thei-th occurrence ofl is fired;

– for each shared labell, a variablellast to record how many timesl has been fired in
the whole run;

– clast to record the time at which the system reaches the target.

Note that the variables without superscript are untimed, inthe sense that they do not
depend on any temporal step.

The shallow synchronization can be encoded as:

SHALLOW SYNC :=
∧

1≤j≤n

∧

0≤i<kj

SHALLOW STEPij ∧

COUNTERINITj ∧

∧

0≤i<kj

COUNTERSTEPij

 ∧ FINAL SHALLOW j

where SHALLOW STEPij states that if in thei-th step, an eventl occurs in thej-th process
for theg-th time, then the local time of the process must beocc timeg,l:

SHALLOW STEPij :=
∧

l∈Uj

(lij = l) →
∧

1≤g≤i

((countil,j = g) → tij = occ timeg,l)

COUNTERINIT and COUNTERSTEP encode how the counters evolve:

COUNTERSTEPij :=
∧

l∈Uj

(lij = l) → (counti+1
l,j = countil,j + 1)

COUNTERINITj := (count0l,j = 0)

while FINAL SHALLOW states that the final values of the counters and the local time
must be the same:

FINAL SHALLOW j := (
∧

l∈Uj

count
kj

l,j = llast) ∧ (t
kj+1
j = clast))

Exploiting richer theories It is possible to represent the above encoding with richer
theories introducing uninterpreted functions symbols. Inparticular we represent the
time of thei-th occurrence of a labell as a functionocc timel from integers to reals.
This way we can rewrite SHALLOW STEP into

SHALLOW STEPij :=
∧

l∈Uj

(lij = l) → (tij = occ timel(count
i
l,j))

5 Related Work

The shallow semantics (defined in [5] and adopted in this paper) bears many similarities
with the “local-time” semantics defined in [3] for networks of timed systems and can
in fact be seen as a generalization to the hybrid case of [3]. Indeed, neither requires
the synchronization of timed transitions of different components; they both use local
clocks that are re-synchronized upon shared events. The twosemantics differ in the
types of runs used to solve the reachability problem: the shallow semantics consists of
sets of local runs, while the local-time semantics consistsof runs in the interleaving
composition. With a mapping similar to the one defined in Section 3, it can be shown
that the two semantics are equivalent. As far as we know, thisis the first attempt to
exploit the shallow/local-time semantics to improve BMC.

Partial-Order Reduction (POR) [11] is one of the most known and used technique
to tackle the state-space explosion problem due to interleaving of concurrent systems.
The idea is to identify cases when the order of transitions isnot relevant in order to
prune the search space. The application of POR techniques isdifficult in the context of
timed and hybrid systems because the timed transitions are global actions which typi-
cally interleave the local transition, and thus forbid the pruning performed by POR. The
local-time semantics was proposed in [3] to enable POR by removing the synchroniza-
tion on timed transitions. Other works as in [17] propose symbolic versions of POR and
combine them with bounded model checking and SMT. The main difference between
POR and the techniques presented in this paper is that while POR tackles the interleav-
ing explosion problem by fixing the order of independent transitions, we allow them to
be executed in parallel.

Also related is the “step” semantics, used in [12] for an efficient encoding of the
reachability problem in a network of asynchronous systems.The work in [12] is limited
to the case of discrete transitions. The idea presented in this paper can be seen as a
generalization of the step semantics to the case of timed transitions.

The work described in [16] proposes an event-order abstraction to verify timed au-
tomata. The idea is to analyze the discrete and continuous aspects separately by first
finding a discrete path causing an error and then computing a set of timing constraints
that make the path realistic. Similarly, CEGAR-based approaches such as [1, 14] per-
form a search on a purely discrete abstraction of the hybrid automaton, and check if the
obtained paths are compliant with the original constraints.

