
A Type Graph Model for Java Programs?

Arend Rensink and Eduardo Zambon

Formal Methods and Tools Group, EWI-INF, University of Twente
PO Box 217, 7500 AE, Enschede, The Netherlands

{rensink,zambon}@cs.utwente.nl

Abstract. In this work we present a type graph that models all exe-
cutable constructs of the Java programming language. Such a model is
useful for any graph-based technique that relies on a representation of
Java programs as graphs. The model can be regarded as a common rep-
resentation to which all Java syntax graphs must adhere. We also present
the systematic approach that is being taken to generate syntax graphs
from Java code. Since the type graph model is comprehensive, i.e., covers
the whole language specification, the technique is guaranteed to gener-
ate a corresponding graph for any valid Java program. In particular, we
want to extract such syntax graphs in order to perform static analy-
sis and model checking of programs written in Java. Although we focus
on Java, this same approach could be adapted for other programming
languages.

1 Introduction

A graph is a flexible structure that is used to represent several different artifacts
in computer science. However, the mathematical definition of a graph alone does
not allow us to restrict a representation to a certain pattern or form. Such
restrictions can be enforced by means of a type graph, a model that describes
constraints over the sets of nodes and edges of a graph.

A program written in a certain language can be transformed into a syntax
tree by a parser. When additional information such as bindings are included in
the representation, the syntax tree is extended into a syntax graph. One main
contribution of our work is to define a type graph model for syntax graphs that
represent programs written in Java. The type graph model is complete, i.e., it
covers the entire language specification up to version 1.6 [10]. We believe that
this model can be of interest to any graph-based technique that relies on a
representation of Java programs as graphs. As one example, suppose a visual
programming/modeling tool that generates Java code from a graph; this could
for instance, be used in the context of graph transformation-based model trans-
formation [1] or code refactoring [3]. By enforcing the graph to be an instance
of this type graph model, the tool can generate syntactically correct code.

? The research reported herein was carried out as part of the GRAIL project, funded
by NWO (Grant 612.000.632).



In our current research we aim to perform static analysis [7] and model check-
ing [2] of Java programs using GROOVE [8], a tool for state space exploration
where states are represented as graphs, and the transitions from one state to
another are given by graph transformation rules. A syntax graph is the static
representation of a program as a graph, and it is the required initial structure for
the subsequent elaboration of the states that constitute the dynamic behavior
of the program. Thus, the work here presented is the first, necessary step in our
planned method for the verification of code.

In this document we focus on the approach taken for the construction of the
type graph model. Due to space limitations, it is not possible to actually present
the model, and we refer the interested reader to the accompanying technical
report [9], where all the details are given.

2 Description of Approach Taken

The task of constructing syntax graphs from given source code consists of two
major steps, (i) the building of a type graph model to represent the syntactical
elements of the chosen programming language, and (ii) the development of a tool
that constructs a valid syntax graph from syntactically correct code. A syntax
graph is considered to be valid when it is an instance of the type graph model
developed in step (i). Essentially, the work to be done in (ii) boils down to
writing a compiler that produces a syntax graph as its target language, instead
of machine code.

We decided to adapt an open-source Java compiler for our purposes. In doing
so, the implementation effort is kept to a minimum, since we have only to mod-
ify the code generation phase of the compiler to construct the syntax graphs.
Also, by analysing the source code of the compiler we are able to elaborate the
type graph model in a very straightforward way. Thus, with this solution, the
definition of the type graph and the construction of the syntax graph generator
go hand in hand, and we have the guarantee that a syntax graph generated from
code is compliant with the type graph model.

