Checking the conformance of orchestrations with
respect to choreographies in web services: A
formal approach *

Gregorio Diaz! and Ismael Rodriguez?

!Universidad de Castilla-La Mancha 2Universidad Complutense de Madrid
Gregorio.Diaz@uclm.es isrodrig@sip.ucm.es

Abstract. In this paper we present a formal model to represent orches-
trations and choreographies, and we provide some semantic relations to
detect their conformance, i.e., whether a set of orchestrations represent-
ing some web services leads to the overall communications described in
a choreography.

1 Introduction

We present a formal framework to define models of asynchronous web services
as well as to study them. Our main goal is allowing to define orchestrations and
choreographies as well as to compare them. That is, given the orchestration of
some web services and a choreography defining how these web services should in-
teract, we provide a diagnostic method to decide whether the interaction of these
web services necessarily leads to the required observable behavior, i.e. whether
the orchestration conforms to the choreography. Models of orchestrations and
choreographies are constructed by means of two different languages, and some
formal semantic relations define how the terms defined in both languages are
compared. Our modeling languages focus on accurately defining asynchronous
communication aspects. In particular, languages explicitly consider service iden-
tifiers, specific senders/addressees, message buffers, etc.

There are few related works that deal with the asynchronous communication
in contracts for web service context. In fact, we are only aware of three works from
van der Alst et al. [7], Kohei Honda et al. [4] and, Bravetti and Zavattaro [2]. In
particular, van der Alst et al. [7] present an approach for formalizing compliance
and refinement notions, which are applied to service systems specified using open
Workflow Nets (a type of Petri Nets) where the communication is asynchronous.
The authors show how the contract refinement can be done independently, and
they check whether contracts do not contain cycles. Kohei Honda et al. [4] present
a generalization of binary session types to multiparty sessions for w-calculus.
They provide a new notion of types which can directly abstract the intended
conversation structure among n-parties as global scenarios, retaining an intuitive
type syntax. They also provide a consistency criteria for a conversation structure

* Research partially supported by projects TIN2006-15578-C02, PEII09-0232-7745,
and CCGO08-UCM/TIC-4124.



with respect to the protocol specification (contract), and a type discipline for
individual processes by using a projection. Bravetti and Zavattaro [2] allow to
compare systems of orchestrations and choreographies by means of the testing
relation given by [1,3]. Systems are represented by using a process algebraic
notation, and operational semantics for this language are defined in terms of
labeled transitions systems. On the contrary, our framework uses an extension of
finite state machines to define orchestrations and choreographies, and a semantic
relation based on the conformance relation [5, 6] is used to compare both models.
In addition, let us note that [2] considers the suitability of a service for a given
choreography regardless of the actual definition of the rest of services it will
interact with, i.e. the service must be valid for the considered role by its own.
This eases the task of finding a suitable service fitting into a choreography role:
Since the rest of services do not have to be considered, we can search for suitable
services for each role in parallel. However, let us note that sometimes this is not
realistic. In some situations, the suitability of a service actually depends on the
activities provided by the rest of services. For instance, let us consider that a
travel agency service requires that either the air company service or the hotel
service (or both) provide a transfer to take the client from the airport to the
hotel. A hotel providing a transfer is good regardless of whether the air company
provides a transfer as well or not. However, a hotel not providing a transfer is
valid for the travel agency only if the air company does provide the transfer. This
kind of subtle requirements and conditional dependencies is explicitly considered
in our framework. Thus, contrarily to [2], our framework considers that the
suitability of a service depends on what the rest of services actually do.

2 Formal model

In this section we present our languages to define models of orchestrations and
choreographies. Some preliminary notation is presented next.

Definition 1. Given a type A and a1,...,a, € A with n > 0, we denote by
[a1,...,ay] the list of elements ay, ..., a, of A. We denote the empty list by [].
Given two lists 0 = [a1,...,a,] and o’ = [b1,...,by] of elements of type A
and some a € A, we haveo-a = [a1,...,an,al and 00’ = [a1,...,an,b1,...,bn].
Given a set of lists L, a path-closure of L is any subset V C L such that for
all o € V we have

— either 0 =[] or 0 = 0’ - a for some ¢’ with ¢’ € V.
— there do not exist o/,¢” € V such that ¢-a =0’ and o -b = ¢” with a # b.