The first approach that adopts a shallowly synchronized semantics is presented in [5]
for path-oriented bounded reachability analysis of a network of LHAs. In the approach,
one path is selected for each component and all selected paths compose a path set for

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8

T
im

e
(s

ec
.)

of rods

inter
step

ru
ef
tu
rf
tf

(a : Star-shape Fischer) (b : Nuclear Reactor)

Fig. 2. Results where the length of a local run depends on the number of processes.

reachability analysis. Each path is independently encodedto a set of constraints while
synchronization controls are encoded according to the position of shared labels. By
merging all the constraints, the path-oriented reachability problem can be transformed
to the feasibility problem of the resulting linear constraint set, which can be solved by
linear programming efficiently. This approach has been extended in BACH [6] into a
general bounded reachability analysis technique. Different from the approach presented
in this paper, this technique traverses the structure of a network of automata using depth-
first search and checks the abstract path set one by one.

In the approaches mentioned above, the search is carried outin two stages: in the
first, a discrete abstraction of the problem is constructed,while in the second the candi-
date paths found in the abstract state are checked for consistency in the concrete space.
In our approach, the SMT solver carries out the refinement automatically during the
search, on demand. With respect to explicit-state search, the symbolic representation is
less sensitive to the state-space explosion problem. With respect to abstraction-based
techniques, the BMC technique is more tailored to find error paths.

Bounded model checking for hybrid systems using SMT solvershas been investi-
gated in [2, 10, 8, 9]. The characterizing feature of our workis the attempt to leverage
the structure induced by the synchronization of a network ofhybrid automata.

6 Experimental Evaluation

6.1 Implementation

We implemented the encodings presented in Section 4 within the setting of NUSMT,
a model checker that extends NuSMV2 [7] with SMT techniques.The solver used to
check the satisfiability of the formulas was MathSat [4], which provides an incremental
interface. Thus, the search interacts with the solver to analyze problems of increasing
depth. As standard in bounded model checking, we exploit thefact that subproblems at
increasing depth share large parts of the encoding: the solver is able to retain informa-
tion discovered during the previous searches to solve next subproblems more efficiently.
We use the following notation to refer to the options: we usee for using the enumerative
encoding,r for using local reasoning,t for using local reasoning with uninterpreted

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

(a : Simple ring) (b : Ring-shape Fischer)

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of motorcycles

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

(c : Motorcycle) (d : FDDI Protocol)

 10

 100

 1000

 2 4 6 8 10 12 14

T
im

e
(s

ec
.)

of trains

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of local controllers

inter
step

ru
ef
tu
rf
tf

(e : ETCS) (f : Multi frequency)

Fig. 3. Results where the length of the local runs does not depend on the number of processes.

functions; with regards to the incrementality, when we use local reasoning, we can add
the synchronization constraints during the unrolling (denoted withu) or add them after
the unrolling (denoted withf). Overall, the options areru, rf, ef, tu, tf (e.g.,ru
means using local encoding with the constraints added during the unrolling).

6.2 Benchmarks

We test the performance of the shallow synchronization on the following benchmarks:

– Simple ring: this example is a simple ring of processes where each process only
communicates with its left and right neighbors; it is a proofof concept to show how
the shallow synchronization can perform exponentially better than the interleaving.

– Star-shape Fischer: this is the hybrid fischer algorithm for the mutual exclusion
protocol that uses a shared variable to control the access toa critical session.

– Ring-shape Fischer: this variant contains a ring of processes where each process
shares a variable with its left and right neighbor; the variables are used to access
critical sections in mutual exclusion with the neighbors.

– ETCS: this example is inspired by the European Train Control System (ETCS)
specification which controls the movement of trains on a track divided into sections.
The accelerated motion of the trains is approximated with linear constraints.

– Motorcycle: this example is inspired by the automated highway system from [14].
This system models a sequence ofn motorcycles. Each motorcyclei needs to wait
the signal from the previous one to move, and it needs to keep the sequence during
the parade by synchronizing shared labels with neighbors.

– FDDI Protocol: this example is a ring topology model based on the system in [19].
It is a set of standards for data transmission on fiber optic lines in a LAN. Each
component in the system waits for the signal of previous one to transmit data.

– Nuclear Reactor: this example from [18]. The system controls a nuclear reactor
with n rods, and uses these rods to absorb neutrons one by one. Each rod that has
just been moved out must stay out of the water and cool for several time units.