2.1 Creating the Type Graph

In order to develop our chosen approach we decided to use the Eclipse Java Com-
piler [4]. This compiler is also written in Java, and its source code is available for
use under the Eclipse Public License. The compiler source is divided in several
packages, among which the package org.eclipse.jdt.internal.compiler.
ast1 is of particular interest, since it is where the classes that compose the
Abstract Syntax Tree (AST) built by the compiler are grouped. By analysing
the package contents we are able to construct the type graph model, which is
presented in [9].
1 Through the rest of the paper we adhere to the following convention: elements of

Java code are shown in typewriter font, while elements of the type graph or instance
graphs are shown in sans serif font.



class IfStmt extends Stmt {

// fields

Expr condition;

Stmt thenStmt;

Stmt elseStmt;

...

// AST traversal method

void traverse(ASTVisitor v){

condition.traverse(v);

thenStmt.traverse(v);

if (elseStmt != null)

elseStmt.traverse(v);

...

}

...

}

Stmt

IfStmt

Expr

thenStmt

1

condition

1

elseStmt

0..1

Fig. 1. Example of the type graph elaboration from the compiler source code

The ast package contains, for example, classes like Expr and Stmt to repre-
sent expressions and statements of the Java language. In fact, every syntactical
element of the language has a corresponding class in the ast package and those
classes are grouped in a certain hierarchy. The top most class is ASTNode, which
defines a common super type for all elements of the AST. The ast package also
provides an AST visitor pattern interface [5], which has methods to navigate
over the nodes of the AST in a depth-first-like manner.

The way the type graph is elaborated from the elements of the ast package
can be best explained with an example. Figure 1 shows the relevant code of the
class that represents an “if” statement and the corresponding part of the type
graph constructed from this code. We start with the class name, IfStmt, that
gives rise to an homonymous node type in the type graph. Also, since IfStmt is
a subclass of Stmt we create another node type for the super class and we insert
an inheritance relation in the type graph, between the corresponding node types.
The class fields that are references to other classes of the AST become compo-
sitions (in some cases, ordered ones) in the type graph, with labels matching
the field names. In this example, the fields named condition, thenStmt, and
elseStmt give rise to three compositions in the type graph, with corresponding
labels. Additionally, the way the visitor pattern is implemented in the class pro-
vides some guidance over the cardinalities of the compositions just created. From
the implementation of the traverse method we see that fields condition and
thenStmt are always visited. Therefore we can conclude that the IfStmt node
type must have mandatory condition and thenStmt compositions, a fact that is
illustrated by the cardinality 1 of those compositions in the type graph. On the
other hand, the check for non-nullness of the elseStmt field indicates that it



may not always exists. Therefore we mark the cardinality of its composition in
the type graph as 0..1.

By analysing the classes of interest of the ast package in the same way
as described in the example above we can construct a large part of the type
graph model. However, there are some elements of the type graph that still
need to be manually created. As an example we can cite the associations that
resolve name and type references, which correspond to the binding edges on
syntax graphs. The intuition for identifying where these associations must be
created is simple: any reference should have an association with a corresponding
declaration. However, the information needed to create these associations is not
present in the compiler source code in a uniform way, and therefore manual
intervention is necessary. The rationale behind our decisions over what does
or does not have to be manually inserted into the type graph comes from our
intended purpose for the syntax graphs. Thus, we insert only the elements that
we deem necessary for static analysis and simulation.

The resulting type graph obtained from the analysis described in this section
is formed by 75 node types, mapped directly from the compiler classes. The
complete type graph is presented and explained in our technical report [9].

2.2 Constructing Syntax Graphs from Code

To construct syntax graphs from Java code we must change the back end of
the Eclipse Java Compiler. By stopping the compiler after parsing and code
analysis but before machine code generation we are able to profit from the work
done by the compiler until this stage. Specifically, name and type references are
already resolved, simplifying the construction of the syntax graph. We developed
a syntax graph generator that implements the AST visitor interface provided by
the compiler and we plugged it in the compiler back end. To build the syntax
graph, our generator visits the AST, performing the following steps.

– For each node in the AST the generator creates a corresponding node in
the syntax graph. The types of a syntax graph node are obtained through
reflection. By using reflection in Java, one is able to query the virtual machine
for run-time information of objects. In our case we obtain the class hierarchy
of an AST node via reflection and store this information as a label of the
syntax graph node.