We say that a path-closure V' of L is complete in L if it is mazimal in L, that
is, if there does not exist a path-closure V' C L such that V' C V', The set of all
complete path-closures of L is denoted by Complete(L). O

We present our model of web service orchestration. The internal behavior of
a web service in terms of its interaction with other web services is represented by



a finite state machine where, at each state s, the machine can receive an input ¢
and produce an output o as response before moving to a new state s’. Moreover,
each transition explicitly defines which service must send i: A sender identifier
snd is attached to the transition denoting that, if ¢ is sent by service snd, then
the transition can be triggered. We assume that all web services are identified
by a given identifier belonging to a set I D. Moreover, transitions also denote the
addressee of the output o, which is denoted by an identifier adr. Let us note that
web services receive messages asynchronously. This is represented in the model
by considering an input buffer where all inputs received and not processed yet
are cumulated.

Definition 2. Given a set of service identifiers I D, a service for ID is a tuple
(id, S, 1,0, s;n,T) where id € ID is the identifier of the service, S is the set of
states, I is the set of inputs, O is the set of outputs, s;, € S is the initial state,
and T is the set of transitions. Each transition ¢ € T is a tuple (s, ¢, snd, o, adr, )
where s, s’ € S are the initial and final states respectively, i € I is an input, snd €
ID is the required sender of i, 0 € O is an output, and adr € ID is the addressee
of 0. A transition (s, 1, snd, o, adr, s') is also denoted by s {endi)/(adro) | s’

Given a service M = (id, S, I, O, $;,,T), a configuration of M is a pair ¢ =
(s,b) where s € S is a state of M and b is an input buffer for M. An input buffer
for M is a list [(idy,41),. .., (¢dk,ix)] where idy,...,id; € ID and 4y, ... i € I.
The initial configuration of M is (s, []). The set of all input buffers is denoted
by B.

Let b = [(id1,41), - . ., (idk,ix)] € B with k > 0 be an input buffer. We define
the following functions: exists(b, id, ) holds iff (id,i) € {(id1,i1),. .., (idk,ix)};

insert(b,id, i) = b- (id,i); remove(b,id, i) = [(id1,41), ..., (idj_1,45-1), (idj41,
4j41),- .., (idk, 1)) provided that j € N is the minimum value such that j €
[1k],zd:zdj,andz:zj O

Once we have presented our model of web service orchestration, we provide
a way to compose services into systems. In formal terms, a system is a tuple of
services. The configuration of a system is given by the tuple of configurations of
each service in the system.

Definition 3. Let ID = {id1,...,id,}. In addition, for all 1 < j < p, let M; =
(¢dj, 84, 1;,0j, 85.in,T;) be a service for ID. We say that S = (M,..., M) is a
system of services for ID.
Forall 1 < j < p, let ¢; be a configuration of M,;. We say that ¢ = (c1,...,¢p)
is a configuration of S. Let ¢, ..., c; be the initial configurations of My, ..., My,
/

respectively. We say that (i, ...,c,) is the initial configuration of S. a

Next we formally define how systems ewvolve, i.e. how a service of the system
triggers a transition and how this affects other services in the system. In fact,
the next definition presents the operational semantics of systems. In general,
outputs of services will be considered as inputs of the services these outputs are
sent to. Besides, we consider a special case of input/output that will be used to
denote a null communication. In particular, if the input of a transition is null



then we are denoting that the service can take this transition without waiting
for any previous message from any other service, that is, we denote a proactive
action of the service. Similarly, a null output denotes that no message is sent to
other service after taking the corresponding transition. In both cases, the sender
and the addressee of the transition are irrelevant, respectively, so in these cases
they will also by denoted by a null symbol.