– Multi-Frequency: this example models a global controller that periodicallyreads
the value of a variable fromn local controllers, which synchronizes with an high
frequency with its environment, and a lower frequency with the global controller.

6.3 Results

We check reachability problems comparing the encodings based on interleaving, step
semantics, and shallow synchronization. We compared the results only on reachable in-
stances. For unreachable cases, since we are using a BMC approach, the results strongly
depend on the fixed bound, but the meaning of the bound dependson the semantics: for
the interleaving, it represents the total number of local and global steps; for the shal-
low synchronization, it represents the maximum bound of a local run. Thus, any bound
would be unfair for either semantics. Nevertheless, note that all algorithms check the
unreachability of the target for path lengths smaller than the final one. So, the perfor-
mance does not depend on the chance of finding the right path. We ran the experiments
on a Red Hat 4.1.2 machine, with Intel(R) Core(TM)2 Quad CPU 2.66*4, and 4GB of
RAM with a time out of 600 seconds.

The results of the comparison are shown in Figures 2 and 3, where the time to
solve the reachability problem is plotted in log scale against the number of automata
in the network. Each line corresponds to a particular option. Table 1 shows some of
the features of the benchmarks, such as the length of the paths found by reachability
analysis as a function ofn (the number of processes in the benchmark family). Results
are reported for interleaving, step semantic and shallow synchronization.

The main finding of the experimental results is that the efficiency of the bounded
model checker depends on necessary depth of the search regardless the adopted seman-
tics. The interleaving performs better than shallow synchronization in the cases where
the depth of the search is the same for the different semantics (because one process in-
teracts with all the others and its local run of one process interleaves the synchronization

Benchmark Path length Hardest instance attempted
Inter Step Shallow Inter Step Shallow

Simple Ring 5n 6 6 5[TO] 20[1.1] 20 [3.1] - 20 [5.5]

Ring-shape Fischer 7n 7 7 5[TO] 20[8.9] 20 [24.2] - 20 [130.2]

Star-shape Fischer 3n 3n 3n 8[TO] 9[TO] 5 [TO] - 6 [TO]

FDDI Protocol 2n + 1 5 3..5 15[TO] 15[TO] 20 [0.7] - 20 [7.3]

Nuclear Reactor 4n 4n 4n 8[TO] 8[TO] 6 [TO] - 7 [TO]

Motorcycle4n + 3 4n + 3 7..9 7[TO] 6[TO] 20 [22.4] - 20 [259.5]

ETCS NA NA 17 2[TO] 2[TO] 7 [TO] - 14 [TO]

Multi-Frequency NA 3(n − 1)..3n 9 4[TO] 8[TO] 20 [20.4] - 20 [115.6]

Table 1. Columns 2, 3 and 4 report the length of the path found with the different semantics in
function of the number of processesn. Columns 5, 6, 7 report the size of the hardest instance at-
tempted, and, in square brackets, the corresponding time, or “TO” in case of timeout. For Shallow,
we report the best and worst result over the different options.

with all other processes): in these cases, the shallow synchronization is penalized by the
overhead of the synchronizing constraints. Nevertheless,in many cases (see Fig. 3), the
length of local runs do not depend on the number of processes.Thus, using the shallow
semantics, we reach the target at same depth. In these cases,the encoding based on shal-
low synchronization scales exponentially better than the one based on interleaving. The
shorter depth of the encoding pays off the overhead due to themore complex synchro-
nizing constraints. The same happens for the step semantics, which is the winner when
it is possible to parallelize independent transitions. Among the different options of the
shallow synchronization encodings, there is no winner, butusing the local encoding
added after reaching the target seems to win in most of cases.

We also compared our implementation with BACH, which results to be faster on
many examples, while on others it does not terminate with fewprocesses. The com-
parison does not help in understanding which encoding is more efficient, but rather it
confirms that explicit-state search is faster on automata with a small graph, while does
not compete on automata with complex graph structure. Finally, we played with dif-
ferent search strategies but they do not modify the outcome of the presented results.
All results, together with the binaries and test cases necessary to reproduce them, are
available athttp://es.fbk.eu/people/tonetta/tests/forte10/.