– For the construction of edges in the syntax graph we keep an auxiliary map-
ping of AST nodes into syntax graph nodes. This mapping, along with the
bindings produced by the compiler, is sufficient for creating the edges, in-
cluding the ones that resolve references.

For each node type of the type graph we created a test case input program.
With these test cases we can inspect the syntax graphs produced by our tool
and check for implementation errors. An example of such test case is given in
Fig. 2, along with the syntax graph generated. The complete set of input test
cases can be found in the corresponding technical report [9]. The syntax graph



Fig. 2. Example of a syntax graph built from code. The dashed box represents a system
wide compilation unit where primitive types of the language are declared.

in Fig. 2 has a node labeled TypeDecl, which represents a class. The name of the
declared class is stored as an attribute of the node, which also has three outgoing
edges that correspond to the field and method compositions. It is important to
note that name and type reference nodes have an outgoing edge that binds
the reference to its corresponding declaration. We consider the existence of a
“system” compilation unit, where the primitive types of the language, and also
the classes of java.lang.*, are declared. Part of this “system” compilation unit
is shown in the bottom of Fig. 2 (within the dashed box), with the declaration
of the primitive type int.

3 Conclusion and Future Work

To sum up, the contributions of our work are threefold.

– We have created a comprehensive type graph that covers all executable ele-
ments of the Java programming language. Such type graph can be of interest
as a model for tools that represent Java programs as graphs.



– We have shown a straightforward and systematic approach for the construc-
tion of the type graph model by analysing a compiler source code. Although
our described method focused on Java, we believe that it can be adapted
(with varying degrees of difficulty) to other programming languages as well.

– We explained how the back end of a compiler can be adapted in order to
automatically construct a syntax graph representation from source code.

The work described in this paper is the first step in our planned approach
for the verification of Java programs. Now that we are able to generate syntax
graphs from code the next step is the construction of flow graphs, structures that
model the sequential execution relation between elements of the syntax graph.
We plan to define graph transformations rules over syntax graphs for flow graph
construction, as described in [6]. Together, a syntax graph and a flow graph form
a program graph. The subsequent step is then use the GROOVE tool to simulate
the execution of program graphs. Another important aspect of this step is that
we want to apply abstract interpretation techniques to simplify the program
graphs and thus improve the performance of the simulation.

References

1. Alanen, M., Lundkvist, T., Porres, I.: Creating and reconciling diagrams after
executing model transformations. Sci. Comput. Program. 68(3) (2007) 155–178

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, New York (May
2008)

3. Baumer, D., Gamma, E., Kiezun, A.: Integrating refactoring support into a Java
development tool. In: OOPSLA 2001 Companion. (2001)

4. Eclipse Foundation: JDT core component development resources. http://www.

eclipse.org/jdt/core/dev.php

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley Publishing Company, New York, NY (1995)

6. Kastenberg, H., Kleppe, A., Rensink, A.: Defining object-oriented execution se-
mantics using graph transformations. In Gorrieri, R., Wehrheim, H., eds.: Formal
Methods for Open Object-Based Distributed Systems (FMOODS). Volume 4037
of Lecture Notes in Computer Science., Springer (2006) 186–201

7. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1999)

8. Rensink, A.: The GROOVE simulator: A tool for state space generation. In
Pfaltz, J.L., Nagl, M., Böhlen, B., eds.: Applications of Graph Transformations
with Industrial Relevance (AGTIVE). Volume 3062 of Lecture Notes in Computer
Science., Springer (2003) 479–485

9. Rensink, A., Zambon, E.: A type graph model for Java programs. Technical Report
TR-CTIT-09-01, University of Twente, Enschede (February 2009)

10. Sun Microsystems: The Java language specification. http://java.sun.com/docs/
books/jls/