Definition 4. Let ID = {id1,...,idp} be a set of service identifiers and S =
(M, ..., M) be a system of services for ID where for all 1 < j < p we have
that M; = (id;, S;,1;,0;, Sjin,Tj). Let ¢ = (e1,...,¢p) be a configuration of S
where for all 1 < j < p we have ¢; = (s5, b;).

An evolution of S from the configuration c¢ is a tuple (¢, snd, i, proc, o, adr, ')
where ¢ € I; U...U I, is the input of the evolution, 0 € O; U... U O, is the
output of the evolution, ¢’ = ((s1,b}), .., (s},b;,)) is the new configuration of S,
and snd, proc,adr € ID are the sender, the processer, and the addressee of the
evolution, respectively. All these elements must be defined according to one of
the following choices:

(a) (evolution activated by some service by itself) For some 1 < j < p, let us

l,null) / (adr’, .
suppose s; (rallyrstl)/ adr ) s’ € T}. Then, s; = s and b;- = b;. Besides,

snd = null, proc = id;, adr = adr’;

(b) (evolution activated by processing a message from the input buffer of some
(snd’ i)/ (adr’,0)

ISR VAU AN

service) For some 1 < j < p, let s; s’ € T; and let us sup-
pose exists(b;,snd',i) holds. Then, s; = s’ and b}, = remove(b;, snd, ).
Besides, snd = snd’, proc = id;, and adr = adr’;
where, both in (a) and (b), the new configurations of the rest of services are
defined according to one of the following choices:

(1) (no message is sent to other service) If adr’ = null or o = null then for all
1 < q <k with ¢ # j we have s; = s, and b, = b,.

(2) (a message is sent to other service) Otherwise, let id, = adr’ for some
1 < g < k. Then, we have s, = s, and b; = insert(b,,id;,0). Besides, for
all 1 < ¢ <k with ¢ # j and ¢ # g we have s}, = s, and b, = bg. O

We distinguish two kinds of traces. A sending trace is a sequence of outputs
ordered as they are sent by their corresponding senders. A processing trace is a
sequence of inputs ordered as they are processed by the services which receive
them, that is, they are ordered as they are taken from the input buffer of each
addressee service to trigger some of its transitions. Both traces attach some
information to explicitly denote the services involved in each operation.

Definition 5. Let S be a system and let ¢; be the initial configuration of S. In
addition, let (¢1, snds, i1, procy, 01, adry, ca), (co, snda, io, procs, 09, adra, cs), . . .,
(ck, sndy, ik, prock, ok, adry, cx+1) be k consecutive evolutions of S.

Let a1 < ... < a, denote all indexes of non-null outputs in the previous se-
quence, i.e. we have j € {a1,...,a,} iff 0o; # null. Then, [(procg,, 0a,,adre,), ...,



(proca,., 04,,adr,,)] is a sending trace of S. In addition, if there do not exist
snd' i’ proc’, o' ,adr’, ¢’ such that (cy1,snd’ i, proc’, o', adr’, ') is an evolution
of § then we also say that [(proca,,04,,adra, ), .., (proca,., 04, ,adr,,),stop| is a
sending trace of S. The set of sending traces of S is denoted by sendTraces(S).

Let a1 < ... < a, denote all indexes of non-null inputs in the previous se-
quence, i.e. we have j € {a1,...,a,} iff i; # null. Then, [(snda, ,%q,, Proca, ), - -,
(sndg,.,ia,,proc,, )] is a processing trace of S. In addition, if there do not exist
snd' i’ proc’, o' adr’, ¢’ such that (cy1,snd’ i, proc’, o', adr’, ') is an evolution

of S then we also say that [(snda,,ia,,proca, ), .., (snda,,ia,,proc,, ), stop)
is a processing trace of S. The set of all processing traces of S is denoted by
processTraces(S). O

Next we introduce our formalism to represent choreographies. Contrarily to
systems of orchestrations, this formalism focuses on representing the interaction
of services as a whole. Thus a single machine, instead of the composition of
several machines, is considered.