7 Conclusions and Future Work

In this paper we have introduced a novel approach to symbolicreachability in networks
of hybrid automata. The approach relies on the shallow synchronization semantics, that
preserves the locality of reasoning within each automaton,and forces synchronization
between them only when necessary. We discussed how to exploit the features of shallow
synchronization in the setting of symbolic bounded model checking, exploiting some
advanced features of modern SMT solvers. An experimental evaluation in the setting of
linear hybrid automata shows that the proposed encodings are often more scalable than
the traditional encodings based on interleaving.

In the future, we will investigate the impact of shallow synchronization to the gen-
eral case of non-linear hybrid systems. Since automata synchronize only by way of
discrete messages, it should be possible to integrate different reasoning engines, with
different expressive power, within the same framework. Theidea is to selectively apply
engines to automata, and to control the search based on the computation cost associated
to each tool. Furthermore, we will investigate the application of shallow synchroniza-
tion in the discrete setting, and its combination with partial order reduction techniques.

References

1. R. Alur, T. Dang, and F. Ivancic. Predicate abstraction for reachability analysis of hybrid
systems.ACM Trans. Embedded Comput. Syst., 5(1):152–199, 2006.

2. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying Industrial Hybrid Sys-
tems with MathSAT.Electr. Notes Theor. Comput. Sci., 119(2):17–32, 2005.

3. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions for Timed Systems.
In CONCUR, volume 1466 ofLNCS, pages 485–500. Springer, 1998.

4. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The MathSAT 4
SMT Solver. InCAV, volume 5123 ofLNCS, pages 299–303. Springer, 2008.

5. L. Bu and X. Li. Path-Oriented Bounded Reachability Analysis of Compositional Linear
Hybrid Systems, manuscript submitted, 2008.

6. L. Bu, Y. Li, L. Wang, X. Chen, and X. Li. BACH2: Bounded reachAbility CHecker for
Compositional Linear Hybrid Systems. InDATE, pages 1512–1517. EDAA, 2010.

7. A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia,M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. InCAV,
volume 2102 ofLNCS, pages 359–364. Springer, 2002.

8. M. Fränzle and C. Herde. Efficient Proof Engines for Bounded Model Checking of Hybrid
Systems.Electr. Notes Theor. Comput. Sci., 133:119–137, 2005.

9. M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model checking of
hybrid systems.Formal Methods in System Design, 30(3):179–198, 2007.

10. N. Giorgetti, G.J. Pappas, and A. Bemporad. Bounded model checking for hybrid dynamical
systems. InDAC, pages 672–677. IEEE, 2005.

11. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An Ap-
proach to the State-Explosion Problem, volume 1032 ofLNCS. Springer, 1996.

12. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.Theory and
Practice of Logic Programming, 3(4-5):519–550, 2003.

13. T.A. Henzinger. The Theory of Hybrid Automata. InLICS, pages 278–292. IEEE Computer
Society, 1996.

14. S. Jha, B. Krogh, J. Weimer, and E. Clarke. Reachability for Linear Hybrid Automata Using
Iterative Relaxation Abstraction. InHSCC, volume 4416 ofLNCS, pages 287–300. Springer,
2007.

15. Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-4):141–224, 2007.
16. U. Shinya. Event order abstraction for parametric real-time system verification. InEMSOFT,

pages 1–10. ACM, 2008.
17. C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole Partial Order Reduction. InTACAS,

volume 4963 ofLNCS, pages 382–396. Springer, 2008.
18. F. Wang. Symbolic parametric safety analysis of linear hybrid systems with BDD-like data

structures.IEEE Trans. Soft. Eng., 31(1):38–51, 2005.
19. J. Zhao, X. Li, T. Zheng, and G. Zheng. Removing Irrelevant Atomic Formulas for Checking

Timed Automata Efficiently. InFORMATS, volume 2791 ofLNCS, pages 34–45. Springer,
2003.