Definition 6. A choreography machine C is a tuple C = (S, M, ID, s;,,,T) where
S denotes the set of states, M is the set of messages, I D is the set of service
identifiers, s;, € S is the initial state, and T is the set of transitions. A transition
t € T is a tuple (s,m, snd, adr, s’) where s, s’ € S are the initial and final states,
respectively, m € M is the message, and snd,adr € ID are the sender and

the addressee of the message, respectively. A transition (s, m, snd, adr, s’) is also

m/(snd—adr)
I N

denoted by s s'. A configuration of C is any state s € S. a

The next definition presents the operational semantics of choreography ma-
chines. Contrarily to systems of services, null inputs/outputs are not available,
i.e, all communications are effective. Evolutions are activated simply by taking
any transition from the current state.

Definition 7. Let C = (S, M,ID, s;,,,T) be a choreography machine and s € S
be a configuration of C.

An evolution of C from s is any transition (s, m, snd, adr,s’) € T from state
s. The initial configuration of C is s;y. O

As we did before for systems of services, next we identify the sequences of
messages that can be produced by a choreography machine.

Definition 8. Let c¢; be the initial configuration of a choreography machine C.
Let (¢1,mq,sndy,adry,c2), ..., (cg,mg,sndg,adry,ckr1) be k > 0 consecu-
tive evolutions of C. We say that o = [(sndi,m1,adr1),..., (sndk, my, adry)]
is a trace of C. In addition, if there do not exist m’,snd’,adr’,c’ such that
(ck1,m , snd’,adr’, ) is an evolution of C then we also say that [(sndy, m1, adr),

.., (sndy, my, adry), stop] is a trace of C. The set of all traces of C is denoted
by traces(C). O

Now we are provided with all the required formal machinery to define our
conformance relations between systems of orchestrations and choreographies.



Definition 9. Let S be a system of services and C be a chorography machine.

We say that S conforms to C with respect to sending actions, denoted by
S conf; C, if either ) C Complete(sendTraces(S)) C Complete(traces(C)) or
we have () = Complete(sendTraces(S)) = Complete(traces(C)).

We say that S fully conforms to C with respect to sending actions, denoted
by S conf! C, if Complete(sendTraces(S)) = Complete(traces(C)).

We say that S conforms to C with respect to processing actions, denoted by
S conf, C, if ) C Complete(processTraces(S)) C Complete(traces(C)) or
() = Complete(processTraces(S)) = Complete(traces(C)).

We say that S fully conforms to C with respect to sending actions, denoted
by & confg C, if Complete(processTraces(S)) = Complete(traces(C)).

We say that S conforms to C, denoted by S conf C, if S confs; C and
S conf), C.

We say that S fully conforms to C (S cont/ C) if S conff C and S confg C.

O

3 Conclusions and future work

In this paper we have presented a formal framework for defining models of or-
chestrations and choreographies. We have defined some formal semantic relations
allowing to detect whether the behavior described by the orchestration of each
involved web service correctly leads to the behavior described by a choreogra-
phy. The suitability of a service for a given choreography may depend on the
activities of the rest of services it will be connected with, which contrasts with
previous works [2]. In order to take into account the effect of asynchrony, we have
separately considered the moments where messages are sent and the moments
where they are actually processed.

References

1. M. Boreale, R. D. Nicola, and R. Pugliese. Trace and testing equivalence on asyn-
chronous processes. Inf. Comput., 172(2):139-164, 2002.

2. M. Bravetti and G. Zavattaro. Contract compliance and choreography conformance
in the presence of message queues. In Proc. of 5th International workshop on Web
Services and Formal Methods, WS-FM’08, LNCS (in press). Springer, 2008.

3. L. Castellani and M. Hennessy. Testing theories for asynchronous languages. In
FSTTCS, pages 90-101, 1998.

4. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In
POPL, pages 273-284, 2008.

5. J. Tretmans. Conformance testing with labelled transition systems: Implementation
relations and test generation. Computer Networks and ISDN Systems, 29:49-79,
1996.

6. J. Tretmans. Testing concurrent systems: A formal approach. In CONCUR’99,
LNCS 1664, pages 46—65. Springer, 1999.

7. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. From
public views to private views - correctness-by-design for services. In WS-FM, pages
139-153, 2007.



